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A FINELY TUNED CONTINUITY CORRECTION

NOEL CRESSIE

(Received May 15, 1978)

Abstract

The role of the continuity correction of 1/2, when approximating
discrete binomial probabilities with normal probabilities, is examined.
It is shown that a substantial improvement is available, one that in-
volves very little more computational effort (it can easily be performed
on a pocket calculator), and gives big gains in accuracy.

1. Introduction

The problem is almost a classical one; probabilities from the dis-
crete binomial distribution are to be approximated with the continuous

normal distribution. For example, the tail probability % <%>p’"(1—
m=k

p)¥™™ is very simply approximated by 1—@{(k—1/2— Np)/¥ Np(1—p)}.
The role of the value 1/2 in the argument of @, is that of a correction
term to allow a function defined only on the integers, to be approxi-
mated by a continuous function (Yates [9]). It is in improving this
continuity correction of 1/2, that is the aim of this paper.

In order to finely tune the continuity correction, the error term is
expanded in powers of N~-Y2, The correction which forces the coeffi-
cient of N™'% to be zero, is essentially the Gram-Charlier approximation
in disguise. In its continuity correction form however, it performs ex-
tremely poorly when approximating tail probabilities. The reason may
be found in Feller [3], where the same objection is made for the clas-
sical continuity correction of 1/2. But, going one step further, and also
forcing the coefficient of N~! to be zero gives a correction which in a
large region of the (N, p) plane, Ne Z*, pe€ (0, 1), outperforms the ex-
tremely accurate Camp-Paulson approximation (Camp [1]; Johnson and
Kotz [5], Chapter 3, Section 8).

A similar approximation is clearly possible for the distribution func-
tion of any integer-valued random variable, provided that conditions
exist under which the individual probabilities can be simultaneously re-
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placed by ordinates of a normal density function. Cox [2] discusses the
continuity correction, but he attacks a different problem than is being
considered here.

Define,

B(N, k, p)

L /N
P < )p”‘q”‘"‘, where q=1—p,
m=o \M

T(N, k, p)

1

mék <ﬁ>pmql\'—m ,
$(2)=(2x) V%™,

o@="_sway .,

F@=|"swiy .

The central limit theorem states that if a random variable X is binomi-
ally distributed with parameters N and p, then P {Z =(k— Np)(Npg)~*}
~P {X=Fk}, where Z is a standard normal; i.e. F((k— Np)(Npg) '?
~T(N, k, p). Unfortunately one could equally claim that P {Z>(k—1
—Np)(Npg) ™} =P {X>k—1}; i.e. F((k—1— Np)(Npq)™"*) =~T(N, k, p).
One way out of this dilemma is to use a continuity correction ¢ in the
following way

(L.1) F((k— Np—c)(Npg)™*) = T(N, k, p) .

The value ¢=1/2 is the most common correction chosen, but why ? By
way of illustration of the superiority of the finely tuned correction of
(2.13), (2.14), consider the example in Feller [38] of N=500, p=.1. Now

m%() (57(3&())(.1)"‘(.9)5"“"":.317573; the normal approximation with continu-

ity correction 1/2 is @(.8199)—&(—.0745)~.3238 (obtained by rounding
arguments to three decimal places, and interpolating in the normal
tables); while the finely tuned correction gives @(.8266)—®(—.0547)~
.3177, showing an error of only .00013.

Section 2 gives the mathematical reasoning behind finding a good
continuity correction, culminating in the finely tuned approximations
of (2.13) and (2.14). Section 3 computes tables of errors, in particular
showing the regions where our continuity correction approximation is
superior. Finally, conclusions and recommendations are made in Sec-
tion 4.

2. The best continvity correction

Quite simply, the problem may be posed in the following way :
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We wish to approximate the upper [lower] tail of the binomial prob-
ability distribution, T(N, k, p) [B(N, k, p)], by F{((k— Np—-c)(Npg)~?)
[@((k— Np+d)(Npg) "], for some judicious choice of ¢ [d]. When this
problem is solved we are able to approximate any binomial prob-
ability. Typically the value of ¢ [d] chosen is ¢=1/2 [d=1/2]. It will
become clear that a better choice for ¢ [d] is available; one that in-
volves a little more computation, but is correct to a higher order of
magnitude.

Let us now expand the individual binomial probability, <% >p””q”‘"‘,

using Stirling’s formula,
2.1) log 'n!=l log (27zn)-+n log 'n—n+-1—+0(n'3) .
2 12n

Taking logarithms, and putting
(2.2) 0,=(b— Np)/(Npq)'*, beR,
we obtain,

log N!—log m!—log (N—m)!+m log p+(N—m) log q

= —_;_ log 217.'——;— log p——% log q—%— log N

—(Np+06,v'Npq +1/2) log (146,vq/Np)

where Ry=(1/12N){1—(p+0,.VDq/N)'—(q—8,.4/Dq/N)"} +O(N-?). Use
of the Taylor series expansion, log (1+x)=x—x*2+2%/83+---, gives

—log (VZNDg )—%{HSN} +log (1+8,v/g/Np) ™
+log (1—0,vD/Nq) "+ Ry ,
where Sy=—(0,/3)((¢— 1)V NDZ)+(3./6)((¢*+ 7")/ Npg)+ O(N-*?). Hence
<N

N prgyr =L fexp (2D} 455145 /TN

1
v2xNpq
- (1—5,Vp/Ng)~V%e"~ .

Now a't*=a+-ealog a+(*/2)a log® a+(*/6)a log* a+ - -+, and so the above
equals,

1

(2.3) VorNva {exp (—d7./2)+ Sy(exp (—67/2)) (—0../2)

+Sk(exp (—3,/2)) (54/8) +O(N %)
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0n (p—q) , & (3p"—2pg+39) , (pg—1) -sz}
14 P P—Y) |, O Nt |
{ + 2 «/Npq—l— 8 Npq * 12Npq +O( )

If we keep only terms of O(N-'*) and lower, then

(2.4)

< ﬁ)p”‘q"”’f $0m) (1 + 3u(q—Pp)(0n.—3) +O(N“)} .

v Npq 64/ Npq

We will use (2.4) to derive an initial continuity correction and (2.3) to
fine-tune our result into its final form.

THEOREM 1. The choice of ¢=1/2+(q—p)(0i_,,—1)/6 in (1.1), gives
an error of approximation of O(N™?).

PrOOF. Write T(N, k, p)— F((k— Np—c)(Npq)™'*) as,

N
S () )Pa = (00ns) = 01} |
- {¢(5k—1/2)"‘¢(5k—c)} - {1_¢(5N+1/2)} ’
where §,, for all real b, is given by (2.2). Now @(0,,112)—P(On_1p) is,

by integrating the Taylor series expansion of ¢(x),

¢(57n) ¢”(5m) —5/2) — ¢(5m) (63n—1) —2
@5) Lokt Tl o =S {1+ &) ro )}.

Hence,

(2.6) T(N, k, p)—F(6-.)

— g ¢(5m) am(q_p)(aiz'—'?’) -1
=2 x/Npq{ 6+ Npq O )}

(8000 10y F(08) (2 —32
{—Wq(c 12)--£0 (e 1/4)}+0(N .

Approximating the sum by an integral with respect to 4, it becomes,

(@—p) S:N-H/? ¢(5)5(52__ 3)d5/6«/l—\’—p7q +O(N—3/2)

=(q—P)00-1) (0212 DI6VNPI+ONY) .
Therefore, finally,
@7 TNk p—F0.-)
= PO (=) 011 1)/6) —-F0 (= 1/2) + O

W

_¢(5k—1/2) - 2 _ —(c— -1
= Nog {(g—p)(3i-1p—1)/6—(c—1/2)} +O(N ") .
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Requiring the error term to be O(N-!) forces us to then choose
(2.3) ¢=1/2+(q¢—p)(i-1,—1)/6 .

Thus we use F(d;_.)=F (01— (q—Dp)(d3_,,—1)/64/Npq) to approximate
T(N, k, p). A similar analysis with the lower tail leads us to

2.9) d=1/2—(q—p)(3%:1,—1)/6 ,

and hence to use @(0,s)=P(04.1:—(q—D)(0%,1.—1)/64 Npg) to approxi-
mate B(N, k, p).
The continuity correction approximation,

(2.10) F(0x-1,—(q—D)(0i_12,—1)/6# NDg) ,

possesses obvious similarities to the normal Gram-Charlier approximation,
(2.11)  G(N, k, p)=1—{®(0;_12) —(q—P) (12— 1)p(0x-12)[6¥ Npq) .

They are equivalent up to O(N~"?), and hence the error in using (2.11)
is also O(N™!). A study by Raff [8] has shown that although (2.11) is
generally more accurate than F'(d,_,;), there are other approximations
available which require just as much computation, but are much more
accurate, such as the Poisson Gram-Charlier for small p, and the Camp-
Paulson for larger p.

We will now fine tune our continuity correction in order to com-
pete with the Camp-Paulson approximation.

THEOREM 2. The choice of

¢=1/2+(q—p)(3i-12—1)/6+ {3k _1,(—5/72+Tpq/36)
+0,-1/2(1/36 —pq/36)} /v Npg

w (1.1), gives an error of approximation of O(N—*%).

Proor. If we keep all terms of O(N~') and lower, then from (2.3),
(2.5) and (2.6), we find that upon using (2.8),

(2.12) T(N, k, p)—F(d:_.)

-8 ) (e el

__217.1_%}/(Nm)—%(c—l/2)+%(cz_l/4)
sl o o)

1 | pq _ 00 (1 _ mg
TR ALOLL) o) (75 )



“o NOEL CRESSIE
. {5;_1/2—25:’._1/2-}-1} +O(N—B/2) .
Put G,C(:y):Sm x*¢(x)dx. Then by recursion,
Y

G(y) =¥y’ +56(y)y*+15¢(y)y + 150 (y)
G(y)=¢W)y* +36(y)y+3P(y)
G(y)=9(¥)y+2(v) .

If we write ¢c=1/24(q—p)(0}_1,—1)/6+¢/¥Npq, then T(N, k, p)—F(5,_.)
= ¢ (8x-12){02-12(— 5/72 + TPq[36) + 8, _1,2(1/36 — pq/36) — e} | Npg + O(N ).
Solving for e to make the term of O(IN7') zero, gives the result.

It remains then to write Theorem 2 in a way that can easily be
used by practitioners:

(2.13) B(N, k, )=~ @(a+b8y, 15+ 602,10+ d03112)

where
a=(q—p)/6v/'Npq ,
b=1—(1/36—pq/36)/Npq ,
¢=—a=—(q—p)/6v¥Npq ,
d=(5/72—"Tpq/36)/Npq ,
der1p=(k— Np+1/2)(Npg)™*;

and

(2.14) T(N, k, p)~=F(a+bd;_,+cdi_12+doi_1p)=FT(N, k, p) .

3. Comparisons

In what follows, we will be approximating T(N, k, p) by the clas-
sical approximation, H(N, k, p)=F(d,_,:); the Gram-Charlier approxima-
tion GC(N, k, p), given by (2.11); the finely tuned approximation FT(N,
k, p), given by (2.14), and finally the Camp-Paulson approximation (Camp
[1]),

(3.1) CP(N, k, p)=9(y/(32')) ,

where
y={(N—k+1)p/(kq)}'*- {9—1/(N—k+1)} +(1/k)—9
2={(N—k+1)p/(kq)}**- {1(N—k+1)} +1/k;  O0<K<N.
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Note that there are typographical errors in both Raff [8], p. 299, and
Johnson and Kotz [5], p. 64, in giving the Camp-Paulson approximation.

The above were chosen for their simplicity and accuracy. A very
much more complicated approximation has been given by Peizer and
Pratt [7], but it involves use of their specially computed table; it is
not easy to use but was found to be more accurate than Camp-Paulson.
In summarizing their findings, both Gebhardt [4] and Molenaar [6] rec-
ommend the Camp-Paulson approximation as a superior approximation
for p away from zero and one. It is here that we will demonstrate
the simpler approximation FT(N, k, p) to be comparable. As our cri-
terion for accuracy we will use

(3.2) sup | AN, k, )= T(N, k, )|,
where A denotes the particular approximation used. This is slightly

different from the criterion of Raff [8] and Gebhardt [4], but well suited
to tail probabilities. Table 1 shows this error multiplied by 10,000.

Table 1. Error of approximation*

Approximation H GC CP FT
N P

0.05 987.4 207.5 49.8 214.8

0.1 496.0 143.5 21.4 111.4

10 0.2 294.9 48.8 16.3 42.6

0.3 177.5 58.1 7.4 26.3

0.5 26.9 26.9 3.0 4.0

0.05 405.3 87.9 18.4 49.3

0.1 243.7 46.2 8.0 22.0

50 0.2 139.0 16.9 3.2 6.2

0.3 81.5 9.3 1.7 2.4

0.5 5.4 5.4 0.9 0.2

0.05 267.1 51.3 9.1 25.2

0.1 174.7 20.3 4.0 7.8

100 0.2 99.0 8.0 1.6 2.1

0.3 57.8 4.4 0.9 0.8

0.5 2.7 2.7 0.5 0.0

0.05 227.7 31.4 6.0 14.1

0.1 143.4 13.0 2.8 4.2

150 0.2 81.0 5.2 1.1 1.1

0.3 47.3 2.9 0.6 0.4

0.5 1.8 1.8 0.3 0.0

0.05 191.4 22.4 4.4 8.7

0.1 124.5 9.7 2.0 2.7

200 0.2 70.3 3.8 0.8 0.7

0.3 41.0 2.2 0.4 0.3

0.5 1.2 1.2 0.2 0.0

* All entries are multiplied by 10,000.



442 NOEL CRESSIE

4. Conclusions

From Table 1 and other tables computed but not shown here, the
continuity correction (2.14) clearly outperforms the one-half continuity
correction, and the more accurate Gram-Charlier approximation; and
for (roughly) Np>20 it does better than the extremely accurate Camp-
Paulson approximation. Apart from small N, (2.14) is indeed comparable
to Camp-Paulson, yet has the simplicity of the one-half correction. For
a given problem where N and p are fixed, the coefficients a, b, ¢ and
d of (2.14) need be calculated only once; then after the standardized
deviate §;_,, is found, the answer is immediate from one table look-up.
When using Camp-Paulson, (3.1) has to be completely recalculated each
time. Also, if one is forced to do the computation by hand, (2.14) only
needs knowledge of (Npq)™'* (essential anyway if one is using 1—
@(d;_12)); all the terms are then obtained by simple multiplication and
division. However (3.1) requires a calculating machine with square root
and cube root facilities. We conclude therefore, that not only do the
finely tuned corrections of (2.13), (2.14) have theoretical interest, but
practical interest also.
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