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Abstract

Seven generalized criteria are proposed with the corresponding
formulations for optimal scaling of multiple responses. Then, on the
basis of a natural probabilistic model, the asymptotic theories are de-
rived concerning the test statistics on factor-response relationships as
well as the distributions of sample criteria (eigenvalues of the deter-
minantal equation) and optimal scores (eigenvectors) by means of so-
called 6-method. A numerical example is provided for illustrations.

1. Introduction

The methods of usual multivariate analysis can be applied on quan-
titative observations to do with inference for a factor-response rela-
tionship. These methods, however, are not available, when only quali-
tative observations are obtained. For such cases there exist the methods
of optimal scaling or quantification, and the present author [6] have
proposed several generalized methods of optimal scaling and their asymp-
totic theories for the case of single response-multiple factors.

The purpose of the present paper is to extend them to the case
of multiple responses-multiple factors. In Section 2 several generalized
criteria are introduced, including two criteria proper to the multi-
response situation. Hayashi’s second method of quantification [1] is
included in the method based on one of the criteria, when there exists
only one factor item and it is selected as the external criterion. In
Section 3 some asymptotic properties of sample criteria and optimal
scores are investigated corresponding to each criterion, and in Section
4 an asymptotic statistical method is given for inference concerning
effects of factors. Finally in Section 5 a numerical example is provided
to illustrate the proposed procedures.
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2. Some generalized criteria for optimal scaling

Let us suppose that every subject under study can be classified as
falling into one and only one of 7, categories of ith response item for
1=1,2,---,¢q, and of ¢, categories of kth factor item for k=1,2,---, L
Let us introduce the following dummy variables to express the data
of a sample of size n.

(1 if subject a belongs to category j of the
2.1) 2(19)=1 1th response item ,

0 otherwise ,

1  if subject a belongs to category ! of the
(2.2) (k)= kth response item,

0 otherwise .

Define

by =[ﬁ,“ ﬁvlz]:the sample variance-covariance matrix of the dummy
# <zl yariables,
3, =the Zq‘,'r,xi} r, matrix with (1/n)[h(2], st)—n,m,/n] as its (i7, st)
t=1

i=1
element, where ij (or st) denotes jth (or tth) category of ith (or
sth) response item,

Sp=the SI_} ci X é ¢, matrix with (1/n)[f(kl, wv)—ninl/n] as its (K, uv)
k=1 k=1

element, where kI (or uv) denotes Ith (or vth) category of kth (uth)
factor item,
A I
$u=the 317, X3¢, matrix with (1/n)[g"(k)—mn,ni/n] as its (i, k)
i=1 k=1
elements,
r,=the number of categories of ith response item,

q
r=3(r—1),
c;=the number of categories of kth factor item,

I
c=k§}1 (clc—l)i
n,,=the frequency of occurrence of category j of ith response item,
n,,=the frequency of occurrence of category ! of kth factor item,
h(ij, sty)=the frequency of joint occurrence of category j of ith re-

sponse item and category t of sth response item,

f(kl, wv)=the frequency of joint occurrence of category ! of kth factor
item and category v of uth factor item,
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g*/(kl)=the frequency of joint occurrence of category j of ith response
item and category ! of kth factor item.
Let ¢;; be a score assigned to category j of ith response item, then
the responses of subject « are expressed by ¢ quantities

(2.3) wa(’l:):zl za(?:j)tij , i:l’ 2, e q.
ji=1
Moreover, consider a composite variable with weights {d;, i=1, 2,-- -, q}
2.4) w.=3 daw(i)=3 S z.(ij)tl,,  where #},=dd, .
i=1 i=1 j=1

In order to analyze a factor-response relationship by using the quanti-
ties w, and {w.(?), 1=1, 2,---, q}, we define seven criteria for optimal
scaling and give formulations based upon them. The mathematical
model assumed is given by

(a univariate linear model)

(2.5) w,,:ﬂo—l-% EL x.(kl)0x, +e. a=1,2,--+,n,

where 6, is the constant term, 4, the effect of category ! of kth factor
item, and e, the error term, or
(a multivariate linear model)

(2.6) w (1) =0+ 33 3 w (k)0 +e
k il
7:=1,2,-'-,q, a=1,2,---,m,

where 6 is the constant term, & the effect of category [ of kth factor
item and ¢ the error term for ith response item.

Since there exist the conditions of exclusive and exhaustive cate-
gories such that

Elza('bj):l ’ ?:21!2’"'7(1!
ji=1

@.7) N
LE(E.,(Id):l, k=1,2,.--,1,
=1

we may omit the dummy variables for an arbitrary category per item
and the corresponding rows and columns of the variance-covariance

matrix 3, but for the sake of simplicity we shall use the same nota-

tions 3, 3., 3., 3, for such abbreviated matrices. The omitting of
dummy variables as described above is obviously equivalent to equating
the scores or effects of the selected categories to zero.

On the basis of the univariate or multivariate model desecribed
above, we shall introduce seven criteria summarized in Table 2.1 for
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Table 2.1 Generalized criteria proposed for optimal scaling
in the case of multiple responses

(i) Criteria based on the relationships between factors and responses

Criteria for optimal scaling Determinantal equations
CM-1 Ma);limization of thef variation due | (3123525 —131)E=0 (*1)
to the effects of all factors relative .
to the total variation where ¢=[#],]: rx1
CM-2 | Maximization of the squared ca- (fmf;,‘fm—ifu)t=0 (+1)
nonical correlation coefficient be- or
tween the two sets of dummy vari- i aa
ables corresponding to the responses (2212{11212—1222)8=0 (*2)
and the factors where s=[su]: cx1
CM-3 | Maximization of the correlation ra- | (S35 5 —134,)¢=0 (*1)
tio
CM-4 | Maximization of the variation due | (.35 K(K' S5 K) K S5} Sn
t}?o:ar}( ,%rgx‘;:rary testable hypothesis 3 211} t=0 *3)
CM-5 | Maximization of the squared partial | (Z. 35255 —15,)t=0 (¥4)
canonical correlation coefficient be- §._% o
tween the response items and the where Siy=3y~ 55535y
factors of interest
Notice: 1) In the case of CM-3 we assume that the factor is constructed with a

single item. The formulation is obtained by taking the factor item as
the external criterion in Hayashi’s second methods of quantification.

2)
of interest and nuisance.
3)

Subscripts 2 and 3 in the formulation of CM-5 correspond to the factors

The vector @, which indicates the effects of factors, is constructed with

{6} other than the omitted categories.

(ii) Criteria based on the relationships among responses

Criteria for optimal scaling

Determinantal equations

CM-6

Maximization of the sum of covar-
iance between response items rel-
ative to the sum of variances

0 S(m ce ?(lq) ta,

CM-7

Maximization of the squared mul-
tiple correlation coefficient between
a response item and the others

.S(zl) Y ot _S'(Zq) t(.z)
f(qx) 2\(«1) c0e0 t(q)
an 0 tw
_j (12.) t(.ﬂ) =o (*5)
0 a0 L te
(2‘“;,2(%,2(;“—1,2(,,,}1‘“,:0 (*6)
i=1) 2)' . q

g: the number of response items

Notice:

1) The criteria CM-6 and 7 are derived from the basic idea such that, if
we seek separate scoring systems for the two categorical variables such
as to maximize their correlation, we are basically trying to produce a
bivariate normal distribution by operating upon the margins of the cross

table [3].

2) The matrix fm,, denotes the covariance matrix of the dummy variables
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corresponding to the sth and #’th response items.

3) The criteria based on the relationships among the residuals are derived
by substituting d‘)(“,)=2m.,—2“ ,,2(‘,1,,&,‘,, into ftw,, where the sub-
script f corresponds to the factors.

4) The subscript 7 corresponds to the response items excepting the ith
item.

optimal scaling of multiple responses. The optimal scores are obtained
as the eigenvector corresponding to the largest eigenvalue of each de-
terminantal equation. Furthermore, when the amount of information
is poor by assigning a unidimensional score to each response category,
we may use a multidimensional score. In such cases the eigenvectors
corresponding to the eigenvalues smaller than the largest should be used.
The criterion becomes the maximization of T[ 4, instead of 2 under the

orthogonarity conditions. Hayashi [2] discussed precisely the multidi-
mensional case.

3. Asymptotic properties of the sample criteria and optimal scores

3.1. Preparations
The optimal score vector ¢ based on the CM-1~5 criteria, t=[¢,,
-, #,] or t, based on the CM-6 or CM-T7 criterion is determined by
the same type of the eigenvalue problem such as

(3.1) (A=21B)t=0.

In this section we shall derive the asymptotic joint distribution of the
sample eigenvalues (criteria) and eigenvectors (optimal scores) by means
of so-called s-method [4]. Now define

P(F1r-+ s Jgltise -+, 4;) or p(j|i)=the probability of the response combi-

nation (Jy,---,J,) or the jth response combination in the sample
of the treatment combination (¢,::-, ¢;) or the ¢th treatment com-
bination,

iy, 5 %73 Jise++» Jg) OF n(t; j)=the frequency of occurrence corre-

Spondmg' to p(.?u yquilr ° xil) or p(jl'b),
iy, +, ;) or n(i)= >: Z‘,n(u, “+y 85 1,000, Jg) given,

f’(jl& * 9.7q|7117 * !7'1) Or p(-?l,") n(q’ll "’7:1;jl:""jq)/n(ilf"'ril)!
7(ty,-* -, 1) O w(t)=n(i,- -+, t;)/n: the relative sample size of the treat-
ment combination (i, -, %),

I
m=the number of treatment combinations, m<T] ¢,
k=1

R=the number of response combinations, Rg]g[ r,.
j=1

In order to introduce the probability measure, we shall assume a
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natural probabilistic model as follows.

DEFINITION 3.1 (Probabilistic model). Let the sample sizes for the
treatment combinations {(%,---, %), 4=1,2,++-, ¢, ,1,=1,2,-++, ¢;}
be fixed, and suppose the frequencies of response combinations {n(7; j),
7j=1,2,--., R} be distributed as a multinomial distribution with prob-

abilities {p(7|i), j=1,2,---, R, jﬁp(jli)=1}-
=1

According to the above probabilistic model, we obtain

(3.2) S.=L(D-PQP)L,

(8.3) 3.=LP'(II—z=x")J',

(3.4) Su=JUI—=x')J",

where

(3.5) D=diag Lﬁ "iPLD), e+, 3] n(i)p(Rli)] : RXR ,
(3.6) P=[p(j]9)] : mXR,

(3.7) L=[l]=[0(st|§)] : xR,

1 for 5 € Sy(st),
0 for 7 ¢ Sy(st),
3.9) J=[o(kl|?)] : cxXm ,

1 for 1 ¢ Sy(kl) ,
0 for 7 ¢ Sy(K),

(3.8) a(stm={

(3.10) a(ld]i):{

(3.11) m=[z(7)] : mXx1,
3.12) I =diag [=(1),---, z(m)] : mXm ,
(3.13) Q=[gu]=nr" : mXm,

Si(st) and Sy(kl) denoting a set of response combinations which contains
tth category of sth response item and a set of treatment combinations
which contains Ith category of kth factor item, respectively.

Now consider the p-dimensional eigenvalue problem with popula-
tion values A and B such that

(3.14) AY=BYA subject to Y'BY=I,

where the matrices A=diag[a, 4, -+, 4,] and Y=[y,, y;, -, y,] are
constructed with the eigenvalues and eigenvectors of A relative to B,
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and assume that the eigenvalues are all distinct, namely 4>2,>..->1,.
Let the sample values be distinguished from the population values by
superimposing the symbol ("), and define

(3.15) A*=A—A, B*=B—B, A*=A—A, Y*=Y-Y,
(3.16) Y*=YZ*.

Then, from (3.14)-(3.16), neglecting the higher order of the quantities
with asterisk, we obtain

2?’"; % a;‘kyjcyka—'z: ? % b}kkyjsyks ’ S=1, 2: e, D

(3'17) zvﬁ“"(xu_lu)_l {Zu ; Zk} b;?kijyku—? % a_?(kyjuyku} )

U, ?]:1, 2!' D, u#'v,
zv*u~—1/22‘,zk}b}"kyj,,yk,, , ’U..—_l’z,...’p.
J

Thus the small deviations of eigenvalues and eigenvectors can be ex-
pressed asymptotically by linear equations of the deviations of the
matrices A and B. On the basis of these relations the asymptotic
properties of sample eigenvalues and eigenvectors are investigated cor-
responding to each criterion for optimal scaling, as in the previous
paper [6]. In order to use the expansions (3.17) we assume that all
nonzero eigenvalues of the eigenvalue problem derived from each cri-
terion are distinct.

3.2. The case of the CM-1~3 criteria

The relations (3.17) are valid under the assumption that the p
eigenvalues are all distinct. Therefore, suppose that the population
covariance matrices Y, 3,;, Y, are of full rank after omitting an ar-
bitrary category per item. Let us consider the following two cases
separately, in order to investigate the asymptotic properties of the
eigenvalues and eigenvectors of (x1) in Table 2.1.

a) The case where the number of nonzero eigenvalues is determined

by the number of response categories, i.e.

(3.18) rank (2, 3;'3,)=r=<c.

b) The case where the number of nonzero eigenvalues is determined
by the number of categories of factor items, i.e.

(3.19) rank (2,35 Yy )=rank (2,25 Y,)=c<7r .
Consider first the case where the condition a) holds, and put

(3.20) A=212$z_21221 ’ B=fu ’ Y= T=[¢,---, t],
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in the eigenvalue problem (3.14) with the sample values. Substitution
of (3.2)~(3.4) into (3.20) yields

(3.21) A=LP'EPL',
(3.22) B=L(O-PQP)L’,
where

(3.23) E=le=(I—znx)'[J(II—=x')]'|'"J(II —%x') : mXm .

Moreover, applying the Taylor expansion to a} and b% about p*=0,
we obtain

(3.24) af=al=3 S &EOpX(G D) +o(0¥), Kk K=1,2,---,7
LI

(3:25) b =b=3 S Op(Fl)+o®) kR K=1,2-r
with

(8.26) §50=33 3 Ceslestlesle ) ewn(d'|7)

(8.27) 75 =l m(0) = 30 30 Qs+ lsbie D3| €) -

Substituting (8.24)~(3.25) in (3.17) and transforming z* to t*, we have
the following asymptotic expansions.

(.28  E=SSa@pGl)toE?), =127
(.29  G=SSAPGIOtEY),  ks=12r
where

(830)  a=33 (80— A8 )l

(3.31) 57=3 3 [ T et~ el ed]

L)

2, and {z},, k=1,2,...,r} denoting a population eigenvalue and the
corresponding eigenvector.

Next, consider the case where the condition b) holds. In this case
we should put

(3.32) A=3,3:3,, B=3,, Y=S=[s, -,8.],

in the eigenvalue problem (3.14) with the sample values at the first
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place, and then apply the d-method again to the relation
(3.83) t,=2"573 s, .

Substitution of (8.2)~(3.4) into (3.32) yields

(8.34) A=3,3:3,=J(I—=x')PL{L(D— P'QP)L'}'LP (Il — zx")J" ,
(8.85) B=3,=JUI—=x)J',

(3.36) Y=S=[s,, 8, ", 8] -

Then, obviously

(3.37) b%=0,

while a},’s are obtained as follows.

(8.38) A*=H'P*H®—H®"(D—P'QP)y*H®+H"' P¥ H+o(p*) ,
where

3.39) H=[h,)J=(IT—==")]' : mXec,

(3.40) H®=[rY]=L'{I(D—P'QP)L'}'LP'H ,

or elementwisely

(3:41) at, =3 S P )+o(p)
where
(3.42) L0 =R + b2 — RRRR(0)

+23 3 {RGRRG e +hhGe 0T V) -

Hence by substituting (3.37) and (3.41) into (3.17) and transforming z*
to s*, we obtain

(3.43) 131‘“‘2 E aPp*(7|17)+o(p*) , u=1,2,---,¢,

(3'44) s::u=u2, ovu’zuzi’:u:; JE ¢g3u)p*(3 l 7:)+0(p*) ’ v, u=1r 2, e, C

where

(3'45) ag")=2 2 C(uu )0u uBu”u ’

(3'46) ¢’$1jm>= 2 Z Z (Zu_zu')_lcg?,v”)ﬁvu’ov'u’av"u .
wFu v v

Since the sample optimal score vector ¢, is expressed as
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(3.47) t,= 12358 8, = {I(D— P'QP)L'}'LP'Hs, ,
then we have

(3.48) th=3 %1 BP*(319)+o(p*) ,

where

(3.49) Bl =—0.52""hVay — 2, PRSP RSn () + 3,12 2 2 (AR,
+RERDa I |§)+ A RO A 3 RDPE

(3.50) H®=[rP]={L(D—P'QP)L'}'LP'HO : rXc, 6=[0,]:cXc

(3.51) H®=[hY]|={L(D—P'QP)L'}"'L:rXR,

(3.52) H®=[h{¥]|=L'{L(D—P'QP)L'}'LP'H6 : RXc,

(8.563) H®=[h{¥]=HO : mxc,

(3.54) H®=[rhQ)={L(D—P'QP)L'}"'LP'H: rxc.

Thus we obtain the formulas that the small deviations of eigenvalues

and eigenvectors are approximated asymptotically by linear functions

of small deviations of the multinomial probabilities p*(j|¢), whether
which of the conditions a) and b) holds.

3.8. The case of the CM—-4 criterion
In the case of the CM-4 criterion the optimal score vector #=[t!,]
is obtained as a solution of the eigenvalue problem (x3). Here again
we must consider the following two cases.
a) The case where the number of nonzero eigenvalues is determined
by the number of response categories, i.e.

(3.55) rank {2,325 K(K'2;'K)'K'35' 8} =r=<p,

where p denotes the number of independent contrasts in the hy-
pothesis H,: K'6=0.

b) The case where the number of nonzero eigenvalues is determined by
the number of linearly independent contrasts in the hypothesis, i.e.

(3.56) rank {3, 35 K(K'35'K) ' K'35' 3} =p<r.

At the first place consider the case where the condition a) holds.
Put

A

A= ﬁ'zzzle(K'E lI{) IK'Zzzlz’zl ’ B=ﬁu ’

(3.57)
T [tl: Yy r] ’
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then we have

(8.58) A=LPEPL’,
(3.59) B=L(D—-PQP)L',
where

3.60) E=le,J=(I—=x")J'[JUI]—=x")'|*K{K'[J(I] —xx')J']'K}!

« K'[lJUI—7=r)J | J(II—xx’) : mXm .
As the equations (3.58)~(3.59) accord with (8.21)~(8.22) excepting the
definition of E, we obtain the asymtotic expansions (3.28)~(8.31) with
E defined by (3.60).

Next, consider the case where the condition b) holds. By analogy

with the formulation in the case of the CM-1~3 criteria, let us put
AZK,j‘ﬁlﬁglﬁl—llﬁlgﬁg—glK y E:K,j\:z—le y

(3.61) .
Y’:S:[sl,' ) sp] ’

where s; denotes an artificial variable vector obtained as a solution of
the eigenvalue problem which is derived from (x3), just as (x2) is de-
rived from (x1). After obtaining the asymptotic expansions of 2’s and
s’s, we apply the d-method again to the relation

(3.62) t,=i;3:3,57Ks, .
Substituting (3.2)~(8.4) into (3.61), we obtain

(3.63)  A=K'[JUI—=x")J')"\J(I—rx')PL'[L(D— P'QP)L/]!
- LP'(IT — "\ [J(Il — =x')J'] 'K ,

(3.64) B=K'[JUI—=zx")J'|K .

Then obviously

(3.65) b% =0,
while a}’s are obtained as follows.

(3.66)  A*=H'P*H®—H®(D—P'QP)*H® + H®' P¥ H+o(p¥) ,

where
(3.67) H=[h,)=(T—=x")]'[J(I—=x')]'] 'K ,
(3.68) H®=[r1=L'[L(D—P'QP)L'"'LP'H .

The equation (8.66) is just the same with (3.38) excepting the defini-
tions of H and H®. Moreover, by substituting (3.2)~(3.4) in (3.62),
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we obtain the same formula to (3.47) with H defined in (3.67) instead
of (3.39).

Thus we have the results similar to the case of CM-1~3 criteria
except for the definitions of E, H and H®.

3.4. The case of the CM-5 criterion

In this case the optimal score vector #=[t};] is obtained through
the eigenvalue problem (x4). Again consider the following two cases.
a) The case where the number of nonzero eigenvalues is determined

by the number of response categories, i.e.

(3.69) rank {(Z— 2135 T0) (Lo — 2025 2y) (Tu—2udaZu)} =r=c,
where

d= E (ck—-l) ’
ked;

J, indicating a set of item numbers for factors of interest.
b) The case where the number of nonzero eigenvalues is determined
by the number of categories of factors of interest, i.e.

(3.70) rank {(Zp—21:25 F0) (Fe—2025 20) (Tu—Tu2su'Ty)} =c'<r.
Consider first that the condition a) holds, and put
A=(212'—Snsjilﬁsz)(ﬁzz—ﬁzaﬁélﬁaz)‘l(ﬁm—ZA'%ZA'{;ZA'M)
(8.71) B=3,-3,33%y ,
Y=T=[t, b, -, t],

to apply the asymptotic expansion (3.17), under a constraint for nor-
malization,

(3.72) tCEu—3353nt=1.
Define J; and J; by dividing J into two part as follows.
(3.73) Ji=[o(uv|?)] : ¢ Xm , for ue Y,
(3.74) Jy=[0(uv|?)] : (c—c)xXm , for uw ¢ J9,,
1 for 7 € Sy(uv),
0 for 7 ¢ Sy(uv).

(3.75) d(uv|i)=

Then we obtain

S.=L(D-PQP)L', 3,=LP(I—=nx")J!, 3,=LP'(I—=x")J/!,

(3.76) . .
222=Jn(17_“'7'-'f)J1' v 2uy=Jd(IT—=r)]!, Zy=J(lI-==x')]/,
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Substituting (3.76) into (3.71), we obtain

(8.77) A=LP'EPL’,
(3.78) B=L(D-PQP)L',
where

(3.79) E=[ew]= (Il — rr))J! — (I — mre\J{[Jo(IT — =} T (Il — e’ )J )
AT — )T — T (T — )T JT — mere’ )T T — =)}
AT — e’y — T (T — VT — ) T — mx')}
mxm,

3.80) Q=[qi]l=nr'+I—=m=")/[J,(ITI —xx)J/] "Il —nx') : mXm .
Applying the Taylor expansion, we have

(3-81) afk’:alck—z E E(kk )p*(j|7:)+0(p*) ’ kv k,=19 27 s, T

(3.82) b= kk—ZZ EEOp*(5 | 1)+ o(p*) , k,kK=1,2,---,7,

where
(3.83) "‘"’—Z Z (il sl ) em(3' 7))
(3.84) 350 =l by ym(3) — 2 2 Gl s+ el )aiwp(9" 7))

Next, consider the case where the condition b) holds. On the basis
of the analogy to the formulation in the case of the CM-1~38 criteria,
let us put

AZ(ﬁn'—ﬁ'zaj'{alﬁm)(fu—ﬁvlsﬁﬁlﬁm)—l(ﬁ'm—ﬁxaﬁs—slﬁsz) ,
(3.85) Ezﬁzz_ﬁzaﬁilﬁ'az y
Y:S:[s“. .., sc,] ,

considering artificial variables s’s. Then the optimal score vector ¢, is
given by

(3.86) tu—_—ﬁil/z(ﬁu_ﬁ'laﬁ'{slﬁu)-l(ﬁxz—j’lsfs-alﬁsz)su .
By substituting (8.76) into (8.85) and (8.86) we can easily find that the

equations (3.37), (3.38) and (3.47) are valid under the definitions in (3.80)
and

(3.87) H=[h, )= —=x") — (I — 7" )J,[J(I] —=x')]/]"!
« Jy(IT—nmn')J! : mXc' .
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Hence also in the case of the CM-5 criterion we have the results
similar to the case of CM-1~8 criteria except for the definitions of
E=[e.,], @=[q.] and H=[h,].

3.5. The case of the CM-6 criterion

In this case the optimal score vector ¢=[t, &y, -, Ep] is obtain-
ed as a solution of the eigenvalue problem (x5) in its original form or

by substituting &, for 3. Now consider the asymptotic properties
of ¢ under the constraint

StoSwto=1 or 3 #bwho=1.
According to the probabilistic model defined by Definition 3.1, we obtain
(3.88) Sun=L{(D—P'zx’'P)L,, ,
(3.89) @=L, {D— P'lan’+(T—xx")J' {JUI—xx')J'} " JUI —=x')| P} L, ,
where L, denotes a (r,—1)X R submatrix of L in (3.7), i.e.
(3.90) L'=[L{, L{,---, L] .

Thus we can again apply (3.17). Using the Taylor expansions, we ob-
tain (3.24) and (3.25), where

0, if &k and k' belong to the same item,

3.91) &I = . o .
( ) & lk,lk,jz(z)—%‘, %} Gl s+ sl a9’ 17') otherwise,

( lkjlk'j”('i)—iz, ; (lkjlk’j’+lkj'lk’j)qu’p(j ']'i') )
(3.92) =4 if & and k' belongs to the same item,

\ 0, otherwise,
and @ is defined as follows
nr', in the case based on 3., ,

(3.93) Q@=law)=1 xa'+(IT—zx")J'{JUI—=x")'} U] —=x')
in the case based on qﬁ(m.
Thus, under the assumption that all eigenvalues are distinct, we have

the asymptotic expansions (3.28)~(3.31) with &% and 7%%*” defined in
(3.91)~(3.92).

3.6. The case of the CM-T criterion
In this case the optimal score vector #;, is obtained as a solution
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of the eigenvalue problem (x6) in its original form or by substituting
@y, for 3un. Now consider the asymptotic properties of #;, under the

constraint t{i)ﬁm,tmzl or t{i)tﬁ(w,ta;l. For the sake of simplicity put
t=1 and

(3-94) A= [akk’] = Z(JDE(_;‘%)E(IU ’ B= [bkk'] =Z(11) ’
or
(3.95) A=[aw]= @(ﬁ@(_f%)(p(ﬁ) ’ B=[bw]=Pqy .

Using the Taylor expansions, we obtain (3.24) and (3.25), where

(3.96) &% =IORn(3) — hYR () + h§DIn(5)
_|_2 E (lgcy)h(l) (l)hi}} hﬁ})h(‘) hgl)h(l)+h(1)l§c)},+h(l)l(l)

. qu(J [) .
(3.97) v(’;’c )_“l(l)l(l)ﬂ(?,) 2 2 (l(l)l(l) (l)l(l))qu p(.? l"”)

I{? or h{y indicating a (k, j) element of L,=[I{?] or

(3.98) =[h{¥]=L(D— P'QP)L{{L(D— P'QP)L{} 'L; .
The matrix Q is defined as follows.

', in the case based on 3,
(3.99) Q=1 ra'+(IT—=x')J' {J(UI—=x')J'} Il —x=x')

in the case based on @, .

Thus, under the assumption that all eigenvalues are distinet, we have
the asymptotic expansions (3.28)~(3.31) with &> and 2{4*? defined in
(3.96)~(3.97).

3.7. Theorem and corollary
From the above derivation, we have the following theorem.
THEOREM 3.1. Assume that the eigenvalue problem (x1) based on the
CM-1~3, (*3) based on the CM-4, (x4) based on the CM-5, (xb) based on

the CM-6, or (x6) based on the CM-T criterion has distinct eigenvalues
A>2> - >2, (p: the rank of the eigenvalue problem). Then the asymp-

totic joint distribution of sample eigenvalues A=[1,---,,) and eigen-
vectors t,, u=1,2,---,p is given by

i=2 OOD PO, . . PO.»
(3.100) Ju| ti—7 |~ Nlo, OLY. . . PP

t,—7, symmetric @®?
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where
oEO=(¢5"), V=233 Safal)myer
(3.101) PUO=(45"),  PP=33 33 PP g s
O=(¢5") s HEU=33 35 3 BB ey
{1—-p(G D} PG [D)/(5)  for i=7, j=J',
(8.102)  myup=1 —p(F|)p(3|3)/=(5) for i=v, j#3',

0 Jor i#4,

and where a’s and B’s in (3.101) are given by (3.30) and (3.31) or (3.45)
and (3.49) according to whether the rank p is determined by response or
by factor, with right-hand sides obtained corresponding to each of the
CM-1~T7 criteria as described in Subsections 3.2~3.6.

Although in the above we specify that the score for an arbitrary
category per item is zero for normalization of location, the optimal
score vector may be sometimes required to satisfy

(3.103) 2 5‘: { > (i j')} =0,

=1 i € S1(4)
where t!,,,; denotes an adjusted score for category ! of response item
4. Concerning to the asymptotic distribution of the score vector %,
under (3.103), the following corollary is derived from Theorem 3.1, by
means of the d-method applying to the relation

m r

(3.104) B =thn—2 23

_ { DI (OH j’)/n} th -
i=11=1 ]’ 681(]1/)

COROLLARY. The asymptotic distribution of the sample eigenvector
to, under the constraint (3.103) is multivariate normal as follows.
(3.105) V1 (s — Temr) ~ N(O, OG:P)
where

063 =gl »

(3-106) ¢(m)E/lJ[j "y ]—Z E 2 kE ﬁEW{)li]kl ﬁ%ﬁ'}})m ik
BESI =~ 33 33 =)’ | )R

v jES(l’
— 32 8(k: LDt »
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1 for keSy(il),
Jor k¢ Si(gl) .

o(k: [g1])=

4., An asymptotic method of statistical inference on effects of factors

Using a similar procedure as applied in the previous paper [6], we
can easily obtain the following theorems.

THEOREM 4.1. Under the restriction that the effects of the categories
omitted are zero, the asymptotic distribution of the least square estimate

és=[é,¢,] wn the model (2.5) based on the optimal score vector t, is multi-
variate normal with mean 60, and covariance matrix n™'Q,, where

(4-1) Q(s):[wffu)'] ’ 0)1(‘2':%: ATI_: ? %} T%?S)Tg’uj,f)n-ij,t'j’ ’
4.2) 757 =3 vudesrhe+ 3 ; Vuriy0(3" |78}
[J(I — =)' Sl —=x') , Jor CM-1~4,

4.3)  V=[wi]=
[J{(IT — w1 WS (T —xx') , for CM-5,

and where B{® is defined according to each criterion as shown in Sec-
tion 3.

THEOREM 4.2. Under an arbitrary testable hypothesis
(4.4) H,:Q6=0,
the statistic
(4.5) L=nd Q@22

has asymplotically a chi-square distribution with p (=rank Q) degrees of
freedom, where Q. 1s obtained by substituting the corresponding esti-
mates into (4.1), and Q is a cXp (for CM-1~4) or ¢ xp (for CM-5)
matrix.

THEOREM 4.3. Consider a sequence of alternatives

M

Il
-

(4.6) H, : p(§|9)=p"(g10)+dy/vn , d,;=0,

where p'(j|t)’s indicate the proportions satisfying the null hypothesis
(4.4). Then the statistic X; has asymptotically a moncentral chi-square
distribution with p degrees of freedom and the following moncentrality
parameter,

(4.7) 4=d T RQQ2.Q)'Qld ,
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where I',=[r{4"] indicates a ¢ X mR matrix with the elements defined in
(4.2), and d=[d;;] an mR dimensional vector with the elements defined
in (4.6).

5. Numerical example

As an illustration of the results in the preceding sections, we shall
analyze the data shown in Table 5.1. These data are made artificially
by categorizing continuous responses %{%’s generated according to a
multivariate linear model

y§?=p§,’>+e§? ’ k=17 2’ ) 5OOr j-——“l, 21 ] 61 1:——‘—1, 2 ’

where (4§, ¢P)’s are (=5, 0), (—5,1), (—6,0), (=5, —1), (—4,0), (—86,
—1) and the normally distributed errors (e¥, ¢?)’s are generated by
Box-Muller method so as to satisfy p=4=0, ¢,=0,=10, r=0.3.

Table 5.1 Numerical example

Response
Level of Response
factor 1 1 2 3 Total
Re-
sponse 2
1 37 48 13
1 500
2 81 221 100
1 27 43 19
2 500
2 50 223 138
1 23 41 12
3 500
2 104 219 101
1 50 56 5
4 500
2 104 211 74
1 55 74 25
5 500
2 76 170 100
1 34 30 2
6 500
2 132 231 71

From Table 5.1, the multinomial probabilities are estimated as



SOME GENERALIZED METHODS OF OPTIMAL SCALING 347

Ly @2 @) 22 G G2

0.0740 0.1620 0.0960 0.4420 0.0260 0.20007 (1)
0.0540 0.1000 0.0860 0.4460 0.0380 0.2760 | (2)
0.0460 0.2080 0.0820 0.4380 0.0240 0.2020 | (3)
0.1000 0.2080 0.1120 0.4220 0.0100 0.1480 | (4)
0.1100 0.1520 0.1480 0.3400 0.0500 0.2000 | (5)
0.0680 0.2640 0.0600 0.4620 0.0040 0.1420J (6)

>
Il

On the basis of the CM-1~8 criteria, the optimal scores are given as
a solution of the eigenvalue problem such that

(A-—iB)t=0,
where

o !' 0.0032 —0.0002 —0.0002 ]
A=23,35"5y=| —0.0002 0.0003 —0.0006 |,
| —0.0002 —0.0006 0.0033

o 0.1913 —0.1346 0.0243 7]
B=3,=| —0.1346 0.2495 —0.0061 |,
0.0243 —0.0061 0.1588 |

omitting a last category in each item. The eigenvalues and corre-
sponding eigenvectors are

A4=[0.0325 0.0170 0.0006]',

2.5482 1.4600 0.0646
[ & &]=| 1.4542 0.5417 2.0210 |,
—1.5780 1.9537 0.3844

while the asymptotic covariance matrices of A and t, are obtained as

o , [ 01152 0.0025 —0.0000]
COV(2)=—3W 0.0025  0.0712 —0.0006 |,
| —0.0000 —0.0006  0.0026 |

- | [ 4325618 167.5566 574.8704 7
Cov (t‘):“s_do_o 167.5565 189.8284 240.9344 |,
| 574.8704 240.9347 776.9349 |

by using Theorem 4.1. Thus the estimates and standard errors are
given as follows.
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(criterion) Estimate S.E.
i 0.0325 0.0062
(optimal scores #)
th 2.5482 0.3797
th 1.4542 0.2515
th —1.5780 0.5089
(adjusted optimal scores %)
o 1.1320 0.2314
o 0.0380 0.1027
s —1.4162 0.2054
tom —1.2656 0.4080
7 - 0.3124 0.1017

It is noted that the optimal scores satisfy the order relation t!,,,>
tgm)lz > tgm.)ls .
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