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1. Introduction

Chapman and Robbins [2] derived an expression for the lower bound
of the variance of estimators, which does not depend upon the regular-
ity conditions. Their derivation is the following :

Let X=(X,, X,,---, X,) be a finite sequence of random variables
and let L,(x;0), #€ 2CR be the probability densities associated to X.
Now, let us consider the following sets:

S(0) = {=| L(x; 0)>0}
and
S(60) = {z| Lu(x; 6)=0} .
If ¢ and @+h (h+0) are any two points in £ such that
1.1) S(@+h)cS() ,
then Chapman and Robbins showed that the following inequality holds:

1

(1.2) Var [6,(X)[0]= m

where: 6,(X) is an unbiased estimator of ¢,

and the inf being over all A0 such that
S(@O+h)cS(6) .

It should be added that if the set {x|L.(x;6)>0} is independent of 4,
then condition (1.1) is true for all 6+h € 2.
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They also present some examples of the inequality (1.2) and its
comparison with the Cramér-Rao [3] and [6] inequality.

In the same article it is mentioned the possibility of using the
method to more general estimation problems.

Along the same lines, Fraser and Guttman [4] got bounds analo-
gous to those of Battacharyya [1] in both one and more than one pa-
rameter cases without assuming regularity conditions.

Also Kiefer [5] has show through examples the use of yet another
lower bound, which is longer than Chapman and Robbins.

2. Theorem

Let us consider the sequential procedure described by Wolfowitz [7]
and let 6y(X) be an estimator for 6 € QCR, with finite variance and
such that

E{oy(X)}=7(#)<oo for all €,
that s,

@.1) by Skj oL 0) [T dai=¥(6) ,

where: Lyx; 6) is joint density function of X=(Xi, X;, -+, Xj).
Now let 6, and 0, be any two distinct points in 2 such that:

(2.2) Lx;0)=0  implies L,(x;0,)=0.

Assume that i t,(6y, 6;) be absolutely convergent for all 6,¢ 2, 1=1,2,
j=1

where .

(2.3) (0, 0:)= SR, Llijia;'—?’%ﬁ‘ fl;dxi ’
@35 0z) 4=

with L(x; 0;)>0. Under the above conditions, we have:

(2.4) Var {6y(X)]6,} = max (0—6,)*
66, LN( X; 0) z_
E {[ Ly(X; 6,) ] 1 0"}

where 0 and 6, are distinct points in 2, such that
Ly(z; 6,)=0 implies Lj(x; 6)=0.

ProOF. From (2.1), we have:

(2.5) §; ij Ly(x; 6) ﬁ do,=1 .
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Take the difference between the two expressions in (2.5) and let =6,
and #=40,, respectively. We thus have:

(2.6) S\, Uatws 00— Ly(w; 09) [T dw =0

j=1

for any 6,, 0,€ 2 and such that (2.2) holds. Similarly, from (2.1) we
have:

@n 2| @@ o)~ L o) ] de=v0)-v0)

Now, multiply both sides of (2.6) by ¥(6#,) and subtract it from the
result in (2.7), we get:

@8) TO)-T0)=5 | 10,V Lw; 0)—Lita; 02} |1 da.

From this equation, it follows that

2.9) W(O)—U(6)=F {[5N(X)—Uf(a2)][ Ly(X L";&%X ; ”2)] /0:02} .

So from equations (2.1) and (2.6), equation (2.9) can be written as

(2.10)  W(0)—¥(8)=cov [[aN(X), LN(XLlj:gLoziX ; "2)] /0:02} .

Letting p be the correlation coefficient of 6y(X) and (Ly(X; 8,)—
Ly(X; 6,)/Ly(X; 8,) for 6=0,, we obtain:

2.11) p= {¥(0)—¥(0,)}"
E {[0,(X)— ¥ (6.)]/0=0} E {[LN(X ?L"lg;f;§X ; "2’] /a=oz}

which exists whenever the conditions on Var {§,(X)} and the series
obtained from (2.3) hold.
From (2.11) we obtain:

210 {V(0)—¥(0)}*
(2.12) EA{[o/(X)—=¥(0,))[0=0,} = _ .
S Ljx; 0)—Lyx;0;) |*+
ESR,{ L(m;oz) } 1 dws
i
Some algebra on the integrand of the equation above leads to
(2.13) Var {6,(X)/0=6,} = I}?(fggqa—;”gﬂzﬂz .
£ {[m] ~1=0;

The last one equation is valid for all 4,, 6, € 2 such that (2.2) holds.
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Consequently, it follows that for #,=6 and 6,=6, where 6, is the true
value of the unknown parameter and such that (2.2) holds, we get:

{¥O)-¥@)}”

B[] e

(2.14) Var {d,(X)|6,} = max

where max is taken on values of €2, +6,. Now, if §,(X) is an
unbiased estimator of #, (2.14) can be written as:

Var {6,(X)/6,} = max (000"
B (] e

where ¢ and 6, are distinct points in 2, such that:

Ly(z; 6,)=0 implies L;(x ;‘ 9)=0.

3. Application

Consider inequality (2.4) for N=n fixed and 0=6,+h (h+0), such
that :

(3.1) L,(x;6,)=0  implies L,(x;6,+h)=0, and E {5,(X)} =6, .
We thus obtain:

1
Var {3,(X)|6,} = inf E (J]6)

0

which is inequality (1.2) obtained by Chapman and Robbins, where:
(8.1) is precisely condition (1.1) and
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