RECORD VALUES AND THE EXPONENTIAL DISTRIBUTION

M. AHSANULLAH*

(Received June 12, 1978)

Abstract

A sequence $\{X_n, n \ge 1\}$ of independent and identically distributed random variables with continuous cumulative distribution function F(x) is considered. X_j is a record value of this sequence if $X_j > \max(X_1, \dots, X_{j-1})$. Let $\{X_{L(n)}, n \ge 0\}$ be the sequence of such record values. Some properties of $X_{L(n)}$ and $X_{L(n)} - X_{L(n-1)}$ are studied when $\{X_n, n \ge 1\}$ has the exponential distribution. Characterizations of the exponential distribution are given in terms of the sequence $\{X_{L(n)}, n \ge 0\}$.

Introduction and notations

Let X_1, X_2, \cdots be a sequence of independent, identically distributed random variables (rv) with cumulative distribution function (CDF) F(x)and probability density function (pdf) f(x). Set $Y_n = \max\{X_1, \dots, X_n\}$, for $n \ge 1$. We say X_j is a record value of $\{X_n\}$, if $Y_j > Y_{j-1}$. By definition X_1 is a record value. The indices at which record values occur are given by the record value times $\{L(n), n \ge 0\}$, where L(0)=1 and $L(n) = \min \{j \mid j > L(n-1), X_j > X_{L(n-1)}\}$. We will denote $R(x) = -\log_e F(x)$, F(x)=1-F(x) and r(x)=(d/dx)R(x). If F is the distribution function of a nonnegative rv, we will call F is "new better than used" (NBU), if $\bar{F}(x+y) \leq \bar{F}(x)\bar{F}(y)$, $x, y \geq 0$, and F is "new worse than used" (NWU), if $\overline{F}(x+y) \ge \overline{F}(x)\overline{F}(y)$, $x, y \ge 0$. We will say that F belongs to the class C_1 , if F is either NBU or NWU. If F(x) has the density f(x), the ratio $r(x) = f(x)/\overline{F}(x)$, for F(x) > 0, is called the hazard rate. We will say F belongs to the class C_2 , if r(x) is either monotone increasing or monotone decreasing. We will call the rv $X \in E(x, \sigma)$, if the pdf f(x)of X is of the form

(1.1)
$$f(x) = \begin{cases} \sigma^{-1} \exp(-x/\sigma), & \text{for } x > 0, \ \sigma > 0, \\ 0, & \text{otherwise}; \end{cases}$$

^{*} The work was partly completed when the author was at the Department of Statistics, University of Brasilia, Brazil.

and $X \in G_n(x, \sigma)$, if the pdf f(x) of X is of the type

(1.2)
$$f(x) = \begin{cases} (\Gamma(n))^{-1} \sigma^{-1} x^{n-1} \exp(-x/\sigma), & \text{for } x > 0, \ \sigma > 0, \\ 0, & \text{otherwise.} \end{cases}$$

Tata [2] gave a characterization of exponential distribution by the independence of the statistics $X_{L(0)}$ and $X_{L(1)}-X_{L(0)}$. In this paper we will give a generalization of Tata's [2] result and will also study some properties of $X_{L(n)}$ and $Z_n = X_{L(n)} - X_{L(n-1)}$, when the rv $X \in E(x, \sigma)$.

2. Main results

LEMMA 2.1. If $X \in E(x, \sigma)$, then $X_{L(n)} \in G_{n+1}(x, \sigma)$ and $Z_n \in E(x, \sigma)$.

PROOF. The distribution of $X_{L(n)}$ is known (see Karlin [1], p. 268) as

(2.1)
$$P\{X_{L(n)} \leq x\} = \int_{-\infty}^{x} (R^{n}(y)/n!) dF(y) .$$

Substituting $R(y) = -\log_{\epsilon} \bar{F}(y) = y\sigma^{-1}$, for y > 0 and R(y) = 0 for $y \le 0$, it follows that $X_{L(n)} \in G_{n+1}(x, \sigma)$. The joint pdf f_1 of $X_{L(0)}, X_{L(1)}, \dots, X_{L(n)}$ is known (see Resnick [3], p. 69) as

(2.2)
$$f_1(x_0, x_1, \dots, x_n)$$

$$= \begin{cases} r(x_0)r(x_1) \cdots r(x_{n-1})f(x_n), & 0 < x_0 < x_1 < \dots < x_n < \infty, \\ 0, & \text{otherwise}. \end{cases}$$

Integrating out x_0, x_1, \dots, x_{n-2} , we get the joint pdf f_2 of $X_{L(n-1)}$ and $X_{L(n)}$ as

$$(2.3) f_2(x_{n-1}, x_n) = \begin{cases} (R(x_{n-1}))^{n-1} (\Gamma(n))^{-1} r(x_{n-1}) f(x_n), & 0 < x_{n-1} < x_n < \infty, \\ 0, & \text{otherwise}. \end{cases}$$

Substituting $R(x)=x\sigma^{-1}$, $r(x)=\sigma^{-1}$, $f(x)=\sigma^{-1}\exp\left(-x/\sigma\right)$ and using the transformations $Z_n=X_{L(n)}-X_{L(n-1)}$, $U_n=X_{L(n-1)}$, we get the joint pdf f_3 of Z_n and U_n as

(2.4)
$$f_3(z,u) = \begin{cases} u^{n-1}\sigma^{-n-1}(\Gamma(n))^{-1} \exp\left(-(z+u)/\sigma\right), & 0 < u, z < \infty, \\ 0, & \text{otherwise.} \end{cases}$$

Integrating (2.4) w.r.t. u, we see that $Z_n \in E(x, \sigma)$.

THEOREM 2.1. Let $\{X_n, n \geq 1\}$ i.i.d. random variables with common distribution F which is absolutely continuous (with respect to Lebesgue measure) and F(0)=0. Then for $X_n \in E(x,\sigma)$, it is necessary and sufficient that $X_{L(n-1)}$ and Z_n are independent.

PROOF. Suppose $X_n \in E(x, \sigma)$, then it follows from (2.4) that $X_{L(n-1)}$ and Z_n are independent. Suppose now that $X_{L(n-1)}$ and Z_n are independent. We have from (2.3), the joint pdf f_4 of Z_n and U_n as

(2.5)
$$f_4(z, u) = \begin{cases} (R(u))^{n-1} (\Gamma(n))^{-1} r(u) f(u+z), & 0 < u, z < \infty, \\ 0, & \text{otherwise.} \end{cases}$$

But the pdf f_5 of U_n is

(2.6)
$$f_{5}(u) = \begin{cases} (R(u))^{n-1} (\Gamma(n))^{-1} f(u), & 0 < u < \infty, \\ 0, & \text{otherwise.} \end{cases}$$

Since Z_n and U_n are independent, we get from (2.5) and (2.6),

$$f(u+z)/\bar{F}(u)=g(z)$$
,

where g(z) is the pdf of Z_n . Integrating w.r.t. z from 0 to z_1 , we get

(2.7)
$$\frac{\bar{F}(u) - \bar{F}(u+z_1)}{\bar{F}(u)} = G(z_1) ,$$

where $G(z_1) = \int_0^{z_1} g(z)dz$. Now letting $u \to 0^+$ and using F(0) = 0, we see that $G(z_1) = F(z_1)$. Hence we get from (2.7),

(2.8)
$$\bar{F}(u+z_1) = \bar{F}(u)\bar{F}(z_1).$$

The only continuous solution of (2.8) with the boundary condition F(0) = 0, is $\overline{F}(x) = \exp(-x/\sigma)$.

THEOREM 2.2. Let $\{X_n, n \geq 1\}$ be a sequence of i.i.d. random variables which has everywhere continuous distribution function F with density f and F(0)=0. Further if X_k belongs to the class C_1 and Z_n and X_k $(k \geq 1)$ are identically distributed, then $X_k \in E(x, \sigma)$.

PROOF. From (2.5), the pdf f_6 of Z_n can be written as

(2.9)
$$f_{\delta}(z) = \begin{cases} \int_{0}^{\infty} (R(u))^{n-1} (\Gamma(n))^{-1} r(u) f(u+z) du, & 0 < z < \infty, \\ 0. & \text{otherwise} \end{cases}$$

By the assumption of identical distribution of Z_n and X_k , we must have

(2.10)
$$\int_0^\infty (R(u))^{n-1} (\Gamma(n))^{-1} r(u) f(u+z) du = f(z) , \quad \text{for all } z > 0 .$$

Substituting

(2.11)
$$\int_0^\infty (R(u))^{n-1} f(u) du = \Gamma(n) ,$$

we have

(2.12)
$$\int_0^\infty (R(u))^{n-1} r(u) f(u+z) du = f(z) \int_0^\infty (R(u))^{n-1} f(u) du ,$$
 for all $z > 0$

i.e.

$$(2.13) \quad \int_0^\infty (R(u))^{n-1} f(u) [f(u+z)/\bar{F}(u) - f(z)] du = 0 , \quad \text{for all } z > 0 .$$

Integrating with respect to z from z_1 to ∞ , we get from (2.13),

$$(2.14) \quad \int_0^\infty (R(u))^{n-1} f(u) [\bar{F}(u+z_1)/\bar{F}(u)-\bar{F}(z_1)] du = 0 , \quad \text{for all } z_1 > 0 .$$

If F(x) is NBU, then (2.14) is true if

(2.15)
$$\bar{F}(u+z_1)/\bar{F}(u) = \bar{F}(z_1)$$
, for all $z_1 > 0$.

The continuous solution of (2.15) with the boundary condition F(0)=1 is $\overline{F}(x)=\exp{(-x/\sigma)}$, where σ is arbitrary. Similarly if F(x) is NWU, then (2.14) is satisfied if (2.15) is true and hence $X_k \in E(x, \sigma)$.

THEOREM 2.3. If X_k , $k \ge 1$ has an everywhere continuous distribution function F which has density f with F(0)=0. Further if X_k belongs to C_2 and Z_n and Z_{n+1} , $n \ge 1$, are identically distributed, then $X_k \in E(x, \sigma)$.

PROOF. From (2.5), it follows that

$$\mathrm{P}\left(Z_{\scriptscriptstyle n}\!\!>\!z\right)\!=\!\!\left\{\begin{array}{ll} \bar{F}_{Z_{\scriptscriptstyle n}}\!(z)\!=\!\!\int_{\scriptscriptstyle 0}^{\scriptscriptstyle \infty}\left(R(u)\right)^{n-1}\!(\varGamma(n))^{-1}\!r(u)\bar{F}(u\!+\!z)\!du\;,\\ &\text{for all }z\!\geqq\!0\;,\\ 0\;,&\text{otherwise}\;. \end{array}\right.$$

Since Z_n and Z_n are identically distributed, we get

(2.16)
$$\int_{0}^{\infty} (R(u))^{n} r(u) \bar{F}(u+z) du = n \int_{0}^{\infty} (R(u))^{n-1} r(u) \bar{F}(u+z) du ,$$
 for all $z \ge 0$

But

(2.17)
$$n \int_0^\infty (R(u))^{n-1} r(u) \bar{F}(u+z) du = \int_0^\infty (R(u))^n f(u+z) du .$$

Substituting (2.17) in (2.16) we get on simplification,

$$(2.18) \quad \int_0^\infty (R(u))^{n-1} r(u) \bar{F}(u+z) \left[1 - \frac{r(u+z)}{r(u)} \right] du = 0 , \quad \text{for all } z \ge 0 .$$

Thus if $X_k \in C_2$, then (2.18) is true if

(2.19) r(u+z)=r(u) for almost all u, and any fixed $z \ge 0$. Hence $X_k \in E(x,\sigma)$.

HEALTH AND WELFARE CANADA, OTTAWA

REFERENCES

- [1] Karlin, S. (1966). A First Course in Stochastic Processes, Academic Press, N.Y.
- [2] Tata, M. N. (1969). An outstanding value in a sequence of random variables, Zeit. Wahrscheinlichkeitsth., 12, 9-20.
- [3] Resnick, S. I. (1973). Limit laws for record values, J. Stochastic Processes and their Appl., 1, 67-82.