ON THE UNIFORM COMPLETE CONVERGENCE OF DENSITY FUNCTION ESTIMATES

R. L. TAYLOR1) AND K. F. CHENG2)

(Received Sept. 18, 1978)

Abstract

Let f be a uniformly continuous density function. Let W be a non-negative weight function which is continuous on its compact support $[a, b]$ and $\int_a^b W(x)dx = 1$. The complete convergence of

$$\sup_{-\infty < s < \infty} \left| \frac{1}{nb(n)} \sum_{k=1}^{n} W\left(\frac{s - X_k}{b(n)} \right) - f(s) \right|$$

to zero is obtained under varying conditions on the bandwidths $b(n)$, support or moments of f, and smoothness of W. For example, one choice of the weight function for these results is Epanechnikov’s optimal function and $nb^2(n) > n^3$ for some $\delta > 0$. The uniform complete convergence of the mode estimate is also considered.

1. Introduction and preliminaries

The construction of a family of estimates of a density function $f(x)$ and of the mode has been studied by several people. Rosenblatt [9] considered a general class of density estimates:

$$f_n(x) = \frac{1}{nb(n)} \sum_{i=1}^{n} W\left(\frac{x - X_i}{b(n)} \right),$$

where X_1, \ldots, X_n are i.i.d. random variables with continuous density function $f(x)$, $W(x)$ is a bounded integrable weight function such that

$$\int_{-\infty}^{\infty} W(x)dx = 1$$

1) While visiting at Florida State University.
2) Research supported by National Institute of Environmental Health Sciences under Grant 5 T32 ES0711-03.

AMS Classification Number: Primary 62E15, 62E20 Secondary 60F15.
Key words and Phrases: Density function estimates, weight function, bandwidth, complete convergence, and sub-Gaussian random variables.
and \(b(n) \) is a bandwidth that tends to zero as \(n \to \infty \). Thus, the question arises as to suitable choices of \(W(x) \) and \(b(n) \) so that the estimate function \(f_n(x) \) is optimal (in some sense). The local properties of the estimate function in (1.1) have been studied extensively (see Rosenblatt [10] for a general survey), and a global measure of deviation of the curve \(f_n(x) \) from \(f(x) \) by

\[
\| f_n - f \|_\infty = \sup_{x \in \mathbb{R}} | f_n(x) - f(x) |
\]

has been considered. Parzen [8] showed that if the (true) underlying density function \(f(x) \) is uniformly continuous then \(\| f_n - f \|_\infty \) converges in probability to zero under the following conditions:

(P1) \(\phi_w(t) = \int_{-\infty}^{\infty} e^{itx} W(x) dx \) is absolutely integrable,

(P2) \(\sqrt{n} b(n) \to \infty \) as \(n \to \infty \).

The results of Nadaraya [7], Woodroofe [15], Deheuvels [4], Devroye and Wagner [5], and Silverman [12] on uniform consistency in the strong sense are discussed in the last section for comparison with the results of this paper.

The major results of the paper give a new class of "good" weight functions (which includes the optimal function) under mild conditions on the bandwidth sequence \(b(n) \) where uniform consistency of the estimate \(f_n(x) \) is obtained by the complete convergence (see Stout [13]) of \(\| f_n - f \|_\infty \) to zero (which implies convergence with probability one). The main tools used in obtaining these results will be the smoothness of the weight function and sub-Gaussian techniques.

Throughout this paper, attention will be restricted to a density function which is uniformly continuous (or is continuous on its compact support \([a, b]\)) (see Schuster [11] for a discussion of necessity of uniform continuity) and weight functions \(W(x) \) which satisfy

(i) \(\int_a^b W(x) dx = 1 \) and

(ii) \(W(x) \) is nonnegative and continuous on \([a, b]\) and vanish outside \([a, b]\).

Let \(U_n \) be a polygonal approximating function on the space of continuous functions with domain \([a, b]\), \(C[a, b] \). That is,

\[
g\left(a + \frac{b-a}{n} i \right) = [U_n(g)] \left(a + \frac{b-a}{n} i \right)
\]

for \(i = 0, 1, \ldots, n \) and \(g \in C[a, b] \), and \(U_n \) is linear between the points \(a + (b-a)i/n \) and \(a + (b-a)(i+1)/n \). Recall that the modulus of continuity, \(\omega_b(\delta) \), is defined by Billingsley [2] by

\[
\omega_b(\gamma) = \sup_{|t-s| \leq \gamma} | g(t) - g(s) |
\]
for $\gamma > 0$, $s, t \in [a, b]$, and $g \in C[a, b]$.

Definition (Chow [3]). A random variable X is said to be sub-Gaussian if there exists $\alpha \geq 0$ such that

\begin{equation}
E[\exp(tX)] \leq \exp\left(\frac{\alpha^2 t^2}{2}\right) \quad \text{for all } t \in \mathbb{R}.
\end{equation}

If X is sub-Gaussian, then let

$$\tau(X) = \inf \{ \alpha \geq 0 : \text{Inequality (1.4) holds} \}.$$

Some basic properties on sub-Gaussian random variables include:

1. If $P[|X| \leq K] = 1$ and $E X = 0$, then

\begin{equation}
E[\exp(tX)] \leq \exp(K^2 t^2).
\end{equation}

2. If $\tau(X) = \alpha$, then

\begin{equation}
P[|X| \geq \lambda] \leq 2 \exp\left(-\frac{\lambda^2}{2\alpha^2}\right).
\end{equation}

3. The sum of two independent sub-Gaussian random variables is sub-Gaussian.

Finally, a sequence of random variables $\{X_n\}$ is said to converge completely to a random variable X if

\begin{equation}
\sum_{n=1}^{\infty} P[|X_n - X| > \varepsilon] < \infty
\end{equation}

for each $\varepsilon > 0$. Thus, complete convergence implies convergence with probability one by Boole’s inequality.

2. Main results

In this section the complete convergence of $\|f_n - f\|_\infty$ to zero is obtained under conditions on the modulus of continuity of the weight function $W(x)$ and the rate of convergence to zero by the bandwidth $b(n)$. Also, the uniform consistency of the mode estimate is obtained in this setting. The uniform consistency of the estimate $f_n(x)$ (in the complete sense) is accomplished by two lemmas.

Lemma 1. (i) If $nb^4(n) > n^5$ for some $\delta > 0$ and (ii) $\int |x|^\delta f(x)dx < \infty$ for some $p > 0$, and (iii) $\omega_n((2b^2 - 2a)/n^rb(n)) = o(b(n))$ for some integer $r > 1/p$, then

\begin{equation}
\sup_{-\infty < s < \infty} \left| f_n(s) - \frac{1}{b(n)} \mathbb{E} W\left(\frac{s - X_n}{b(n)}\right) \right| \to 0
\end{equation}
completely as \(n \to \infty \) where \(f_n(s) \) is defined in (1.1).

Proof. From (ii) it follows that

\[
\sum_{n=1}^{\infty} P \left[|X_i|^p > n \right] < \infty.
\]

Thus, define

\[
Y_n = X_n I_{\{ |X_n| \leq n^{1/p} \}}
\]

for each \(n \). By (2.2) \(P \left[X_n \neq Y_n \text{ i.o.} \right] = 0 \) since

\[
\sum_{n=1}^{\infty} P \left[Y_n \neq X_n \right] = \sum_{n=1}^{\infty} P \left[|X_n| > n^{1/p} \right] < \infty.
\]

Next,

\[
\sup_{-\infty < t < \infty} \left| \frac{1}{nb(n)} \sum_{k=1}^{n} W\left(\frac{s-X_k}{b(n)} \right) - \frac{1}{b(n)} \sum_{k=1}^{n} E W\left(\frac{s-Y_k}{b(n)} \right) \right|
\]

\[
\leq \sup_{-\infty < t < \infty} \left| \frac{1}{nb(n)} \sum_{k=1}^{n} W\left(\frac{s-X_k}{b(n)} \right) - W\left(\frac{s-Y_k}{b(n)} \right) \right|
\]

\[
+ \sup_{-\infty < t < \infty} \left| \frac{1}{nb(n)} \sum_{k=1}^{n} W\left(\frac{s-Y_k}{b(n)} \right) - \frac{1}{b(n)} \sum_{k=1}^{n} E W\left(\frac{s-Y_k}{b(n)} \right) \right|
\]

\[
+ \sup_{-\infty < t < \infty} \left| \frac{1}{nb(n)} \sum_{k=1}^{n} E W\left(\frac{s-Y_k}{b(n)} \right) - \frac{1}{b(n)} \sum_{k=1}^{n} E W\left(\frac{s-X_k}{b(n)} \right) \right|
\].

The first and third terms of the right-hand side of Inequality (2.4) converge to 0 completely by (2.3) and the boundedness of \(W \).

Using the compact support \([a, b]\) for \(W \),

\[
\frac{1}{nb(n)} \sum_{k=1}^{n} W\left(\frac{s-Y_k}{b(n)} \right) = 0 \quad \text{unless } a \leq \frac{s-Y_k}{b(n)} \leq b
\]

for some \(1 \leq k \leq n \) or unless \(-n^{1/p} + ab(n) \leq s \leq n^{1/p} + bb(n)\). Since \(b(n) \to 0 \), the \(\sup \) in the second term of (2.4) need only be taken over \([-n^{1/p} + a, n^{1/p} + b]\). Let \(\delta = 2(b-a)/n^2 b(n) \) and let \(t_i = -n^{1/p} + a + (i(2n + (b-a))/n^2) \) for \(1 \leq i \leq n^2 \). Hence, \(t_i - t_i-1 = (2n^{1/p} + (b-a))/n^2 \leq 2(b-a)/n^2 \) for \(n \) large enough. Let \(\tilde{W}_k(s) = W(s-Y_k/b(n)) - E W(s-Y_k/b(n)) \) for each \(k = 1, \ldots, n \). Thus, \(E \tilde{W}_k(s) = 0 \) for each \(s \in [a, b] \) and each \(k \). Furthermore,

\[
\omega_{\tilde{W}_k}(\delta_n) = \sup_{|s-t| \leq \delta_n} |\tilde{W}_k(s) - \tilde{W}_k(t)|
\]

\[
\leq \sup_{|s-t| \leq \delta_n} \left| W\left(\frac{s-Y_k}{b(n)} \right) - W\left(\frac{t-Y_k}{b(n)} \right) \right|
\]

\[
+ \sup_{|s-t| \leq \delta_n} \left| E W\left(\frac{s-Y_k}{b(n)} \right) - E W\left(\frac{t-Y_k}{b(n)} \right) \right|
\]

\[
\leq 2\omega_W(\delta_n).
\]
Hence, \(\omega_w(\delta_n) \leq 2\omega_w(\delta_n) = o(b(n)) \) for each \(k \) from condition (iii). For \(\varepsilon > 0 \) let

\[
A_n = \sup_{-n^{1/p} \leq s \leq n^{1/p} \alpha} \left| -\frac{1}{nb(n)} \sum_{k=1}^{n} \tilde{W}_k \left(\frac{s}{b(n)} \right) \right| > \varepsilon
\]

(2.6)

\[
= \left[\max_{1 \leq i \leq n^{2r}} \sup_{s \in I_i} \left| -\frac{1}{nb(n)} \sum_{k=1}^{n} \tilde{W}_k \left(\frac{s}{b(n)} \right) \right| > \varepsilon \right]
\]

where \(I_i = [t_{i-1}, t_i] \). Hence,

\[
A_n \leq \max_{1 \leq i \leq n^{2r}} \left| -\frac{1}{nb(n)} \sum_{k=1}^{n} \tilde{W}_k \left(\frac{s}{b(n)} \right) \right| + \max_{1 \leq i \leq n^{2r}} \sup_{s \in I_i} \left| -\frac{1}{nb(n)} \sum_{k=1}^{n} \left[\tilde{W}_k \left(\frac{s}{b(n)} \right) - \tilde{W}_k \left(\frac{t_i}{b(n)} \right) \right] \right| > \varepsilon .
\]

(2.7)

However,

\[
\max_{1 \leq i \leq n^{2r}} \sup_{s \in I_i} \left| -\frac{1}{nb(n)} \sum_{k=1}^{n} \left[\tilde{W}_k \left(\frac{s}{b(n)} \right) - \tilde{W}_k \left(\frac{t_i}{b(n)} \right) \right] \right| \leq \frac{2}{b(n)} \omega_w(\delta_n) .
\]

(2.8)

Since \(\omega_w(\delta_n) = o(b(n)) \) by condition (iii), there exists \(N(r) \) such that

\[
A_n \leq \max_{1 \leq i \leq n^{2r}} \left| -\frac{1}{nb(n)} \sum_{k=1}^{n} \tilde{W}_k \left(\frac{t_i}{b(n)} \right) \right| > \varepsilon
\]

(2.9)

for all \(n \geq N(r) \). Using the basic properties of sub-Gaussian random variables \(\{ \tilde{W}_k(t_i/b(n)) : k = 1, 2, \ldots \} \) for each \(i \), for each \(n \geq N(r) \)

\[
P(A_n) \leq \sum_{i=1}^{n^{2r}} P \left[\left| -\frac{1}{nb(n)} \sum_{k=1}^{n} \tilde{W}_k \left(\frac{t_i}{b(n)} \right) \right| > \frac{\varepsilon}{2} \right]
\]

\[
\leq \sum_{i=1}^{n^{2r}} P \left(\frac{1}{nb(n)} \sum_{k=1}^{n} \tilde{W}_k \left(\frac{t_i}{b(n)} \right) \right) > \frac{\varepsilon}{2}
\]

\[
\leq n^{2r} 2 \exp \left\{ -\varepsilon^2 / 64 \| W \|_\infty^2 B_n \right\}
\]

where \(\| W \|_\infty = \sup_{s} |W(s)| \) and \(B_n = \sum_{k=1}^{n} (1/nb(n))^2 = 1/nb^2(n) \). To obtain the complete convergence in (2.1), consider

\[
\sum_{n=1}^{\infty} P(A_n) = \sum_{n=1}^{N(r)} P(A_n) + \sum_{n=N(r)+1}^{\infty} P(A_n)
\]

(2.10)

\[
\leq N(r) + \sum_{n=N(r)+1}^{\infty} 2n^{2r} \exp \left(-\frac{\varepsilon^2 nb(n)}{64 \| W \|_\infty^2} \right)
\]

\[
\leq N(r) + \sum_{n=N(r)+1}^{\infty} 2n^{2r} \exp \left(-cn^2 \right)
\]

where \(c = \varepsilon^2 / 64 \| W \|_\infty \). Thus, the series in (2.10) converges by the integral test.
Lemma 2. If the underlying density, \(f \), is uniformly continuous, then

\[
\sup_{-\infty < s < \infty} \left| \frac{1}{b(n)} \mathbb{E} \left(\frac{s - X_i}{b(n)} \right) - f(s) \right| \to 0 \quad \text{as } n \to \infty.
\]

Proof. Since \(f \) is uniformly continuous given \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that \(|f(x) - f(x')| < \varepsilon \) whenever \(|x - x'| < \delta \). Let \(N \) be sufficiently large so that \(|b(n)y| < \delta \) for all \(n \geq N \) and \(y \in [a, b] \). Since \(W(y) = 0 \) for \(y \notin [a, b] \),

\[
\mathbb{E} \left(\frac{s - X_i}{b(n)} \right) - f(s) = \left| \frac{1}{b(n)} \int_{-\infty}^{\infty} W \left(\frac{s - x}{b(n)} \right) f(x) \, dx - f(s) \right|
\]

\[
= \left| \int_{-\infty}^{\infty} W(y) f(s - b(n)y) \, dy - f(s) \right|
\]

\[
= \left| \int_{a}^{b} W(y) [f(s - b(n)y) - f(s)] \, dy \right|
\]

\[
< \varepsilon \int_{a}^{b} W(y) \, dy = \varepsilon
\]

uniformly in \(s \) for all \(n \geq N \). Hence,

\[
\sup_{-\infty < s < \infty} \left| \frac{1}{b(n)} \mathbb{E} \left(\frac{s - X_i}{b(n)} \right) - f(s) \right| \to 0 \quad \text{as } n \to \infty.
\]

Thus, the proof of Theorem 1 is immediate from Lemmas 1 and 2 since for each \(\varepsilon > 0 \),

\[
P \left[\sup_{-\infty < s < \infty} \left| \frac{1}{nb(n)} \sum_{k=1}^{n} W \left(\frac{s - X_k}{b(n)} \right) - f(s) \right| > \varepsilon \right]
\]

\[
\leq P \left[\sup_{-\infty < s < \infty} \left| \frac{1}{nb(n)} \sum_{k=1}^{n} \left(W \left(\frac{s - X_k}{b(n)} \right) - \mathbb{E} \mathbb{E} \left(\frac{s - X_k}{b(n)} \right) \right) \right| > \frac{\varepsilon}{2} \right]
\]

\[
+ P \left[\sup_{-\infty < s < \infty} \left| \frac{1}{b(n)} \mathbb{E} \left(\frac{s - X_i}{b(n)} \right) - f(s) \right| > \frac{\varepsilon}{2} \right]
\]

and each of the terms in (2.13) is a convergent series in \(n \). All of the conditions will be stated in Theorem 1 for easy reference.

Theorem 1. Let \(\{X_n\} \) be independent random variables with the same density function \(f(s) \) which is uniformly continuous. Let \(W(x) \) be a nonnegative weight function which is continuous on its compact support and integrates to 1. If

(a) \(nb^2(n) > \nu \) for some \(\delta > 0 \),

(b) \(\int |x|^p f(x) \, dx < \infty \) for some \(p > 0 \), then
(c) \(\omega_w \left(\frac{2b-2a}{n^b(n)} \right) = o(b(n)) \) for some integer \(r > \frac{1}{p} \), then

\[
\sup_{-\infty < \epsilon < \infty} \left| \frac{1}{nb(n)} \sum_{i=1}^{n} W \left(\frac{s-X_i}{b(n)} \right) - f(s) \right| \to 0
\]

completely as \(n \to \infty \).

The case of the density function having compact support is discussed in Taylor and Cheng [14] and being discontinuous off of its support is not entirely excluded in Theorem 1. The following steps indicate modifications which allows the theory to include a large class of density functions (for example, the uniform densities).

Step 1. For an unknown density function which is continuous only on \([a, b]\) and vanishes outside \([a, b]\), there is no change in Lemma 1.

Step 2. In Lemma 2 it is easy to verify that

\[
\sup_{a + b(n) \in \mathbb{R}^+} \left| \frac{1}{b(n)} \sum_{i=1}^{n} W \left(\frac{s-X_i}{b(n)} \right) - f(s) \right| \to 0
\]

as \(n \to \infty \) where \(C = \max \{|a|, |b|\} \).

Step 3. Combining steps 1 and 2, for each \(\epsilon > 0 \)

\[
\sup_{a + b(n) \in \mathbb{R}^+} \left| \frac{1}{nb(n)} \sum_{i=1}^{n} W \left(\frac{s-X_i}{b(n)} \right) - f(s) \right| \to 0
\]

completely as \(n \to \infty \).

Hence, the complete convergence of the maximal deviation of the density estimate holds on arbitrary closed intervals inside of \([a, b]\). Similar consideration was also given in Woodrooffe [15].

In Lemma 1 the modulus of continuity was used only to replace \(f_n(s) \) by a polygonal approximation. Thus, the following corollary can be obtained with basically the same proof.

Corollary 1. Let the density function \(f(s) \) be as stated in Theorem 1. Let \(W(x) \) be a nonnegative weight function which has compact support and integrates to 1. If

(a) \(nb^3(n) \geq n^\delta \) for some \(\delta > 0 \), and

(b') \(\sup_{-n^{1/p} \leq s \leq n^{1/p} + b} |W(s) - U_{n^{1/p}}(W)(s)| = o(b(n)) \), then

\[
\sup_{-\infty < \epsilon < \infty} \left| \frac{1}{nb(n)} \sum_{i=1}^{n} W \left(\frac{s-X_k}{b(n)} \right) - f(s) \right| \to 0
\]

completely as \(n \to \infty \).

The condition \(nb^3(n) \geq n^\delta \) need not hold for all \(n \) but only eventually. Also, the condition can be stated as
(a') \[\int_{d}^{\infty} x e^{-cx^b(x)} dx < \infty \]
for some \(d > 0 \) where \(b(x) \) is a function which generates the bandwidths \(b(1), b(2), \ldots \) and \(c \) is a constant.

In considering mode estimates, assume that the continuous density function \(f(s) \) has a unique mode \(\theta \), that is,
\[f(\theta) = \max_{-\infty < s < \infty} f(s). \]
The sample mode \(\theta_n \) is also assumed to uniquely satisfy
\[f_n(\theta_n) = \max_{-\infty < s < \infty} f_n(s) \quad \text{for each } n. \]

Theorem 2. If the regularity conditions of Theorem 1 or Corollary 1 (or condition (b')) are satisfied, then
\[|\theta_n - \theta| \to 0 \]
completely as \(n \to \infty \).

Proof. Since \(f(s) \) is uniformly continuous and has a unique mode \(\theta \), for \(\varepsilon > 0 \) there exists \(\eta > 0 \) such that \(|x - \theta| \geq \varepsilon \) implies that \(|f(\theta) - f(x)| \geq \eta \). Thus, it suffices to show that \(f(\theta_n) \to f(\theta) \) completely. But,
\begin{align*}
(2.14) \quad |f(\theta_n) - f(\theta)| & \leq |f(\theta_n) - f_n(\theta_n)| + |f_n(\theta_n) - f(\theta)| \\
& \leq \sup_{-\infty < s < \infty} |f(s) - f_n(s)| + |f_n(\theta_n) - f(\theta)| \\
& \leq 2 \sup_{-\infty < s < \infty} |f_n(s) - f(s)|
\end{align*}
pointwise for each \(n \). From (2.14) and the complete convergence of \(\|f_n - f\|_\infty \), it follows that \(|\theta_n - \theta| \to 0 \) completely.

3. Comparisons and useful weight functions

Brief comments and comparisons of these results with existing results will be listed in this section. Also, some useful weight functions will be considered.

Nadaraya [7] had the weaker bandwidth condition, \(\sum_{n=1}^{\infty} \exp(-r n b^2(n)) \leq C \) for each \(r > 0 \), but required \(W \) to be of bounded variation. Woodward [15] also considered weight functions with compact support. In addition, his conditions included: \(W \in \text{LIP}(\beta) \), \(0 < \beta \leq 1 \), and \(b(n)^{-r} = o(n) \) with \(n = o(b(n)^{-r}) \), \(1 < r < \delta \). It will be shown that \(W \in \text{LIP}(\beta), \beta > 0 \) or \(\beta < -1 \), is sufficient for the smoothness condition of Theorem 1(c).

Deheuvels [4] also used the \(p \)th moment condition of Theorem 1(b) in relating necessary and sufficient conditions on the bandwidth sequence.
(namely, $1/b(n) = o(n/\log n)$) and the almost sure convergence of $\sup_s |f_n(s) - f(s)|$ for a Riemann integrable weight function $W(x, y)$. In the nearest neighbor method, Deveugle and Wagner [5] required only the condition $nb(n)/\log n \to \infty$ and $b(n)/n \to 0$ in obtaining almost sure convergence for bounded weight functions having compact support. Finally, Silverman [12] required the bandwidth condition of $b(n) \to 0$ and $\log n/nb(n) \to 0$ in obtaining almost sure convergence when W is uniformly continuous and of bounded variation.

For the results of this paper, the weight function $W(x)$ needed to be continuous on its compact support and satisfy a smoothness condition ((b) or (b')). However, it need not be of bounded variation even if it satisfies a Lipschitz condition (which yields (b) or (b')). Some useful weight functions for these results will now be listed. First, Epanechnikov's [6] optimal weight function

$$W(x) = \begin{cases} \frac{3}{4\sqrt{5}} \left(1 - \frac{x^2}{5}\right) & \text{if } |x| \leq \sqrt{5} \\ 0 & \text{otherwise} \end{cases}$$

can be used. In this case, let $a = -5$ and $b = 5$. Then $|W(x) - W(y)| \leq C|x-y|$ and $\omega_w((2b-2a)/b(n)n^r) \leq C'(1/b(n)n^r)$ for constants C and C'. Thus, condition (c) is easily satisfied.

If the weight function W satisfies a Lipschitz condition of order α, then $|W(x) - W(y)| < M|x-y|^{\alpha}$ and

$$\omega_w\left(\frac{1}{b(n)n^r}\right) \leq M\left(\frac{1}{b(n)n^r}\right)^{\alpha}$$

for some $M > 0$. Thus, the bandwidth sequence $b(n)$ must be chosen so that

(3.1) \hspace{1cm} b^{\alpha+}(n)n^{\alpha r} \to \infty \quad \text{as } n \to \infty \text{ for some } r > 0.

Case 1. \hspace{1cm} $-1 \leq \alpha \leq 0$. No bandwidth exists for (3.1).

Case 2. \hspace{1cm} $\alpha > 0$. If $b(n) = n^{-p}$ for some $p > 0$, then r is an integer $\geq 2p(1+\alpha)/\alpha$. Then, $b^{1+}(n)n^{\alpha r} \geq n^{p(1+\alpha)/\alpha} \to \infty$, and (3.1) is satisfied.

Case 3. \hspace{1cm} $\alpha < -1$. Again, if $b(n) = n^{-p}$ for some $p > 0$, then r is an integer $\geq -p(\alpha+1)/2\alpha$. Then $b^{1+}(n)n^{\alpha r} \geq n^{-p(1+\alpha)/2} \to \infty$, and (3.1) is satisfied.
REFERENCES

