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Summary

A minimum AIC procedure for the fitting of a locally stationary
autoregressive model is proposed. The least squares computation for
the procedure is realized by using the Householder transformation which
makes the procedure computationally more flexible and efficient than
the one originally proposed by Ozaki and Tong.

1. Introduction

Ozaki and Tong [8] extended the autoregressive model fitting pro-
cedure developed by Akaike [1], [2], [8] to non-stationary situations.
They considered a locally stationary process and fitted a stationary auto-
regressive model to each stationary block of the data. The goodness
of fit of the global model composed of these local stationary models is
measured by the corresponding AIC and the partition of the data into
blocks which minimizes the AIC defines the best model. The homogeneity
of data is checked each time as a block of prescribed number of new
data is added and the additional one is pooled to the original one if
these two blocks of data are considered to be homogeneous. Otherwise
a new process of modeling starts with the new block. The procedure
has close connection with the theory of successive process of statistical
inference [6], in particular, with that of the estimation after preliminary
tests of significance discussed by T. Kitagawa [7]. The main difference
is that here the two-step TE (Test-Estimation) type estimation was re-
placed by the single step minimum AIC procedure.

Ozaki and Tong used the conventional technique of fitting of the
autoregressive model described in Akaike [2], which is developed for
the analysis of long stationary data and is not quite suitable for the
application to a non-stationary situation where the analysis of a short
span of data is necessary.

In this paper, we propose a new procedure which utilizes the House-
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holder transformation, a powerful tool for the solution of the least
squares problem [5]. This transformation allows the necessary modifi-
cation of a fitted model due to the addition of observations or the ad-
dition and deletion of regressors quite easily. Especially with this
procedure even the change of the mean value of the process can be
handled very easily.

This paper is organized as follows. In Section 2, the locally sta-
tionary autoregressive model is defined and the likelihood and AIC of
the model are derived. An on-line type fitting procedure is described
in Section 3. In Section 4, the application of the Householder trans-
formation to the solution of the least squares problem of time series
is discussed. The minimum AIC procedure for the fitting of locally
stationary model is described in Section 5. In Section 6, some numer-
ical examples are given, and the final section is devoted to additional
comments on the procedure.

2. Locally stationary autoregressive model

Given a set of observations {x,---, 2y} we consider the situation
where the time interval [1, N] is divided into % blocks, each of length
n; (M+ny+ -+ +n,=N; k and n; are unknown), and the following locally
stationary autoregressive model is being fitted to the data:

M(E)
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where ¢! is a Gaussian white noise with E¢i=0, E(s!))=0¢! and E¢ix,_,,
=0 (m>0).

The approximate likelihood of the model to be used in our analysis
is defined by
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and the maximum of log likelihood ! is given by
*(x; k, i, M(3), (i=1,---,k))

= ——é— 2_11 {n; log 2za}+mn}

= —%(1+log 27:)——;— é nlog a7 .

where ¢° is the approximate maximum likelihood estimate of ¢ and is
obtained by minimizing ¢! with respect to al,’s.
The AIC of our locally stationary model is then given by

AIC=3n, log 5242 37 (M(5)+2) .
i=1 i=1

The MAICE’s (minimum AIC estimates) of the number of stationary
blocks, the size of each block and the order of the autoregressive model
fitted to each block are defined as those values of k, n, (¢=1,---,k)
and M(3) (1=1,---, k) which minimize the AIC.

3. An on-line type fitting procedure

Instead of comsidering every possible combination of blocks, the
procedure proposed for practical use is as follows [8]:

Consider the situation where an autoregressive model, AR,, has
been fitted to the set of data {x,,---,«,} and an additional set of m
observations {x,.,- -, %,,»} is newly obtained where m is a prescribed
number. We consider two competing models. The first one is defined
by connecting two autoregressive models, the model AR, and the model
AR, which is fitted to the newly obtained data {z..., -, Z.,n} and
which are assumed to be independent. The AIC of this jointed model
is given by

AIC,=nlog oi+m log o} +2(M,+ M, +4) ,

where ¢ and M, are the innovation variance and the order of the auto-
regressive model AR,, ¢ and M, are those of AR,, respectively. The
second model is an autoregressive model, AR,, fitted to the whole span
of the pooled data {z,---, 2,,.}. The AIC of the model is given by

AIC,=(n+m) log o} +2(M;+2) ,

where ¢} is the innovation variance and M, is the order of the fitted
model.

If AIC, is less than AIC,, we switch to the new model AR,. Other-
wise, the two sets of data are considered to be homogeneous and the
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model AR, is accepted. The procedure repeats these steps whenever a
set of m new observations is given. Hereafter we will call m as the
basic span.

The procedure is so designed as to follow the change of the struec-
ture of the time series, while if the structure remains unchanged it
will improve the model by using the additional observations.

4. least squares computation by Householder transformation

First we assume that the mean value of the process {z,} is zero.
The least squares estimates of the kth order autoregressive coefficients
are obtained by minimizing the sum of squares

1

N_K i S (@ Xy — g% k)

Define the matrix X and the vectors y and a by

xx xK_l‘ . ’xx xx+1 a,
X= xK+l xx -o-wz , y= wx+2 , a= az
Ty-1 Zy-—g** " Ty-x Ty ax
The least squares method minimizes ||jy— Xa|’, where || | denotes the
Euclidean norm, and the solution is given by the normal equation
X' Xa=X'y

As a numerical procedure the direct solution of the normal equation is
not quite efficient and the procedure realized by first orthogonalizing
the column vectors of X and then solving the resultant equation super-
sedes the normal equation approach in both manipulability and numer-
ical accuracy [5].

A Householder transformation is an orthogonal transformation de-
fined by a matrix P=I—2uu’, where u is a vector with |]u||=1. Let
X(l)_X and X(2) .. X(K+l) be deﬁned ‘by X(k+1)__P(k)X(k) (k 1 K),
where P® is a Householder transformation and is chosen so that x("“)
=0 (t=k+1,k+2,---, N—K), where z{} denotes (¢, k)th element of
X&,  p® g deﬁned by P®=I—v,vi/h, with

vl,:=(0 0 x(k)+ry gc’:-)l 2 1x5¥"clK,k) ’

where z*= 2 {2} and h,=7'Frx{,. We have

X(K-H) QX_ — I:%_] ,
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where Q=P PE-D...P®Y jig an orthogonal matrix and S is an upper
triangular matrix. The matrix S and the vector Qy keep the complete
information for the least squares fitting of autoregressive models up to
the Kth order. Denote S and z=Qy by

3}1: * - Six
.t and Z=(2, ", 2y_x) -

0. -Sgx

S=

For each k<K, the least squares estimates of the coefficients of the
kth order autoregressive model

k
— k k
Tn= Z} [V 25— + én
i=

are obtained by solving the linear equation

lisu: - 81ki”:a’f:| [zl]
0 'S;k a/,lg z.k

The corresponding estimate d(k) of ¢:=E (%) is given by ([5])

diy=—"_"S7 2

( )_N—K i=k+lzi ’

We note that for the fitting of the generalized model with a constant
term a,

T, =0+ é_ Cplpm+€n s (k=1,---, K)

we have only to define X by

1 xx °--x1

X= 1 2xye--my

1 2y Ty xk

By using the least squares estimates as approximations to the max-
imum likelihood estimates under the Gaussian assumption, the minimum
AIC procedure for the fitting of an autoregressive model is realized as
follows.

Assume that a set of data {z,; n=1,---, N} is given.

1) Replace z, by %,=x,—Z%, where 97;:% éxn.
n=1
2) Determine the upper limit K of the order of the autoregressive
models to be fitted to the data.
3) Define the (N—K)Xx(K+1) matrix
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Tx Tg-i* * Tr+1

X=| ¥xv1 Tx T Tr4s

Ty-1 Ty-2* * *Ty-x Tn
4) Reduce the matrix X to an upper triangular matrix

Sic Sk Siu,E41-

S=

Skx  Sg,k+1
0 SK+1,K+1
by the successive application of the Householder transformations de-

scribed in the preceding section.
5) Define the AIC of the autoregressive model of order m by

AIC (m)=(N—-K) log (d(m))+2(m+2) ,
where d(m), the estimate of the innovation variance, is in this case
given by
K+1

d(m):W}_—K 3 S

6) Adopt the m which gives the minimum of AIC(m) (m=0,1,--., K)
as the order L of the model.
7) The minimum AIC estimates of the autoregressive coefficients af
(t=1,--., L) are obtained by

L
@ =8L.18L K+l » aiL=SZi<3i,x+1_121 a’Jl"si,j> , (1=L-1,---,1).
=i+

5. Minimum AIC estimation of locally stationary models

In this section we will discuss an implementation of the minimum
AIC procedure for the fitting of autoregressive models to locally sta-
tionary time series.

Let the matrix X be defined by

1 @ - o Tri1
X= 1 2gyy - r -2 T2
1 Tyg-1* * *Tyy-x Iw

and is reduced to the upper triangular matrix S by the Householder
transformation. When an additional set of observations {%y .1, *, Ty sn}
is obtained the matrix Z is constructed as
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1 Ty, ot Typ-k+r Lwget
Z= 1 ettt Tng-kiz Tngts
1 xN +M—1 xNo+H—K Tyo+u

By repeated applications of Householder transformations the matrix Z
is reduced to an upper triangular matrix S, by

K+2

,S’1 [x+2
e [ 0 ]Iu—x—z'

Again by applying the Householder transformations to the matrix

S IK+2
I:Sx:lf"”

we obtain an upper triangular matrix S; by

S S;
P .
s
Obviously the triangular matrix S; is one and the same as the one ob-

X
tained by reducing the augmented matrix [—1}—} This means that the

least squares estimates of the coefficients of an autoregressive model
obtained by pooling two consecutive time series can be obtained quite
easily. The procedure by Ozaki and Tong [8] assumes the zero initial
and end conditions for each block. It is one of the advantages of the
present procedure that the fitting of an autoregressive model is real-
ized with the initial condition given by its preceding block. Another
advantage is that it can be applied to the situation Where the mean
value of the process varies between blocks.

The minimum AIC procedure for the fitting of a locally stationary
autoregressive model is summarized as follows. Assume that a set of
data {x,; n=1,---, N} is given. Let AIC(S) and AR(S) denote the
minimum of AIC(m) among m=0,1,---, K and the minimum AIC esti-
mate of the autoregressive model obtained through the matrix S, re-
spectively.

1) Set the upper limit K of the order of autoregressive models and
choose M, the length of the basic span of data.
2) (i) Construct the Mx(K+2) matrix
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1 24 SR T
X= 1 Zgyy ooo . Ty
1 Zgig1t Ty Txiw

(ii) Reduce the matrix X to an upper triangular matrix S,.

(iii) Determine the minimum AIC autoregressive model AR (S;) and
put AIC,=AIC(S,).

(iv) Set N,=M.
3) (i) Construct the Mx(K+2) matrix

1 Typ+x o Tnprr Tkl
Y= 1 Zyyrer o Ty Tk
1 Tngrr+¥-1" " " Tngey  TNprk+n

(ii) Reduce the matrix ¥ to an upper triangular matrix S,.

(iii) Determine the minimum AIC autoregressive model AR (S;) and
put AIC,=AIC(S,)+AIC,.
4) (i) Construct the 2(K+2)x(K+2) matrix

Z= [%:] .

(ii) Reduce the matrix Z to an upper triangular matrix S,.

(iii) Determine the minimum AIC autoregressive model AR (S;) and
put AIC,=AIC(S,).
5) If AIC, is less than AIC,, replace the current model AR(S;) by
AR(S)), overwrite S, on S, and set AIC,=AIC,. If AIC, is greater
than or equal to AIC,, replace the current model AR(S,) by AR(S:),
overwrite S, on S, and set AIC,=AIC,.
6) If N,+M equals to N stop the procedure, otherwise replace N, by
N,+M and go back to step 3).

6. Numerical examples

The procedure of fitting autoregressive models to non-stationary
time series was applied to two artificially generated non-stationary time
series. The first series is generated by adjoining the realizations of
three types of autoregressive models

z,=1.6x,_,—1.252,_,+0.352,_;+¢, ,
z,=1.1v,_,—1.002,_,+0.352,_;+¢,

and
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Table 1. Comparison of two models by AIC’s at each block

Block New data AIC, AIC, Decision

1 (@1, 2+, T10s} —9.34 —_

2 {108y °* +y Z20s} 0.02 —4.51 New data pooled
3 {208, * 5 T305} —6.02 | —11.26 New data pooled
4 {306, ++, Zao5} 16.24 47.67 |#+Model switched#*
5 {Z4065 7+ +y Ts0s} 30.83 25.21 New data pooled
6 (@508, °* +, Teos5) 9.17 7.66 New data pooled
7 {@s08,° * *» Tr0s} 11.28 29.83 xModel switcheds*
8 {708, + +, Zsos} 3.26 —0.68 New data pooled
9 {808, - 5 Looo} 1.32 —-3.26 New data pooled

x,=0.82,_,—0.82%,_,+0.402,_;+¢, ,

each of length 300, where ¢, denotes Gaussian white noise with zero
mean and variance 1.0. The length of the basic span was chosen to
be 100 and the upper limit of the order was arbitrarily set to 5. Table 1
shows AIC’s of two competing models, AIC, and AIC,, and the deci-
sion made by our procedure. First, third order autoregressive model
was obtained for the interval [6,105]. When another 100 data were
obtained two AIC’s (AIC, and AIC,) were compared. The former is the
AIC of the succession of two local models fitted to [6,105] and [106,205]
and the latter is that of the autoregressive model fitted to the whole
interval [6,205]. Since AIC, was less than AIC,, the latter was adopted

Table 2. Selected model at each interval

Intervals Fitted models \}E\(;Si;‘ixl::ils Entropies
from | to

6| 105| =xp=1.581%n—1—1.189%n—2+0.277Ln—3+¢€n 0.8408 —0.01447

6| 205 | =xn=1.532xn—1—1.1122n—2+0.2332n—3+¢€n 0.9394 —0.01012

6| 305 | n=1.565Tn—1—1.1392n—2+0.2672n—3+&n 0.938 —0.00869
306 | 405 | x,=1.091xn-1—0.8392n—2+0.3042n—3+¢cn 1.215 —0.03241
306 | 505 | xn=1.123xp-1—0.891xn—2+0.2822n—3+¢n 1.153 —0.02153
306 | 605 | xn=1.098xn-1—0.896x4—2+0.2852n—3+¢n 1.037 —0.01190
606 | 705 | x2=0.6012n-1—0.713x4—2+0.2402n—3+¢€n 0.9572 —0.02715
606 | 805 | wxx=0.728xn-1—0.74424—2+0.3042n—s+€n 0.9215 —0.00820
606 | 900 | x2=0.7382n-1—0.8162n—2+0.3412n—3+€xn 0.9379 —0.00670
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as the current model, i.e., the data were considered to be homogeneous
and the two blocks were pooled. The third block was also pooled.
When the fourth block was added, the AIC, became less than AIC,.
Thus the interval [6,405] was divided into two sub-intervals, [6,305] and
[306,405], and the current model was replaced by the one fitted to the
sub-interval [306,405]. This means that the procedure detected the
change of the model at the 305th data point. Continuing further, the
procedure also detected the change at the 605th data point. The mini-
mum AIC of the stationary model fitted to the whole span [6,900] is
176.80, while that of the locally stationary model adopted by our
procedure is —3.36. This shows that the fit of the model was greatly
improved by the adoption of the locally stationary model. Table 2 shows
the selected partition of the data and the model fitted to each sub-
interval. The table also contains the value of the entropy of the true
model with respect to the fitted model defined by

1A m A monr A A
ar(m—2 Bapt3 Dade)

1 R
—— log 2n6*—
2 08 &7 20

where m, ¢* and @, (i=1,---, m) are the order, the innovation variance
and the autoregression coefficients of the fitted model and p, (=0, 1,
---,m) is the theoretical autocorrelation function defined by the true
model [4]. The entropy is non-positive and we consider that the greater

3 = t:
-5 4 KX 3 5 6. -1
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8L 20
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~ ~' ~ ~
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Fig. 1. Power Spectral Density Functions Estimation
MAICE within the locally stationary autoregressive models at each block is
compared with the theoretical spectrum. Data length N=900, basic span
M=100, highest order K=5.
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the value of entropy, the better the fit of the estimated model. From
the table, we know that the amount of entropy was reduced when the
additional data were pooled.

Fig. 1 illustrates the record of the generated data, the theoretical
spectra of three models and the estimated spectra through the fitted
models. The figure shows two significant merits of our procedure: If
the additional data are obtained from the same model as that of the
preceding data then the new data will be pooled and the current model
will be refined. On the other hand, if the statistical structure of the
process is significantly changed, the procedure will detect and follow
the change of the structure by switching the model.

The second series was generated by a seventh order autoregressive
model with time-variant coefficients. The autoregressive coefficients
an(t), (m=1,---,7) were determined so that the characteristic roots of
the equation s"—a,(t)s®*— .- —a4t)s—a,(t)=0 were given by 0.4, —0.6
+ 0.6989¢, 0.86 +0.4005¢ and 0.35{1 4 (1.4 + c(t,)) cos t, = (3 + sin t,)i},
where ¢, and c¢(t) were defined by ¢,=0, for n<500, mz/60, for 30(m—1)
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MAICE within the locally stationary autoregressive models at each block is
compared with the theoretical spectrum. 1 shows that the model was switch-
ed there,
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=n—500=<30m and c(t)=0.5sin (2t+x/6). The process is stationary up
to the 500th data point, and after that the model gradually changes a
pair of its characteristic roots at every 30 points with the period of
3600. Fig. 2 illustrates a realization of the process, the theoretical
spectrum and the spectrum estimated through the fitted autoregressive
model at each interval, where the theoretical spectra are defined as
the spectra of the stationary time series with coefficients of the char-
acteristic equations. The basic span was chosen to be 100 and the up-
per limit of the order was set to 30. The procedure detected the change
of the model at »=910, 1510, 1610, 1710, 2410, 2910, 3310, 3710, 3910
and 4610. The figure shows that the procedure detected the significant
changes of the spectrum.

7. Remarks

The present procedure will be useful for the automatic detection
or monitoring of the change of spectral characteristics of industrial or
natural processes. The generalization of the present procedure to the
multidimensional case is straightforward. This extension will be useful
for the implementation of adaptive control of non-stationary processes.
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