Ann, Inst. Statist. Math.
30 (1978), Part A, 321-328

DENSITY ESTIMATION FOR MARKOV PROCESSES
USING DELTA-SEQUENCES

B. L. S. PRAKASA RAO

(Received Nov. 25, 1977; revised July 31, 1978)

1. Introduction

Estimators of the density function of a population based on a sam-
ple of independent observations have been proposed by several authors.
An excellent survey of the results in this area is given in Rosenblatt
[7]. Recently Walter and Blum [9] proposed a method for density esti-
mation using delta-sequences i.e., sequences of functions that converge
to the generalized function 6 in a suitable sense (cf. Korevaar [4]). An
advantage of their approach is that all the earlier methods like kernel
method, orthogonal series method, interpolation method and the char-
acteristic function approach for density estimation are included in their
method via delta-sequences.

Rosenblatt [6] and Roussas [8] considered kernel type of density
estimators when the observations are assumed to be sampled from a
stationary Markov process. Rosenblatt [6] has shown that these esti-
mators have the same behavior as those of a density estimator in the
independent and identically distributed case. Prakasa Rao [5] obtained
a Berry-Esseen type bound for the distribution function of a density
estimator in the Markov case generalizing a similar result of Wertz
[10] in the independent case.

In this paper, we use the method of delta-sequences of Walter and
Blum [9] to obtain estimators of density for stationary Markov pro-
cesses. We shall obtain bounds for the mean square error of the pro-
posed estimators.

We mention that the method of generalized functions was used by
Borwanker [2] to show the non-existence of unbiased estimators in the
ordinary sense for density when the observations are from a stationary
process and he has also studied asymptotic properties of estimators via
delta-sequences but has not pursued them in detail. Some of the de-
tails of these results can be found in Basawa and Prakasa Rao [1].
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2. Preliminaries

Consider a probability space (R, B, P) where R is the real line, B
the o-field of Borel sets of R and P a probability measure. Let {X,,
n=1} be a Markov process taking values in (R, 8, P) with stationary
transition measure p(§, A)=P (X,,; € A|X,=¢). Assume that p(¢, A) is
a measurable function of ¢ for fixed A and a probability measure on
B for fixed §. Such a transition measure together with an initial
probability measure gives rise to a Markov process by Doob [3]. Assume
that the process {X,: n=1} satisfies Doeblin’s condition (D,) as given
in Doob [3], p. 221 viz. there is a finite-valued measure r on B with
(R)>0, an integer v=1 and ¢>0 such that

P&, A)Sl—e  if t(A)Ze

and there is only one ergodic set EC R with =(£)>0 and this set con-
tains no cyclically moving subsets. (Here p™(-, -) is the m-step tran-
sition measure.) Under (D),), it can be shown that there exist positive
constants r=1, 0<p<1 and a unique stationary probability distribu-
tion z(-) such that

|p™(¢, A)—n(A)|=7p"

for n=1. The distribution =(-) taken as the initial distribution to-
gether with the stochastic transition function p(-, -) determines a sta-
tionary Markov process. We shall assume that the initial distribution
is always the stationary distribution.

Suppose that p(¢, -) and =(-) are absolutely continuous with respect
to Lebesgue measure on (R, $) and let f(& -) and f(-) be the corre-
sponding densities. The problem which we consider is to obtain esti-
mators of f(-). Let P, be the probability measure on (R, 8~) corre-
sponding to f(-,-) and f(-). We shall assume that f(-, -) and f(-)
are continuous.

Before we proceed further, we shall state a few definitions from
generalized functions.

Let S be the space of infinitely differentiable rapidly decreasing
functions on R and S’ be the dual space of continuous linear functionals
on S. Members of S’ are called generalized functions. The generalized
function 6 corresponds to the measure with unit mass at zero and it
is defined by <4, ¢)>=¢(0) for ¢ € S.

If X is a random variable, then 6(X—x) is the map which takes
an element ¢ of S into the random variable ¢(X) i.e., (d(X—2), ¢(x)>
=¢(X). If X has the continuous density function f(x), then the ex-
pected value of 6(X—x) may be calculated by
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2.1) E (3(X—x), p(x))= S o(@)f(@)dr={Ff, ¢

i.e. Eo(X—2x)=f(x)

in the sense of S'. Convergence in the space S’ is the weak conver-
gence i.e. f,—f in § if {(f,, )—{f,¢) for all p€ S.

3. Generalized function estimators

Suppose the process {X,, n=1} is observed up to time n. We in-
troduce the function

f@== 3 o(Xi—)

as a generalized function estimator for f(x). Clearly f,,(w) is an un-
biased estimator for f(x) in the generalized sense. It can be seen by
(2.1) since the process is stationary. Note that

B.1) EKf ep—<f) o)
=B[(L naX—a), o) y—<F. 00|

=L 31 Var Ko(Xi—2), ¢(e)]
+L §3 31 Cov [(3(Xi— ), (@), (3(X,— ), p())]

31 31 Cov [o(X.), 9(X,)]

1= Jj=
i+

—-
-

-

1
n "
-71; ar [p(X)] +-; 31 31 Cov [¢(X), o(X))] -

Suppose that Var [p(X))]<oo. It is clear that Var [p(X;)]<oo and
Cov [p(X,), p(X,)]< oo for all ¢ and j in view of stationarity. The first
term on the R.H.S. of (3.1) tends to zero as m—oo. The second term
is bounded in absolute value by

25 é P9 E [ X,)]*
n : i=1

=4 E [P {zﬁ a-on}

j=11i=1

_4 2 _pd—p"")
_W'r’ E[SD(XI)]{ i (1= }

by Doob [3], p. 222 (cf. Lemma 2.2, Prakasa Rao [5]) and the last term
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tends to zero as n—oco. Hence

E [{fu, 09— {Fs 9)I*—0

which might be called weak mean square convergence. Note that the
usual mean square convergence does not make sense here since & can-
not be interpreted as an element of S'.

Observe that f; cannot be considered as an ordinary estimator since
d is not an ordinary function but a generalized function. In order to
get an estimator consisting of ordinary random variables, we approxi-
mate 0 by delta-sequences. This is what we do in the next section.

4. Estimation via delta-sequences

A sequence {d,} of L~ functions on R is called a delta-sequence of
positive type a>0, if §,(x)=0, m=1 and
(i) there exist A>0, B>0 such that

(4.1) |1—S: 5m(m)da:‘ =0(m™) ;

(ii) sup {|dn()[: |2]Z2m™}=0(m);
(iii) ||Onlle=ess sup {|0.(x)|: = € R} ~m.

An example of a delta-sequence of the above type is
am-‘:mxm,m"l] ’ m=11 2,' .

where ¥, »-1; is the indicator function of the interval [0, m™!]. Note
that this sequence is a delta-sequence of positive type 1. Other ex-
amples are discussed in Walter and Blum [9].

Suppose now that we have observed the process {X,, n=1} up to
time n. Let {6,} be a delta-sequence of positive type a. Define

fnm(x)=;1;‘i5m(x_Xi) ’ n, m:l, 2:"' .
i=1

We choose f,.(x) as an estimator for f(x). Since f,, are random vari-
ables with finite variance, we can use mean square error as indicator
of rate of convergence. In fact

(4.2)  E[fu(®)—f(@)]
=E |1 310,6-X)~f@)]
n i=1

1
=7EE{

(2

SERE —Xf)} L fZ(w)—%f(x) E {gl 5 (x— Xi)}
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=%{n E [53n(ﬂ7—X1)]+zZ ; E [6.(x— X.)6..(x— X,)]}

i#]

+ fH(@)—2f(x) E (u(x— X1))
by stationarity of the process. This can also be written in the form
(43  LE@—X)+3 35 (Cov Bue—X), bule—X)]
+(E [6n(x— X)])'} + () —2f (%) E (u(z— X))
Since
|Cov [0n(x—X.), 0n(z—X)]|S20'2pY P2 B [7(z— X))]
by Doob [3], p. 222, it follows that
(4.4)  E[fm@)—f@F
SE @ - X)) [+ 2477 515 po-on]
+2( 5 4)[E @ule— XD+ @) —2f (@) E (Gule—X)

_ 1, 4r2) o' p(1— p=r2)
=E (5;(x—Xl)) {-'I-?/—-!— nt (1_p1/2 - (l_pl/z)Z )

+@(E (Gu(z— X))+ Fi(x)— 2f () B (bu(@— X))

_ 1/2 1/2 —_
S POC=TN 14 T + 2R B (e — X0
n 1—p n

+ fH(2)—2f(2) E (a(z— X1))

~E@E=X) 1 40 L 5,0 X))
n 1-p”) n

+[E (0u(x— X)) — f(2))*
=—:; {E (u(z— X))~ [E (0n(z— X)I'} +[E (0n(z— X)) — f ()]

A\
+ A=) E (dn(z—X))) .

We shall now prove the following theorem.

THEOREM 4.1. Let {9,} be a sequence of positive type a; let {X,,
n=1} be a stationary Markov process with marginal density function
f(x). If feLipa for some 0<1<1, then

sup E ( Fonl@)— F(2))*< Comn=+ Cym 2
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where C, and C, are constants.

Proor. It is clear from (iii) that
(4.5) E (00— X)) =[|0nle E (On(z— X)) ~m E (0u(z— X)) -
Arguments in Walter and Blum [9], p. 6 show that
(4.6) |E (0n(x— X)) — f(2)|=Cym ™"+ Cym™"
uniformly in « which implies in particular that
(4.7) |E (@n(z—X1))|=C,

uniformly in « since f will be uniformly bounded in = by Lipschitz
condition on f. (4.5) and (4.7) together show that

(4.8) E (00(z— X)) —[E (Ou(z— X)) = Cim

for some constant C; independent of z. (4.5)-(4.8) combined together
give the relation

SUp E [ fun() — F@)S 2 (Cim) +(Com ™+ Cym ™)+
Cym

n

é + Clm—hl

in view of inequality (4.4). This proves the theorem

Remark. Note that the bound on the mean square error obtained
above is the same as in the independent case as far as the rate of

convergence is concerned. In particular if m,=[n""**?] and f.=/fn_ .,
then

E [fn(x) — f(x)P=0(n 1+ +2a0)

uniformly in z € R.

5. Examples of delta-sequences

Walter and Blum [9] have extensively studied the rates of conver-
gence for different delta-sequences in the independent and identically
distributed case. We shall consider only two cases. If 6,=myp mn-15,
then a=1 and

E (fu(x)— f(x)!=0(@n-1#1a+) |

Suppose K{(t) is any bounded measurable function such that K(t)=0,
K(t)=0(t"'"*) as |t|—oco for some >0 and
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S: K(t)dt=1.

Let
on(t)=mK(mt) .

It is not difficult to check that {4,} is a delta-sequence of type a=
B/(B+2). Hence

E (f () — £ ()2 =O(m 1+ A+ @/ G +DD)Y

=O(n’1+(ﬁ+2)/(2+ﬂ+2ﬁi)) .
If a=1, then
E (fu(@)— f(@))=0(n"1+/e+)
and further if 2=1, then

E (f.(x)— f(x)'=0(n"*")

uniformly for x € R.

6. Delta-sequences of densities

A sequence of densities {J,} is a delta-sequence of density-type a,
a>0, if
(i) [|9nlle=0(m), and
(i) S " 5m(x)dx+gw_u 5. (@)de=0(m~") .

One can construct estimators f',,m(x) based on delta-sequences of den-
sity type « and the conclusions of Theorem 4.1 and the remark there-
after hold for this sequence also by a slight modification of the proof
of Theorem 4.1 as pointed out by Walter and Blum [9] in the independ-
ent case. The sequences considered in the previous section are also of
density type.

If Y is a random variable with mean zero, finite variance and
bounded density function g and g, is the density of Y,=3)Y;/m where
Y., 1<i1<m are i.i.d., then Walter and Blum [9] have shown that {g,}
is a delta-sequence of density type a=1/3.

Remark. We have studied the asymptotic behavior of mean square
error of the density estimators using delta-sequences. The problem
remains to study of the asymptotic behavior of the distributions of
these estimators. We shall pursue this problem in a future paper.
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