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Abstract

Let f be a uniformly continuous density function. Let W be a
non-negative weight function which is continuous on its compact sup-

port [a, b] and V W(x)de=1. The complete convergence of

nb(n) éj{ W( sz}i? ) —f(s)}

—o0 s

to zero is obtained under varying conditions on the bandwidths b(n),
support or moments of f, and smoothness of W. For example, one
choice of the weight function for these results is Epanechnikov’s opti-
mal function and nb*(n)>n’ for some §>0. The uniform complete con-
vergence of the mode estimate is also considered.

1. Introduction and preliminaries

The construction of a family of estimates of a density function f(x)
and of the mode has been studied by several people. Rosenblatt [9]
considered a general class of density estimates:

1 n [ x— X
1.1 ()= LW ) ,
(- fo=—s 2 W S0
where X,,--., X, are i.i.d. random variables with continuous density

function f(x), W(x) is a bounded integrable weight function such that

S: W(w)de=1
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and b(n) is a bandwidth that tends to zero as n—oo. Thus, the ques-
tion arises as to suitable choices of W(x) and b(n) so that the estimate
function f,(x) is optimal (in some sense). The local properties of the
estimate function in (1.1) have been studied extensively (see Rosenblatt
[10] for a general survey), and a global measure of deviation of the
curve f(xr) from f(x) by

(12) I fu=f la=sup | £,(@)— F@)

has been considered. Parzen [8] showed that if the (true) underlying
density function f(x) is uniformly continuous then | f,— f|l. converges
in probability to zero under the following conditions:

(P1) ¢W(t):S: e¢*“*W(x)dx is absolutely integrable,

(P2) +~/mb(n)—> o as n— oo.

The results of Nadaraya [7], Woodroofe [15], Deheuvels [4], Devroye
and Wagner [5], and Silverman [12] on uniform consistency in the
strong sense are discussed in the last section for comparison with the
results of this paper.

The major results of the paper give a new class of “good” weight
functions (which includes the optimal function) under mild conditions
on the bandwidth sequence b(n) where uniform consistency of the esti-
mate f,(x) is obtained by the complete convergence (see Stout [13]) of
| fu—fll- to zero (which implies convergence with probability one). The
main tools used in obtaining these results will be the smoothness of the
weight function and sub-Gaussian techniques.

Throughout this paper, attention will be restricted to a density
function which is uniformly continuous (or is continuous on its compact
support [a, b]) (see Schuster [11] for a discussion of necessity of uni-
form continuity) and weight functions W(x) which satisfy

(i) Sb W(x)de=1 and

(il) W(x) is nonnegative and continuous on [a,b] and vanish outside
[a, b].

Let U, be a polygonal approximating function on the space of contin-

uous functions with domain [a, b], Cla, b]. That is,

g(wi—n‘ﬂ) =[Un(g)](a+-@iﬂ)

for 1=0,1,-.--,n and ge€Cl[a, b], and U, is linear between the points
a+((b—a)i/n and a+(b—a)(i+1)/n. Recall that the modulus of conti-
nuity, o,(9), is defined by Billingsley [2] by

(1.3) @y(r)= sup g(t)—g(s)|
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for y>0, s, tela,b], and g€ Cla, b].

DEFINITION (Chow [3]). A random variable X is said to be sub-
Gaussian if there exists «=0 such that

(1.4) E [exp (tX)] <exp <_“;i> for all teR.

If X is sub-Gaussian, then let
7(X)=inf {«=0: Inequality (1.4) holds} .

Some basic properties on sub-Gaussian random variables include :
1. If P|X|£K]=1 and E X=0, then

(1.5) E [exp (tX)]<exp (K*) .
2. If ¢(X)=a, then
(1.6) Pl X|=2]=2exp (— 224 .

3. The sum of two independent sub-Gaussian random variables is sub-
Gaussian.
Finally, a sequence of random variables {X,} is said to converge
completely to a random variable X if

Ms

(1.7) PlX,—X|>e] <o

n=1

for each ¢>0. Thus, complete convergence implies convergence with
probability one by Boole’s inequality.

2. Main results

In this section the complete convergence of ||f,—f|l. to zero is
obtained under conditions on the modulus of continuity of the weight
function W(x) and the rate of convergence to zero by the bandwidth
b(n). Also, the uniform consistency of the mode estimate is obtained
in this setting. The uniform consistency of the estimate f,(z) (in the
complete sense) is accomplished by two lemmas.

LEMMA 1. (i) If nb(m)>n’ for some d>0 and (ii) Slx]"f(x)dx<oo
Jor some p>0, and (iii) wy((2b—2a)/n'b(n))=0o(b(n)) for some integer r>
1/p, then

(2.1) sup | fu(s)—-

—o<s<oo b

% B W( Sb?'n))(I > ‘—)O
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completely as n—oo where f,(s) is defined in (1.1).

ProoF. From (ii) it follows that

2.2) SIP(XiP>n]<oo .
Thus, define

Kc=XuInxn|sn‘/PJ
for each »n. By (2.2) P[X,#Y, i.0.]=0 since

(2.3) SIPI%#X]= 3 P[X,[>n"] <o .

Next,

@) s [ W () — e BW ()
=30 |y 2 L7 ) =7 |
+ 5 |y SV )~ 2B )
+sw | BEW () 5 B (|-

The first and third terms of the right-hand side of Inequality (2.4)
converge to 0 completely by (2.3) and the boundedness of W.
Using the compact support [a, b] for W,

1 L s—Y, s—Y,
W( : >=0 less a<-S—1x <p
) =\ ) uness e==y =
for some 1<k<mn or unless —n'?4ab(n)<s<n'?4bb(n). Since b(n)—0,
the sup in the second term of (2.4) need only be taken over [—n'/?

+a, 'nl/<1’-<l—b]. Let "=2(b—a)/n"b(n) and let t,=—n'?+a+(i(2n+(b—a))/
n*) for 1<i<n*. Hence, t,—t,_;=2n"?+(b—a))/n* <2(b—a)/n” for n
large enough. Let Wy(s)=W(s—Y./b(n))—E W(s—Y,/b(n)) for each k=
1,---,n. Thus, E Wi(s)=0 for each s ¢ [a, b] and each k. Furthermore,

(2.5) o @)= sup |Wi(s)—Wi(t)]

§“§3§a W<s_b}::)>_W<t~ b&))l
+ sup, |E W<s_ b%::)>_E W<t_ b&)) ’

= 2wW(5n) .
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Hence, i, (0,)=2wy(3,)=0(b(n)) for each k from condition (iii). For ¢>0
let

(2.6) A,= [ sup

-l /Prags<nl/Pty

nb]i'n) 2 ~k<b(jz)>‘>s]

= [max sup

1gign” sel;

where I,=[t,_,, t;]. Hence,

@7  Ac [max

1=i=n?"

éW"( (t)>‘

nb(n) k=1

nbtn) E[W<b(n)> W(b( ))H»} ‘

+ max sup

15i<n®? sel;

However,

(2.8) max sup

1i<n® sel;

iy 2P~y | =y o)

Since wy(d,)=0(b(n)) by condition (iii), there exists N(r) such that

nb(n) é_,‘lW <b(tn)\) i > 5]

A,C [ max

15i<n?”

for all n=N(r). Using the basic properties of sub-Gaussian random
variables ({Wi(t./b(n)): k=1, 2,---} for each 3), for each n=N(r)

&9 P(A)SP | max | nb( ) i éW(b(n)>‘>i}
égp[ nb(n) iW b(n) \> }

=n"2exp [—¢/64||W|.B

where |[W|lw—sup|W(s)| and B, }_J(I/nb(n))Z 1/nb*(n). To obtain the

complete convergence in (2.1), cons.1der

h/s

(2.10)

n=1

Il

P(4)=3 P(4)+ 31 P(4)

—e'nb(n) )
64(|W ||

<N+ > 20" exp(—en)

n=N(r)+1

= N(r)+ i 2n% exp(

n=N(r)+1

where ¢=¢/64||W|... Thus, the series in (2.10) converges by the inte-
gral test.
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LEMMA 2. If the underlying density, f, is uniformly continuous,
then

(2.11) sup

—oos< o0

1 s— X,
b(n) E W( b(n)

PrROOF. Since f is uniformly continuous given ¢>0 there exists

>0 such tha?:ﬁoif(x)—f(w’)ivz: whenever |x—a'|<d. Let N be suffi-
ciently large so that |b(n)y|<d for all n=N and y ¢ [a, b]. Since W(y)

=0 for y ¢ [a, b],
IH%E (s(;)‘l) 1))
- 3({,0—)5 (b( ))f(x)dx 16|
= S: W(y)f(s—bn)y)dy— f (S)‘
- S" W(y) [f(s-—b(n)y)—f(s)]dyl

<e S: W(y)dy=e

>—f(s)'—+0 as m— oo .

(2.12)

uniformly in s for all n=N. Hence,

sup

—0<8< 0

b(%n)EW<sb()§l> f(s)’—»O as n— oo .

Thus, the proof of Theorem 1 is immediate from Lemmas 1 and 2
since for each ¢>0

(2.13) P[ . nb(n) Z ( b(n) ) f(s)l>5]
=P [ s | 3 7 () W () >3]
+P[ SR, b(ln) EW<%>_JC (3)'>%]

and each of the terms in (2.13) is a convergent series in n. All of
the conditions will be stated in Theorem 1 for easy reference.

THEOREM 1. Let {X,} be independent random wvariables with the
same density function f(s) which is uniformly continuous. Let W(x)
be a monmegative weight fumction which 1is continuous on its compact
support and integrates to 1. If
(a) nb(n)>n’ for some >0,

(b) Slwl”f(x)dx<oo Jor some p>0, then
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(c) ww(iﬁ&i?):o(b(n)) for some integer "‘>;1)—, then _sup nbtn)
n s—X,\ _ -
§W< b(n) > f(s)\ 0

completely as n— oo.

The case of the density function having compact support is dis-
cussed in Taylor and Cheng [14] and being discontinuous off of its sup-
port is not entirely excluded in Theorem 1. The following steps indicate
modifications which allows the theory to include a large class of density
functions (for example, the uniform densities).

Step 1. For an unknown density function which is continuous only on
[a, b] and vanishes outside [a, b], there is no change in Lemma 1.

Step 2. In Lemma 2 it is easy to verify that

1 s—X,
EWW< b(n)

)= £()| -0

su
a+b(n)C Ss<b—b(R)C

as n—oo where C=max {|al, |b]}.

Step 8. Combining steps 1 and 2, for each ¢>0

1 n s—X,
nb(n) k=nW< b(n)

)—£(s)| -0

a+b(n)C=ssb-b(n)C
completely as n— oo.

Hence, the complete convergence of the maximal deviation of the
density estimate holds on arbitrary closed intervals inside of [a, b].
Similar consideration was also given in Woodroofe [15].

In Lemma 1 the modulus of continuity was used only to replace
fa(s) by a polygonal approximation. Thus, the following corollary can
be obtained with basically the same proof.

COROLLARY 1. Let the density function f(s) be as stated in Theo-
rem 1. Let W(x) be a monnegative weight function which has compact
support and integrates to 1. If
(a) nb(n)>n® for some 6>0, and

(b') o sup o IW(s)—Un2r(W)(S)|—_-O(b(n)), then
<ssn/'F+b n S_Xk
B b vom k=1W< bn) >—f(8)|—>0

completely as n— oo.

The condition nb*(n)>n’ need not hold for all » but only eventually.
Also, the condition can be stated as
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(a’) S: x" exp (—exb*(x))dx < oo

for some d>0 where b(x) is a function which generates the bandwidths
b(1), b(2),--- and ¢ is a constant.

In considering mode estimates, assume that the continuous density
function f(s) has a unique mode 4, that is,

f(6)= max f(s).
—o00 <8< 00
The sample mode @, is also assumed to uniquely satisfy

fi(6,)= max f,(s) for each n.
—o0 8§00

THEOREM 2. If the regularity conditions of Theorem 1 or Corollary
1 (or condition (b')) are satisfied, then

16,—6]—0
completely as n— oo.

PRrROOF. Since f(s) is uniformly continuous and has a unique mode
6, for ¢>0 there exists >0 such that |x—#|=¢ implies that |f(8)— f()|
=7. Thus, it suffices to show that f(4,)— f(6) completely. But,

- = sup |f(e)—fus)l+] max fi(s)— max f(s)|

<2 sup_|£)—f)

pointwise for each mn. From (2.14) and the complete convergence of
| fu—fllw, it follows that |6,—#|—0 completely.

3. Comparisons and useful weight functions

Brief comments and comparisons of these results with existing re-
sults will be listed in this section. Also, some useful weight functions
will be considered.

Nadaraya [7] had the weaker bandwidth condition, 503 exp (—rnb*(n))
n=1

< oo for each >0, but required W to be of bounded variation. Wood-
roofe [15] also considered weight functions with compact support. In
addition, his conditions included: We LIP(8), 0<p=<1, and b(n)""=o(n)
with n=o0(b(n)™?), 1<r<4s. It will be shown that WeLIP(8), >0 or
B< —1, is sufficient for the smoothness condition of Theorem 1(c).
Deheuvels [4] also used the pth moment condition of Theorem 1(b)
in relating necessary and sufficient conditions on the bandwidth sequence



UNIFORM COMPLETE CONVERGENCE 405

(namely, 1/b(n)=o(n/log n)) and the almost sure convergence of sup |f,(s)

— f(s)| for a Riemann integrable weight function W(x, y). In the near-
est neighbor method, Devroye and Wagner [5] required only the condi-
tion nb(n)/log n— oo and b(n)/n—0 in obtaining almost sure convergence
for bounded weight functions having compact support. Finally, Silver-
man [12] required the bandwidth condition of b(n)—0 and log n/nb(n)
—0 in obtaining almost sure convergence when W is uniformly contin-
uous and of bounded variation.

For the results of this paper, the weight function W(x) needed to
be continuous on its compact support and satisfy a smoothness condi-
tion ((b) or (b')). However, it need not be of bounded variation even
if it satisfies a Lipschitz condition (which yields (b) or (b’)). Some use-
ful weight functions for these results will now be listed. First, Epane-
chnikov’s [6] optimal weight function

3 xZ . R
e 217§_<1_?) if |2|<v5

0 otherwise

can be used. In this case, let a=—5 and b=5. Then [W(x)—W(y)|=
Clr—y| and wy((2b—2a)/b(n)n")<C'(1/b(n)n") for constants C and C'.
Thus, condition (¢) is easily satisfied.

If the weight function W satisfies a Lipschitz condition of order a,
then |W(x)—W(y)|<M|x—y|* and

o) =M ()

wW<b(n)n’ =" by

for some M >0. Thus, the bandwidth sequence b(n) must be chosen so
that

3.1) b (n)n*m— oo as n— oo for some r>0.

Case 1. —1=<a=0. No bandwidth exists for (3.1).

Case 2. a>0. If b(n)=n"? for some p>0, then r is an integer=
2p(1+a)/a. Then, b (n)n" =nP'**—oco, and (3.1) is satisfied.

Case 8. a<—1. Again, if b(n)=n"? for some p>0, then r is an
integer= —p(a+1)/2a. Then b'**(n)n"=n" 72— oo, and (3.1) is satis-
fied.
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