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TESTING FOR THE EQUALITY OF TWO BINOMIAL PROPORTIONS

NOEL CRESSIE
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Abstract

There are two statistics one might choose when testing whether
two binomial probabilities are the same. This note provides a large
sample answer to Robbins’ question of which is preferable.

1. The question

Robbins [4] has asked the following “fundamental question of prac-
tical statistics”: Suppose in a set of m Bernoulli trials governed by
p;, we observe z successes, and in another independent set of = trials
governed by p,, we observe Y successes. To test the hypothesis H,:
pi=p,, one of two statistics is usually chosen.

Now,

V= X/m—Y/n

(-1 (Xm) A= XJm)m+ (V) A= Ty}

will be (for m and n large) approximately N(0, 1) under H;, and so the
standard normal tables can be used to obtain an approximate level «
test. But,

1.2 U= X/m—Y|n ’
HEX+Y)/(m+n)} {1—(X+Y)/(m+n)} {1/m+1/n} ]

is also (for m and n large) approximately N(0, 1) under H,. (The quan-
tity U? is in fact the goodness of fit statistic used for testing homoge-
neity in a 2x2 table.)

Which of these two procedures is better with respect to power, against
the various possible alternatives to H,?

Eberhardt and Fligner [1] considered two sided alternatives H,:
p»#p,, and found conditions on (p;, »;) and m/(m-+n) for which the
denominator of (1.1) is less than the denominator of (1.2); see their
Figure A for a summary. Their large sample techniques compare the
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two test statistics via approximate Bahadur efficiency, however our ap-
proach will be through Pitman efficiencies, and a sequence of local al-
ternatives. We will concentrate on one sided alternatives, H,: p,>p,,
or H :p,<p,. Section 2 looks at the large sample comparison of U and
¥ and makes the recommendations displayed in Table 1.

A criticism that could be made of the work of Section 2 and that
of Eberhardt and Fligner is that although the two test statistics are
compared for power, there has been no effort to initially match their
Type 1 errors. Hence we may detect V to be more powerful than U
under certain alternatives, but this could be due to the Type I error
of V being higher than that of U. We could reason that regardless of
which test is used, in practice, the critical region is found from the stand-
ard normal tables, and hence it makes sense to compare the two tests
with identical critical regions. To be fair, Eberhardt and Fligner did do
some numerical work that compared differences in power to differences
in Type I error, however they presented no mathematical arguments
that allowed one to do it in general. Section 3 does this for large
samples, and no different conclusions to those of Section 2 are reached.

2. An answer

Because we know that both U and V are asymptotically N(0, 1), we
will try to compare their rates of approach to normality. Now if p,—p,
is fixed, and non zero, then the power of both tests can be made as
close to 1 as desired, by choosing m and n large enough. Pitman’s
remedy (see Fraser [2], p. 108) was to choose a sequence of alternatives
approaching the null hypothesis in such a way that the limiting power
approached a limit lying somewhere between the Type I error «, and 1.
Two tests can then be compared via their respective limits.

In our case, the sequence of alternatives to use is:

2.1) H,:p=p, p=p+(d/m").

Now let @(-) be the cumulative distribution function of the standard
normal distribution, and define %, by: 1—@(k,)=a. Also assume,

(2.2) m=2n, 2 fixed .

Then it is easy to show that for 4<0, both the test based on V and
the test based on U, have limiting power,

lim Pr {V=k,|H,} =lim Pr {U=k,| H,}

m—oo m

=1—0(k,+ A1+ ) p~Vig i) ;

i.e. Pitman’s approach is not sensitive enough to distinguish between
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the two tests. In what follows, we will stay with the sequence of
alternatives {H,}, but will look for higher order terms in expansions
of V and U.

Define,

(2.3) Z=(X—mp,)/(mp.q))"*, Zy=(Y—npy)/(np.q:)"*

where ¢,=1—p,, ¢;:=1—p,. Then writing V in terms of Z, and Z, we
get,
V={(pa@,/m)"Z,—(p:qs/m)"* Zy— (0 — 1))}
[{m (o + Z(p.g,/m)"*) (@ — Zi(pqi/m) )
+07 (D Zy(0:0e /1) ) (@2 — Zo( Do/ 1))}

Now under H,,,

PO=pq,  PG=pg+(1—2p)d/m"—L/m .
Ignoring terms of O(m~') or higher,
(2.4)  V={Z,—2Z,—22,4(1[2—pym™"p~'q"' — A(pg) "} 1+ 2)"""

- {1+(1—-2p)Z(mpg) A+ 2) "'+ #(1—2p)dm~"*p~'q”"
o (L2~ (L —2p) Za(mpg) (L + )1} 2

Also, to the same order of magnitude,
(25)  U={Z,—2Z,—2Z,4(1[2—p)m~"p~'q~ — A(pq)~*} (1 +2*) "
- {1+ 2Q—2p)Z(mpq) * A+ 2) "'+ (1 —2p)dm™~*p~lq™!
. (1+22)‘1+2(1—2p)Zz(mpq)'“2(1+,22)“} -1/2 .
Therefore, collecting together terms of O(m='7%),
(2.6) U=V = {Z—21Z,— 4pg) "} {(1/2—p) 1 —2) 1+ )"
- (mpq)~(Zy—2Zy— A(pg)~*)} | (1 + 28

_ (A2=p) (1= ) (Zi— 22— dpa) )
(L4 2y mpa)”®

Suppose the alternative hypothesis is p,>p,; i.e. 4<0. Then since
rejection of H, is caused by large values of the test statistic, to the
stated order of magnitude, (2.6) gives the test based on V to be more
powerful than the test based on U if either p<1/2, m>mn or p>1/2, m
<n, and U to be more powerful than V if either p<1/2, m<n or p>
1/2, m>n. When 4>0, the roles of U and V in the above are to be
reversed. This can either be seen directly from (2.6), or by appealing
to the symmetry present in the problem. If we instead look at X'=
m—X, Y'=n—Y, the number of failures in m, n Bernoulli trials gov-
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erned by p,, p, respectively, then X’ Y’ can be considered as the num-
ber of successes in m, n Bernoulli trials governed by 1—p,, 1—p, re-
spectively.

When m=n or p=1/2, (2.6) tells us that U—V=0+0(m™'). Hence
for these cases we might turn to the higher order terms. When m=n,
(denominator of V)’=(denominator of U)'—(X—Y)}/2m}, as pointed out
by Robbins [4]. (In fact it is straightforward to show that, U-V=
—(1/(8V 2 M) Z,— Z,—(pq)"*}*+O(m=*2).) Therefore for m=mn, 4<0 or
4>0, V 1is more powerful than U.

When p=1/2, we have, upon using the definitions (2.1), (2.2), (2.3),

— — 2
U—V=%ﬁ%{(14—1)(Zl+zzz+24)—12(zl—zzz—24)}

+O(m™")

The term in braces can take either positive or negative values, but has
expectation, 24(A*+2—1)=24(+1/2++5 [2)(*+1/2—+5 /2). Hence
by modifying our criterion, we could say that for 4<0 and 4>0, V
is to be preferred to U (“on the average”) when 2>+5 [2—1/2=.618.
Conwversely, U is to be preferred to V (“on the average”) for 22<.618.

The results of this section are summarized in Table 1. In general,
we have shown that for two identical critical values, the power of one
test always dominates the power of the other, even when H,: 4=0 is
true. Which test this is, depends upon conditions on p, m/n, and the
direction of the alternative 4.

Table 1. Entries show when to use V or U

Sample sizes m<n m=n m>n
Alternatives
p2<p1 (P1<1/2) U 4 1%
P2:<P1 (P1=1/2) V* 4 14
p:<p1 (p1>1/2) 14 14 U
11< P2 (P1<1/2) \%4 14 U
P1<p2 (P1=1/2) V* Vv v
P1<p: (p1>1/2) U 1% 174

* Provided also m>(.618)n.

3. Power comparisons, matched for size

The previous section has compared powers in absolute terms. How-
ever when power comparisons are made on tests now matched so that
the powers at 4=0 (i.e. Type I error) are the same, it is possible that
different conclusions might be reached. This section shows that no
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modification to Table 1 is necessary. All comparisons will be on powers
of order up to and including m~'2.

If U is expanded up to and including terms of O(m~'?), then from
(2.5),

U—E(U)= {zl—zzg—(zlul)_._l f E __Wg +(Z-D T f - ___((1722]0;33
L7 08 (A2=p) _, 1—F) (12—p)
142 (mpg)® 1T E  mipg
A(A—2) (1/2—p)4 2-172
+2, 4000 Q2D fa+a,

Similarly,

_ T AN 1 (1/2—p) , (Z;—-1D2 (1/2—p)
v E(V)—{Zl =B ) T s T (el

L 2.2,50=2) (A2=p) | , A=7) ()2—p)

1+ (mpg)”? 14+ 2 mYpq
A1-2) 1/2—p)4 _
—Z 1+ mpq 142",
Therefore,
— 24 (1)2—p)(1-2)
Var(U)_l—l_Hz Pt )
_ 24 (12—-p)(1-2)
Var (V)=1+ 2 i .
Also,

_ s 1 A2—=p)(A—=2) (5u 2
E(U—E(U)) TR (22413242}

__ 1 A2=p)A=2) (g 2
E(V-E(V))}= 52+ 2+5},
V=BV =g gy BE+745)
independent of 4.
We will now use an Edgeworth expansion; see Johnson and Kotz

[3], Chapter 12; to give the distribution functions (accurate up to and
including terms of O(m~"*)) G(x), H(x) of U, V respectively.

A(1/2— A41/2—p)y(1—2°
(3.1) G(m)=@(y)—¢(y){ (1+l(2)’fnl/2(1;)21)3/2 - ((1/+121)),)),,fl/2pq ) 4

(1/2—p)(1—2) o
+ 6(1+ 222 m'*(pq)** (2+132422)(y 1)} )
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(3.2) H(x):@(y)_.sé(y)I £12-pr | 412-p)A-2)

A+ D) m™(pgy™ ' (1+2)m"pg
_AR-pa-8) . (12-pa-7)
ml/Z(pq)l/Z 6(1+22)5/2m1/2(pq)1/2

- (5+zz+5z4)(y2—1)} ,

where y=x+44(1+2%)"2p~"2q~%, and &(x), ¢(x) are respectively the dis-
tribution, density functions of the standard normal. Now under H;:
4=0, we wish to solve for ¢, and d,, such that G(c,)=H(d.), and then
compare G(c,) and H(d,), when 4#0. But because the coefficients of
(¥*—1) do not depend on 4, this is easily done.

The special cases of p=1/2 and m=mn, show the two powers to be
indistinguishable to the order of magnitude considered, and so will not
be considered further. Now amongst the cases left, we will single out
one, do the analysis that will show the conclusions of Section 2 to be
unchanged, and leave the others for the interested reader to verify.
It matters little, but suppose we choose the case where 4>0 under the
alternative, and (1/2—p)(1—4*)>0. Then from (3.1) and (3.2) the dif-
ferences of the two powers is,

Py— Py =G(c,)—H(d.)
_4Q/2—p)(1-2) ot T
- (1+12)m1/2pq {¢(C,,)C,,+¢(d,,)d,,}
__ 4&Qj2—p)
T+ 2)m7pg)”
_({12-pQA=2) Nt INA? A 1l !\ A2
S e GO AL R CARTEY
+0(1/m) ,
where c.=c,+4(1+2*)""*p~*¢~"2, and similarly for d,. But since {U=<

¢.}, {V=d,} are the rejection regions, then for 0<a<1/2, ¢, and d.
are both negative. Hence,

{g(c2)— 2p(d2)} +0(1/m)

P,— P, =a/m'*, where a<0;

i.e. V is more powerful than U, which is the same result as in Section
2. Therefore Table 1 is, apart from the special cases of p=1/2, and
m=mn, where the powers are indistinguishable, unchanged. There is
some comparison possible between our results and those of Eberhardt
and Fligner [1]. Looking at their Figure A, for (p,, p;) values very
close to the diagonal p,=p,; i.e. for local alternatives; we see the same
recommendations of Table 1. However our approach has been via Pit-
man efficiencies, and we have taken care to first match Type I errors
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of the two tests, and then compare powers.

As a final consideration, one might ask the question as to which
test statistic is closer to normality under H,: 4=0; i.e. which of the
two rejection regions {U=1.96}, {V=1.96}, gives the more accurate
size .05 test? Under H,: 4=0, we have from (3.1), (3.2),

G(x)=0(x)— M) (1/2—p)(1—=2) (2+132+22) (2 —1) ,

6(1+2%)**(mpgq)"®
_ H(x)(1/2—p)(1—2) _ $(x)(1/2—p)(1—2")
H(x)=90(x)+ (mp0)” 6(Lr 2 (mpg)

- (B+2+5)(x*—1) .
So the two terms that we have to compare are,
g2 =2+13224224, A =5+ 2452 —6(1+ 222 /(k2—1) ;

the closer these values are to zero, the better is the normal approxi-
mation under H,. For «=0.05, k,=1.96; in this case Table 2 compares
9(2%) and W% for 2* (=m/n)=0.0(0.2)3.0. Clearly the test statistic V
is in general, closer to the standard normal under H,: 4=0. This holds
regardless of the signs of (1/2—p) and (1—2%).

Table 2. Comparison of two normal approximations

min g(m/n) h(m[n) min g(m/n) h(m[n)
0.0 2.00 2.89 1.6 27.92 —3.62
0.2 4.68 2.07 1.8 31.88 —4.70
0.4 7.52 1.30 2.0 36.00 —5.91
0.6 10.52 0.56 2.2 40.28 —~7.28
0.8 13.68 —0.18 2.4 44.72 —8.81
1.0 17.00 —0.94 2.6 49.32 —10.52
1.2 20.48 —-1.76 2.8 54.08 —12.44
1.4 24.12 —2.64 3.0 59.00 —14.57
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