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1. Introduction

There is a substantial machinery of relatedness connecting between-
ness relations with other betweenness relations, and it is constantly
advantageous to draw upon it. We saw evidence of this in Section 6
of article I, the first article in this series ([2] in the References). In
the present, second article we are going to develop more of this ma-
chinery and apply it to characterize a new betweenness in K?.

We start off in Section 2 by proving, in Theorem 2.1, the result
that was stated without proof as part (2) of Theorem 1.6.1. Further
utilization of the procedures of this proof yield another result, Theorem
2.2, that is subsequently applied in the last section. In Section 3 we
introduce and study the notion of a t-invariant betweenness relation on
the domain X of a function ¢ carrying X into a space 4J. The notion
is alternatively formulated in terms of spread functions or span funec-
tions, and there is made explicit the one-to-one correspondence between
t-invariant spread functions in X and general spread functions in 4
(Theorem 3.2) ; similarly for span functions (Theorem 3.3). These facts,
in their detail, in particular afford a spread function in 4 correspond-
ing to any given t-invariant spread function in ¥. And this is pre-
cisely the subject that is studied more closely in Section 4, the last
section, in the special case of X=0 4, Y=K? and t=t¢,, the function
which maps an x € @y into the linear manifold in K spanned by x.
Theorem 4.1 presents a very general method of constructing ti-invariant
spread functions from spread functions of a less restricted type. Then
it is shown that \j-betweenness and {\!-betweenness are of this latter
type and so they give rise, via Theorem 4.1, to ¢,-invariant spread func-
tions in @y ; and consequently, by the results of Section 3, also to
spread functions in A?. The spread function in K? thus derived from
O i-betweenness is seen to be just that of {\-betweenness. The spread

1 Tokyo, 1975.
2 Visiting Scholar, University of California, Berkeley, 1977.
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function in A? derived from 7\!’-betweenness is new; its corresponding
betweenness relation we label 0\ -betweenness, and we have worked out
its characterization and stated it in Definition 4.3.

The notation in this present paper follows that of the first paper
in this series. In referring here to formal statements and displays and
sections in that first paper, we will use the obvious device (as already
done here above) of inserting the Roman numeral I; thus, for example,
Theorem 1.6.1, or (I1.6.8), or Section I.2.

2. Two theorems on {)’-betweenness in O

In Theorem 1.6.1 we stated a result without proof, namely, the state-
ment (2) of that theorem. We begin this present paper by supplying
that proof. And we will then go on, in this section, to prove a second
result that will have application later on.

THEOREM 2.1. Let dim K =3, and let x and y be elements of O x,
with ¥ denoting the inner product (x,y). Let v>0 and let the follow-
ang condition hold :

1+ &
(2.1) v= /T .

Finally we define

2.2 "‘é‘/1— 2
(2.2) P i1z
Then, z€ O x ts O\l-between x and y if and only if
v
. ) =
2.3) <z = (x+y)+w> v

Jor every we K satisfying the conditions
(2.4) wlz,y, |Jwl=p.

To prove this theorem we consider first the case of y=x«. In this
case we know from our discussion in the first article that the only ad-
missible z is 2. (We see that this follows, prior to Theorem 1.6.1, from
the argument that was used in [2] to establish the third assertion in
(1.6.8).) We proceed to show that this is what (2.3) implies. First of
all, if p=0 then (2.3) reduces to (2, x)=1, and this is clearly satisfied
only for z=z. If p>0, and we suppose z#x, then on writing z=ax+
w', with ' | z, (2.8) becomes

(2.5) va+(w', w)=v ;
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and we have also
(2.6) a*+||lw|P=1.

If w'=0, these conditions immediately imply a=+1, and we have again
z=x. If w0, then (2.5) will—according to (2.4)—hold for w=—(p/
[w'|Dw'. Putting in this w, we get

2.7 va—pllw'||=v .

This inequality cannot hold, since a<1 according to (2.6). Therefore
w' must be ¢, and so, as before, a=1 and z=x.
We now go on to consider the case of y#x. Let us set

(2.8) A={ow e Oxl(®, 0)2v, (¥, ®)2v}
and

(2.9) B={weOx|(®, 0)=(y, 0)=v} ;
and then define also

(2.10) A'={z€0xl|(z, 0)Zv for all we A}
and

(2.11) B'={z€0y|(z, w)=v for all € B} .

From the definition of ©\’-betweenness we know that A’ is precisely
the set of all z€ O 4 which are 0\2-between z and y. We see also that
BC A and therefore A’CB’. The course of our proof is going to be
to first obtain an explicit characterization of B, and then to establish
the reverse inclusion B'C A’. This will show that likewise B’ is the set
of all ze O 4 which are {)!-between x and y, and the characterization
of B will then have given us the assertion of our present theorem.

If we B we have (x—y, 0)=0; that is, o Lx—y. Since x and ¥
have equal norms, the orthocomplement of {x—y} is spanned by z+y
and the orthocomplement of the set {x,y}. Therefore we can write
o=a(c+y)+w, with w2z, y. Applying the fact that (x, w)=v we ob-
tain the evaluation a=y/(1+ &). The fact that ||w||=1 then gives us
lwl|=p. Thus, any @€ B is of the form

(2.12) o=—2(z+y)+w  with wlz,y and |w|=p.

14 &
Conversely, we see easily that every o of the form (2.12) is an element
of B. It follows that the conditions (2.8) and (2.4) of the theorem
describe precisely the set B’. And therefore, for the proof of the the-
orem, it remains only to show that B'=A’, a fact that will be estab-
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lished when we prove that B'CA'.
Let ze B’ and let us write it in the form

(2.13) z=r(x+y)+s(x—y)+u, ulwx,y.

Since ||z||=1, we have

(2.14) 21+ &) 4-2(1— &)s*+|u|P=1.
Expressing the fact that z ¢ B'—using (2.12)—gives us
(2.15) 2ur+(u, w)=v  for every wlwx,y, with |wl=p.

If w=0, (2.15) gives us r=1/2. Applying this to (2.14), we get $<1/4.
Summing up, we have

(2.16) |s|§é—§'r . if u=0.

Now suppose u+6. Setting w=—(p/||u|)u in (2.15), we obtain

2.17) 2ur—pllul|=v,
or

1 Il
(2.18) rgE<1+ﬁ-y—> .

Applying this result to (2.14), we have

2
(2.19) 21—k )s'<1— 1‘;}:— <1+ PlLu|‘> — |l
Now notice that, for any value of |u||,
(2.20) 1—1|u112§<1+ pllull>2
v

_142 <1+p||ull>z+ 1—& (H_pllull)z_
2 y 2 y

Bringing this inequality to bear on (2.19), we get the result
(2.21) s2§l<1+M)z .
4 v

Combining this with (2.18), and noticing that the result reduces to (2.16)
in the case of ||u||=0, we can now finally state: for all values of |u||,

(2:22) sl 5 (12l <r
Y
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We now want to show that ze€¢ A’. Let o, be any element of A,
and let us write

(2.23) o,=a(x+y)+px—y)+v, vilx,y.

From the inequalities (x, w;)=v and (y, 0,)=v, we readily find

(2.24) (14 £)a—v=0
and
(2.25) (1= &)IBI= 1+ &)a—y .

From the fact that , is of norm 1, combined with the inequality (2.24),
we obtain

(2.26) Il < -
Consider now
(2.27) (2, 0)=(, (v +y)+p(x—y)+v)
= (& 2 @)+ [ (a- 2 @)+ =)+ |

1+ & 1+ &
=<z, [1:2: (x+y)+w]+[<a—- 1_;_’3: )(x+y)

+,8(x—y)+(v—w)]> .
The vector w that has been introduced here is defined as follows:

+-L2 v if (w,v)<0,
|

(2.28) w=4{ —“%”v if (u, v)=0, v#4,

any particular w, 1 x, y with ||w||=p and such that
(w, w) =0 2f v=0.

If we now continue our evaluation of (z, »,), putting in the expression
(2.13) for 2, and applying the fact that (z, w)=v for any o of the form
(2.12), we get

(2:29) (2 0)Zv+ 20+ L)r{a— = )20 & )sp+ (u, v—0)

Let us examine the term (u, v—w). If (u, v)<0, then

(2.30) (u, v—w)= <1_T%W>(u’ 0=0 by (2.26).
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If (u,v)=0 and v»+0, then

(2.31) (, v—w)=<1+—|—l‘ZT>(u, 0)=0.

And finally, if v=0,
(2.32) (u, v—w)=—(v, W) =0 by (2.28).

Thus, (%, v—w)=0 in all cases, and therefore (2.29) gives us

2.33) (2 w)=v+2(1+ t)r(a— A )+2(1— )sp

2v+2r[(1+ &)a—v]—2[s[[(1— &)[B]]

2v+2r[(1+ &)a—v]—2[s|[(1+ & )a—yv] by (2.25)
=v+2[(1+ & )a—v](r—|s|)

>y by (2.22) and (2.24).

This completes the proof that z e A’, hence that B'CA’, hence that
B'=A’, and so the proof of Theorem 2.1 is complete.

We next prove the following theorem :

THEOREM 2.2. Let = and y be elements of Oy, with +=(z,y),
v>0, condition (2.1) holding, and p defined by (2.2). Then, if 2’ and
2" are any elements of Oy that are U\-between x and y, we have (2, 2")
=&,

This result is quite obvious in the cases of dim X=1 and 2, and
also when y=2 in K of dimension=3. We shall therefore confine our-
selves, for the detailed proof, to the case of dim K =8 and y+#z«.

Let us write

Z=r'(z+y)+s(@—y)+u, wlw,y,
(2.34)
zll___,'.fl(x+y)+sll(x_y)+ufl s u"_Lx, y .

By (2.18) we have

(2.35) 7'2l<1+ Pllu'H) ’ r,,2_1_<1+ Pllu"") ,
2 2

v v

and by (2.19)

21— £)e 51— 1L (14 LI e,
2 v
(2.36)

21— 2 )" 51— TEE (14 LI e
v
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With these inequalities we now proceed to examine

(2.37) (&, Z")=2(1+ &)r'r"+2(1— &)s's"+(u', u")
=214 &)yr'r"—2(1— &) |s" |+ (W', u'")
22(1_{_ &,)’I"T"—(l— &:)(s’2+s”2)+(u', ’M/”)

2114 o)1 20 1)

v

1oL (g el
— 21— 1 —
L (R R

"2
+1— 1‘;&_ <1+P”z‘/ ”) _”uullz}_i_(uf, u")

2
= &+ )+ D+ A E (2 )
y 2 y

2
+LEE (L G+
v

[ U I+ w)

Since |(u, w)|Z||W |- [w”|£A/2) (J|w'||*+||w"]*), we see that this last ex-
pression is= ¢, and this is the result we were after. The proof of the
theorem is complete.

3. Invariant betweenness relations

In Lemma 1.6.2 we saw that a betweenness relation is straightfor-
wardly induced in the domain of a function when a betweenness relation
is given in the range-space of the function. The fact is that the func-
tional relation also permits us, in certain circumstances, to go in the
other direction from a given betweenness relation to an induced be-
tweenness relation. To understand this, let us begin by making a defi-
nition. (It will be noted that we are now switching around somewhat
the notation that was used in Lemma 1.6.2.)

DEFINITION 3.1. Let t be a function on the space X to the space
QJ. A betweenness relation B in X will be said to be t-invariant if
the following condition holds: if B(x, ¥; z) then also B(x,, %:; ) for any
xy, Y1, 2, such that t(z,)=t(x), t(y)=1t(y) and t(z,)=t(2).

If the betweenness relation B in X is the relation induced, in the
manner of Lemma 1.6.2, from a betweenness relation B’ in 4J under a
function ¢ on ¥ to ¢, then we see without any difficulty that B is t-
invariant. Now, conversely suppose that B is t-invariant. Then for
any two triplets, {z,y, 2> and {x, ¥, 2), of points in ¥, such that
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t(x) =), Uy)=1(y) and i(z,)=1(2), either both B(z, y; 2) and B(x,, y;; 2.),
or both B(x,y;z2) and B°(xi,¥:;2). (Recall that B(x,y;z) denotes
that 2 is not between x and y.) Consequently, a relation, B, is de-
fined on the range (in 4) of ¢t by the equation

3.1) BN« y';2)=B(x,y;2z) for any x,y,z€ X such that
tx)=2', t(y)=y and t(z)=72".

And we find readily that B™I fulfills the conditions of Definition 1.2.1;
that is, B™" is a betweenness relation. It is furthermore easy to prove
that the procedures of Lemma 1.6.2 and the present (3.1) are inverses
of each other. All of these results can now be summed up in the fol-
lowing theorem :

THEOREM 3.1. Let t be a function on the space X onto the space
Y. There is a 1-1 correspondence between the class of all betweenness
relations in Y and the class of all t-invariant betweenness relations im
X. Under this correspondence, if B' is a betweenness relation in 4,
then the corresponding betweenness relation in X is B., defined by

(3.2) Bi(x, y; 2)=B'({(x), i(y); i(2)) .

And if B is a t-invariant betweemness relation in X, then the corre-
sponding betweenness relation in 4 1is B, given by the equivalence (3.1).

It is useful to characterize this correspondence in terms of spread
functions and span functions. Let B be a t-invariant betweenness rela-
tion in X, ¢t being a function on X onto @J. Let B™ be the between-
ness relation in 4J corresponding to B, according to the above theorem.
Let 7 be one of the possibly two (see Section I.2) spread functions be-
longing to B, and 7 be one of those corresponding to B! If now

{z,y} is any set in i  (=the collection of all non-empty, at most 2-
point subsets of ), then we may calculate as follows:

(3.3) ({x, y})={2 € X|B(, y; 2)}
= {z € 2| BY(t(w), t(y); t(2))}
= {z € Z[t(2) € <" Y({t(x), Ly)})}
=t"'({t(x), ty)}) ;

and this result may be written
(3.4) H(A)=t""71YtA), Aed .

Corresponding to 4,  and " in ¥, let B be the class of all sub-

sets of 4J, B be the class of all at most 2-point subsets of 4J, and @
be the class of all non-empty, at most 2-point subsets of 4. We see
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that as A runs over all sets in 1", tA runs over all sets in &°. There-
fore, (3.4) gives

(3.5) N (A=t n_ YA .
Aed” A e B’

It follows that the two intersections in this equation are either both
empty or both non-empty. Consequently, according to (3.5), the equa-
tion (3.4) will hold also for A=@ (the empty set) provided the proper
matching is made between the choice of = and the choice of 7. That
is, if there is chosen the r with 7(@)=0, then the '} with "}(@)=0
is to be chosen. And if there is chosen (if it exists) the ¢ with z(@)+# @,
then there will be the alternative ! with z/}(@)#@ (—and conversely—),
and it is to be chosen. With the understanding that this is done, we
may replace (3.4) with the statement

(3.6) (A)=t"17"(tA), Aed.

(The reader will recognize that this discussion is based on the findings
in Section 1.2.)

The inverse of the formula (8.6) can be derived as follows. From
(3.6) it follows that !}(tA)=tr(A), and therefore we have:

for A'e B,
3.7 (A =tz(A)
where A is any set in A such that tA=A’.

Our discussion has shown that, in spite of the ambiguity of spread
functions corresponding to a given betweenness relation, there is actual-
ly a 1-1 correspondence between the spread functions of ¢-invariant be-
tweenness relations in X and spread functions of betweenness relations
in @J; and this correspondence is fully expressed by (3.6) and (3.7).
Before we state this result in the form of a theorem, let us obtain
another result, namely, a characterization of the spread functions of
t-invariant betweenness relations in 2. We begin by making the fol-
lowing definitions:

DEFINITION 3.2. Let ¢t be a function on the space X onto the space
Y. A set ACX will be said to be a t-invariant subset of X if t'tA
=A. A function, f, on any class & of subsets of X, with values in
A, will be called a t-invariant function if f(A) is a t-invariant set for
every A€ 9.

By (3.6) we see that a spread function of a t-invariant betweenness
relation is t-invariant. We want to show now that the converse of this
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is also true, namely, that any ¢-invariant spread function determines a
t-invariant betweenness relation. Let us recall (see Section 1.2) that a
spread function is characterized by the two properties

(3.8) Acz(4),
(3.9) ACt(B)=1(A)C«(B)

for all sets A and B in 4. And let us note explicitly that the be-
tweenness relation B determined by a given spread function r is defined
by the equivalence

(3.10) B(z, y; z)=[z € =({x, y})1 .

Let the spread function z be t-invariant. Let the points x, y and
z be such that B(z, y;2). To prove that B is f-invariant we must show
that if x,, ¥, 2, are any particular three points with

(3.11) He)=t(x) , Hy)=ty), Hz)=t?),

then also B(x, %,;2,). That is, we must show that z ¢ z({x, y¥}) implies
z € ({z,, v.}). By (3.8) we have {z, y} < =({z, y}), and therefore {x,, ¥}
Ct't{z, y} (by (3.11)) <t %z({z, y})=r({x, y}) (by t-invariance). It fol-
lows then by (3.9) that «({x, v;})S«({z, y}). By repeating this argu-
ment with the pairs z, ¥ and =z,, ¥, interchanged, we come up with the
reverse inclusion, and hence we have

(3.12) ({2, yih)=7({2, ¥}) .

Now, by (3.11), 2, €t 't{z}, and therefore the statement z ¢ z({z, y})
implies z; € t™%r({z, ¥})=7({z, y})=7({x:, v:}) (by (3.12)), which is what
was to be shown. Our result is the following:

LeMMA 3.1. The class of all spread functions of t-invariant between-
ness relations in X 1s identical with the class of all t-invariant spread
functions in X.

With this lemma we are now able to state our previous result as
follows :

THEOREM 3.2. The class of all t-invariant spread functions in X
18 im a 1-1 correspondence with the class of all spread fumctions in 4.
Under this correspondence the spread function, =, in X corresponding
to a specified spread function, ™1, in 4 is given by (3.6); and conversely,
the 71 in 4] corresponding to a specified v in X is given by (8.7). This
correspondence 1s identical with that of Lemma 3.1 under identification
of spread functions with their betweenness relations.
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Continuing to employ the notation of Section 1.2, we see that from
(3.6) we obtain

(3.13) tP(A) =tV A) , Ae.

And from this in turn it follows that the same relation holds between
the core extensions of = and <*!; that is,

(3.14) g(A)=t"'g.a(tA), Ae.

Notice that from this we have g.(t7'tA)=t""g.ca(tt"tA)=t"'g.ca(tA) ; that
is,

(3.15) g(A)=g(ttA), Aec .

According to (3.14), g.ra(tA)=tg.(A), and therefore, by (3.15), g.ca(tA)=
tg.(t™'tA). If we set tA=A', we thus obtain the inverse formula to
(3.14):

(3.16) g.(A)=tg.(t7'A") , Aed.

We want to go on now to show that the same reciprocal relations
(3.14) and (3.16) hold between span functions in general, and give us
a 1-1 correspondence between the class of all ¢-invariant span functions
in ¥ and the class of all span functions in 4.

First of all, let us establish the following fact:

LEMMA 3.2. The class of all t-invariant span functions in X 1is
identical with the class of all span fumction extemsions of t-invariant
spread functions in X.

It is of course obvious that the spread function restriction of a t-
invariant span function is ¢-invariant. Conversely, suppose f is a span
function extension of a t¢-invariant spread function r. Let g. be the
core extension of r. Then, by Lemma 1.3.3 and (3.14), we have, for
any A e,

(3.17) f(A)=g.(f(A)=t""g.(tf(A4)) .

This shows that f is a t-invariant function. The lemma is therefore
proved.

Now let f be any particular ¢-invariant span function in . Let

z be the restriction of f to ., and let g. be the core extension of =.
By Lemma 1.3.3 and (3.15) we have

(3.18) f(A)=f(g.(A))=f(gt7't4)) .
that is,
(3.19) fA=fttA), Ael.
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We define a function f™ on B to B as follows:
(3.20) frAN=tf(t A", AeB.

This formula can be inverted. Indeed, since f is ¢-invariant it follows
immediately that f(t7'A’)=t"'f")(A’). From this we have that, for any
Aed, f(t7tA)=t"'f"(tA). And so, by (3.19), we conclude that

(3.21) FA)=t1fEA), Aec.

Let us proceed to demonstrate now that f!is a span function in 4J.
We must show that f'! has the two characteristic properties (I.3.25)
and (1.8.26) of Definition 1.3.1. These properties stated for our present
span function f are as follows: for every A e .4 and every Be i,

(3.22) ACf(A),
(3.23) AC f(B)= f(A)C f(B) .

Accordingly, we must show that, for all A’ and B’ in B,

(3.24) A'c f4a'),
and
(3.25) A'C fU(B)= [P A) S fUY(B') .

By (8.22) we have t!A'C f(t7'A"), and therefore A'=it"'A'Ctf(t'4');
thus, by (3.20), we have exactly (3.24). Now suppose that A’'C fUY(B').
Then t7'A’'Ct ! f*(B’), and therefore, by the isotone property of span
functions (see Lemma 1.8.1), f(t'A"C f(t 1 f*(B’)). It follows, by (8.20),
that fU(A)Ctf (¢t f“Y(B’)). But this last expression is equal to tf(t7*-
SR BY)=tf(f(t"'B"))=tf(t"'B’') (by the idempotency of f—see Lemma
1.3.1)=fU"Y(B’) (by (8.20)). Thus, we have established (3.25), and there-
with it is proved that f™ is a span function.

Let A’ be, in particular, a set in & and let A€ ] be such that
tA=A'. Then fUAN=tf(t'A)=tf(t'tA)=tf(A) (by (3.19))=tg.(A)=
tg(t"'tA) (by (8.15))=tg.(t7'A")=g..2(A") (by 3.16))=7l(A’). Thus, the
span function f™! is an extension of the spread function 7! which cor-
responds, according to Theorem 3.2, to the spread function r which is
the restriction of f.

Now, similar arguments show that if we take any span function
S in ¢ and define f by (8.21), then f is a t-invariant span function
in ¥ and is an extension of the spread function in ¥ that corresponds,
under Theorem 3.2, to the spread function of f™. We thereby com-
plete the establishment of the result we were after, and we now state
this result in the following theorem.
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THEOREM 3.3. There is a 1-1 correspondence between the class of all
t-invariant span functions in X and the class of all span functions in
. This correspondence, for f in X and f in Y, is given by the
reciprocal formulas (3.20) and (3.21). Under this correspondence, cor-
responding span functions have spread fumction restrictions that cor-
respond under Theorem 8.2.

The results of this section give us the means of constructing a
betweenness relation in @J from a given t-invariant betweenness rela-
tion in X, or vice-versa. We are going to be interested in the case
of X’=the unit sphere, © 4, in our unitary space X, and Y=K?, the
space of all 1-dimensional linear manifolds in A. And our interest is
especially directed to the construction of betweenness relations in K?
from given betweenness relations in ©j4. We deal with this in the
next section.

4. Derivation of line betweennesses from vector betweennesses

We shall employ the notation [A] to denote the closed linear mani-
fold spanned by the set A of vectors in K. We define the function
t, on Oy to K? as follows:

4.1) @) =M{x}], z€0yx.
The results of the preceding section can now be brought to bear on
this situation between the spaces © 4 and X?, and in particular—what
interests us especially—we can obtain betweenness relations in X? from
t-invariant betweenness relations in ©x. Toward this goal, our first
task will be to produce some ti-invariant betweenness notions in O y.
We shall, in fact, do this by establishing a general principle for the
construction of a ti-invariant betweenness from a certain other kind of
betweenness in © 4. And this principle—see Theorem 4.1 below—will
be found readily applicable to provide us with specific cases of #,-invari-
ant betweenness.

We start with certain definitions and preliminary results. If A is
any set of vectors in K, we denote by A~ the reflection of A through
the origin; that is,

(4.2) A E{re K| —xeA}.

Clearly, if ACO 4, then also A~ C0O 4. With this we now make the
following definitions :

DEFINITION 4.1. Let C denote the class of all subsets of X, and
let ¢’ be a subclass of C that is closed under the reflection operation
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()~. Let f be a function on C’ to C. We say that the function f is
symmetric if

(4.3) FA)=f(A4) .
And we say that f is reflective if
(4.4) f(A)-=r(4).

We can prove immediately

LEMMA 4.1. If a reflective function f has, in addition, the two
properties

(4.5) Acf(4), Acf(B)=fA<f(B),

then it is mnecessarily symmetric. Thus, reflective spread functions and
reflective span functions are symmetric.

If the domain, C', of f 1s closed under unions then reflectivity and
(4.5) imply furthermore that

(4.6) f(AUA)=F(A).
In particular, therefore, every reflective span function has this property.

To prove this lemma, observe that the first relation in (4.5) and
reflectivity imply, for any A € C’, that A-< f(A)"=f(A). Hence, by an
application of the second relation in (4.5), we have f(A")Sf(A4). Re-
placing A by A~ we get the reverse inclusion as well; and therefore
there results the equality f(A-)=f(4). Again applying the reflectivity
property, we have our assertion of symmetry.

To prove (4.6), we note that the first relation of (4.5) together with
the already-established inclusion, A-C f(A), implies that AUA~C f(4).
Therefore, the second relation of (4.5) gives the inclusion f(AUA™)C
f(A). On the other hand, we have ACAUA Cf(AUA"), and there-
fore f(A)Cf(AUA"). Hence, (4.6) results.

The following fact will be needed later:

LEMMA 4.2. The core extension of a symmetric spread function is
symmetric.

This statement is true whatever be the subset of A (closed under
reflection) in which the spread function is defined. However, we are
interested in Oy in particular, and we shall exhibit the steps of the
proof in that case. Thus, let r be a symmetric spread function in Oy,
and let g. be its core extension. Let Cp denote the class of all subsets

of O, and Cp denote the class of all at-most-two-point subsets of O .
Then, for any A € Cpo, we see that
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&) A)= U (0= U_ «C)= U_ (=(O)
CeCp CeCpo CeCpo
CcA CcA CcA
=( U_ «C) =("(A4) .
CeCp
CcA

From this result it then follows straightforwardly that g.(47)=(g.(4))"
for any A€ (Cp.

The notion of reflectivity is actually an alternative formulation of
t,-invariance :

LEMMA 4.3. Let f be any function defined on a suitable subclass
of Co to Cop. Then f is teinvariant if and only if it is reflective. In
particular, a spread function or a span function in Oy is ty-invariant
if and only if it 1is reflective.

The proof of this lemma requires only showing that for any BC
Oy the condition ¢;'t,B=B is equivalent to the condition B~=B. But
the first of these conditions is readily seen to be the condition BU B~
=B, and this is easily seen to be equivalent to B-=B.

We now introduce the following definition :

DEFINITION 4.2. Let C be as above and ' be any subclass of C;
and let f be a function on ¢’ to C. Let us say that a non-empty,
non-{0} set AC K is an acute-angle set if

(4.8) inf (&Y >q,
x,yec A lzllyll
x, y+0

and let us say that A is a strictly acute-angle set if the inequality defi-
nitely holds in (4.8). More generally, let us say that A is a x-limited
acute-angle set if (x €[0,1] and)

(4.9) inf (B9 ..
2, Yy€eA E4| Rk
x, y+0

and say that A is a strictly r-limited acute-angle set if the inequality
definitely holds in (4.9).

Then, f will be called a (strictly) acute-angle function resp. a (strict-
ly) r-limited acute-angle funmction if it preserves (strict) acuteness resp.
(strict) x-limited acuteness.

We are now in a position to formulate the theorem we announced
earlier, which will provide a source of ti-invariant betweennesses.
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THEOREM 4.1. Let 7 be a symmetric spread function in Oy, and
let it furthermore be either a strictly acute-angle function or, for some
£>0, a (strictly) e-limited acute-angle function. Let g. denote the core
extension of z. For two elements, x and y, in Oy we set

¥y, if (z,9)=0,
(4.10) y;={

-y, if (%, 9)<0.

Let J denote the interval [k, 1] or (x, 1] according as t is a k-limited
or a strictly k-limited acute-angle function. (If £=0, J is mecessarily

(0,1].) Then, the function 4, on Cp to Ce, defined by

def.

(4.11) 40) =(0)=0
and

det. ({z, y.hHhUz({—2x, —v.}), if (=, 9.)€d,
(4.12)  A({=, y}) ={

g({z, —x, 4, —y}), if (% y) &
18 a te-invariant spread function in O y4.

Let us notice, first of all, that the pair of sets, {«, y,} and {—=,
—v.}, is identical with the pair of sets, {z,, ¥} and {—x,, —y}, when
(z, y)#0; and therefore that the definition (4.12) truly gives a function
of the set {z, y}.

Let us observe, next, that there are no alternatives to (4.11). That
is, by virtue of the assumed properties of z, a non-@ possibility for the
value of z(@) does not exist. And because of those properties of z, the
same is true for 4(9@). Let us see that these statements are true. For
any particular z € Oy, {x} is a (strictly) s-limited acute-angle set (what-
ever be x), and therefore z({x}) is a (strictly) »-limited acute-angle set.
The same is true of «({—=x})=(z({x}))~. Since these two subsets of Oy
are reflections of each other and are strictly acute-angle sets, they are
therefore necessarily disjoint: z({z})Nz({—=})=0. It follows that the

intersection of the sets ~(A4) for all A c(Cp (=class of all 1- and 2-point
subsets of O ) is empty, and thus @ is the only possible value for z(9).
To see that the same is true for 4, let us suppose the contrary: sup-
pose there is a ze Oy that belongs to every 4({x, y}). We can then
choose in particular an z | 2, and so, on taking y=1x, we have z € 4({x}).
Therefore z € z({x}) or ze({—x}). If the first of these is the case then
since also x € z({x}) we have {x, 2} S z({x}); in the second case we have
{—=z,2} S z({—=x}). But in either of these two cases we have the con-
tradictory assertion of two mutually orthogonal elements being contained
in a strictly acute-angle set. Hence the assumption of the non-empti-
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ness of N 4(A) is false. It follows, therefore—if indeed 4 is a
AeCoh
spread function over C'—that there is only one possible value for 4(Q),
namely Q.
We now proceed to show that 4 is a spread function over C'. The
fact that r is a spread function means that we have, for all points «,

Y, X1y Y15 € OJ(,

(4.13) {2, y} = =({=, ¥})

and

(4.14) {z, yys({z, yH=({x;, yHS({x, y}) .
We must exhibit the same properties of 4, that is,
(4.15) {z, v} 4({@, y}) ,

(4.16) {w, yycd({z, y})= 4({x,, v} = 4({z, y}) .

To establish (4.15), we note first that = € z({z, ¥.}) and that either y ¢
({x, ¥,}) or y e «({—x, —y.}). Therefore we have

(4.17) {e, yie({z, y.phUr({—2, —u.}) .

If (x.y,) €J then (4.17) is exactly the statement (4.15). If (=, 9,)¢J
then we apply the further fact that

(4.18) ({x, y.h Ur({—2, —w.H<o({x, —x, y, —y}) ,

and this together with (4.17) again gives us (4.15).
We now prove (4.16). We first treat the case of (x, ,) € J. In this
case the left side of the implication (4.16) is

(4.19) {w (e, y.HUr({—2, —ya}) .

The two sets z({x, ¥,}) and =({—=x, —y,}) are reflections of each other
and are, in the present case of (x, y,) € J, (strictly) x-limited acute-angle
sets. It is a consequence of these facts that also —x, and —y, belong
to the right-hand side of (4.19), and that the two particular elements
x, and (y,)., (which have a non-negative inner product) cannot be dis-
tributed one in each of the two sets ({z, ,}) and =({—x, —v.,}): both
elements belong to the first of these two sets, or both belong to the
second of the two. If they both belong to the first set, then we have

(4.20) {CU], (yl)xl}gf( {.’E, yr}) ’

and therefore also, by symmetry,
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(4.21) {—2, —(W)}({—2 —u:}) .

By (4.14) we get, from these two inclusions, the inclusions
({1, (yl)xl})-c—z'( {z, y.}) »
({—=z, =) NEr({—2, —v.}),

and from these we get

(4.23) ({1, W) D Ur({—21, — () ) E4({=, ¥}) .

Now, we have already seen, above, that x, and (¥1)-, are both elements
of a (strictly) s-limited acute-angle set; that is, (v, (%)) €J. There-
fore the left-hand side of (4.23) is exactly 4({x:, %}); and thus (4.23)
is the conclusion we had wished to reach, namely, the right side of the
implication (4.16). This implication is now established for the case of
(@, ys) € J.

Now suppose (x, ¥,) ¢ J. Then the left side of (4.16) is

(4.22)

(4.24) {z1, yl<o.({z, —w, ¥, —¥}) .
Since g, is symmetric (see Lemma 4.2) we have
(4.25) (9.({z, —=, ¥, —y}H) =9.({x, —2, y, —y}")

=g,({w, -, Y, —y}) ’
and therefore we get from (4.24) that

(4°26) {{171, — %y, Yi» _yl} Qg,({x, —x, 1/: _y}) .
From this it follows that

(4.27) =({zy, (¥1)-})=9.({21, W)} S9.({x, —2, ¥, —y})
and

(4.28) ({—=, — (W) N=9.({—2, —(¥).D<o.({z, —2, 4, —y}),
and also that
(4.29) g({zy, —1, y1, —wH<9.({2, —2, ¥, —¥}) .

In the case of (x;, (1)) € J, the inclusions (4.27) and (4.28) combine to
give us the statement

(4.30) A({zy, yhH)Sd({=z, y}) -

In the case of (xy, (y1).) ¢ J, (4.29) is the statement (4.30). Thus, the
implication (4.16) is now fully established also in the case of (x, y.) ¢ J.

We have now proved that 4 is a spread function. It remains only
to prove that it is {-invariant. But it is clear from (4.11) and (4.12)—
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with the help of (4.25)—that 4 is a reflective function. Therefore, by
Lemma 4.3, it is t,-invariant. This completes the proof of Theorem 4.1.

We have said that Theorem 4.1 would be a ready means of provid-
ing us with f{;-invariant betweenness relations, and hence with between-
ness relations in KA?. We may see now that this is so. Let us look
at O\j-betweenness in O 4 (see Definition 1.5.2). It is intuitively clear
that its spread function is a symmetric and strictly acute-angle func-
tion and therefore the construction of Theorem 4.1, with J=(0, 1], can
be applied to it. It is not difficult to see what the #-invariant sets
4({x, y}) look like in this case, and it is then not difficult either to see
that the betweenness relation in X? corresponding to that of 4 in O,
according to Theorem 3.1, is nothing other than our old familiar -
betweenness (see Definition 1.5.8). Thus, we have come upon another
way of generating 7\,-betweenness in the real case.

But now let us look at another example, which will give us a new
particular notion of betweenness in A?. Let »>0 and let us consider
O-betweenness in O . We may appeal to Theorem 1.6.1 to see that
z,, the spread funection of ©\?, is a symmetric function. And Theorem
2.2 above tells us further that -, is a (2v*—1)-limited acute-angle func-
tion. We can therefore apply Theorem 4.1, with J=[2,"—1,1]. Let
us confine ourselves, for the following deliberations, to the more inter-
esting case of dim A'=3. Then—letting 4, denote the t,-invariant spread
function derived from r, according to Theorem 4.1—we find from The-
orem 1.6.1 that

(4.31) 4({x, yH=0x  if [(®, ¥)I<2'—1,

(—observe that |(z, y)|=(=x, y.)—) and that for |(z, ¥)|=2,*—1 the set
4,({x, y}) consists of all those z¢e O 4 such that either

(4.32) < 1+|2:|( +yz)+w>_v
Jor all wlx,y with ||w]=p.
or
=
@) (s e y)+w)zs

Jor all wlx,y with ||w||=p, .

We are continuing to employ, for conciseness of expression, symbols of
the type previously introduced; specifically,

dof def. 292

4.34 ot Ry .
(4.34) =@y, o 1 11 E]|
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Let us examine (4.32) more closely. By Theorem 2.2, if z satisfies (4.32)
then (z, x)=| & | and (y.,2)=|&|. It follows then that (4.82) is equiva-
lent to this statement:

@35 1 D DD+ Wz

Jor all wlx,y with ||w||=p,,
and (Z, w)gl Lk Iv (yz’ Z)gl &I .

Notice next that
(4.36) [(¥= DZ| L 1=[& - (y, 220, |y, 2)[=]| & (]

and that |[(¥., 2)|=|(¥, 2)|. Therefore (4.35) can be restated still further
as

(4.37) 1—+v|—&—|(l(z’ )| +(y, 2))+ (2, w)=v

SJor all wlx,y with ||w||=p., and:

(z, x)z|L] (¥, 2)|zl L], & (y,2)=20.
The statement (4.33) obtains from (4.32) by replacing x and y by —=x
and —y, respectively. Therefore we get a statement equivalent to
(4.33) by making these replacements in (4.37). The result of this is

that only the first and third of the last three inequalities change their
form ; they become

(4.38) (zr)=—|&], &(y,2=0.

Now, the disjunction of the mentioned pair of inequalities in (4.87) with
(4.38) is readily seen to be

(4'39) |(Z, x)l_Z_I &l ’ (zr x)' &: '(y) Z)go .

And so we can state: For |(z, y)|=2.'—1, the set 4,({x, y}) consists of
all those z € O 4 such that the following conditions are satisfied :

D FT(@ D@ A+ w2
Sor all wlx,y with |w||=p,,
(440) 1 i) |z @)z, 9)
iil) |(y, 2)|ZI(, )|
iv) (2, %)(z, ¥)(¥, 220 .

We now have 4, completely determined. Let 47 be the spread func-




BETWEENNESS FOR REAL VECTORS AND LINES, II 463

tion in K? corresponding to 4, according to Theorem 3.2. An exami-
nation of the correspondence presented by this theorem shows that—
in particular in the case at hand—the spread function 4° can be enun-
ciated as follows: Let L, M and N be elements of X? and let z, ¥
and z be any particular unit vectors in L, M and N, respectively; then,
Ne 4({L, M}) if and only if z€ 4,({x, y}). By this means, then, we
can formally present this new notion of betweenness in A?. We do so
in the following definition, giving it the name (> -betweenness, corre-
sponding to the {\-betweenness of Definition 1.5.3 which, as we have
seen above, derives from ) i-betweenness in the same way that our
present new notion derives from ©)’-betweenness. Before presenting
the definition, however, let us make an observation. The full list of
four conditions in (4.40) has the advantage of displaying the close par-
allel that exists between {),-betweenness and {\,-betweenness, as seen
by Definition 1.5.3 or, still better, by Lemma 2.2 in [1]. But in the
present case of ¢),-betweenness a special situation obtains; namely, ii)
and iii) of (4.40) are consequences of i). We can see this by first re-
placing i) by the following condition which is clearly equivalent to it:

(4.41) Iz, ©)|+|(y, 2)|= (A +](x, y)l)<1+%l(z, %U)|>
Sor all wlx,y with |w||Zp. -

If we put w=#0 in this inequality we get
(4.42) [(z, 2)|+|(y, 2)|=1+|(2, ¥)| ,

and from this it follows that neither of the terms on the left can be
<|(x, y)|. Taking this result into account, our definition is then as
follows :

DEFINITION 4.3. Let ve(0,1]. Let L, M and N be elements of
K?, and let x, ¥ and 2z be any particular unit vectors in L, M and N,
respectively.

If [(x, y)|<2'—1, we say of every N that it is O\ -between L and M.

If |[(x, y)|=2*—1, we say that N is 0\,-between L and M if the
following conditions are satisfied:

) 1 DI+ AZA+(@ )1+ 1 w))
(4.43) for all wlax,y with |w|<p, ,

i) (2 2)(x, y)(y, 2)=0 .

We have not stipulated in this definition that dim X =3, forthe reason
that the definition applies, in fact, to dim K <3 as well. It is not dif-
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ficult to see that when dim A =1 or 2 the conditions (4.43) reduce to
the conditions (I.5.18), thus asserting that in these dimensionality cases
O -betweenness reduced to 7\-betweenness. And this assertion is cor-
rect, as we see by the statement (1) in Theorem I1.6.1.
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