REGIONS OF AUTOCORRELATION COEFFICIENTS

IN AR (p) AND EX (p) PROCESSES

TOSHINAO NAKATSUKA

(Received Oct. 31, 1977; revised June 7, 1978)

1. Introduction

In the earlier paper [3] we discussed about the regions of autocorrelation coefficients (ρ_1, \dots, ρ_p) for various sets of the spectral distribution functions of the stationary time series. In this paper we obtain the regions of (ρ_1, \dots, ρ_p) of the processes with the following spectral densities of $[0, \pi]$.

Autoregressive (AR(p)) type:

(1.1)
$$f(\lambda | \boldsymbol{\theta}, \sigma^2) = \frac{\sigma^2}{\pi} \left| 1 - \sum_{s=1}^p \theta_s e^{is\lambda} \right|^{-2}.$$

Exponential (EX(p)) type:

(1.2)
$$f(\lambda | \boldsymbol{\theta}, \sigma^2) = \frac{\sigma^2}{\pi} \exp\left(\sum_{i=1}^p \theta_i \cos s\lambda\right).$$

Let \mathcal{F} be the set of all probability distribution functions on $[0, \pi]$. For an arbitrary set \mathcal{U} in \mathcal{F} , we let

$$\mathbf{R}_{p}(U) = \left\{ (\rho_{1}, \dots, \rho_{p}) : \rho_{s} = \int_{0}^{\pi} \cos s \lambda dG(\lambda), G \in U \right\}.$$

We use notations AR (p) and EX (p) also as the sets of all normalized spectral distribution functions with the spectral densities (1.1) and (1.2). Let ∂A mean the set of all boundary points of a set A.

2. Autoregressive type

THEOREM 2.1. For any positive integer p,

$$\mathbf{R}_{p}(AR(p)) = \mathbf{R}_{p}(\mathcal{F}) - \partial \mathbf{R}_{p}(\mathcal{F})$$
.

PROOF. From Theorem 3.2 of [3], $R_p(AR(p)) \subset R_p(\mathcal{F}) - \partial R_p(\mathcal{F})$. In order to prove the converse half, we will first prove the convexity of $R_p(AR(p))$.

Let $\{\rho_{1,s}\colon s=1,2,\cdots\}$ and $\{\rho_{2,s}\colon s=1,2,\cdots\}$ be the sequences of the autocorrelations of two AR (p) processes. From Theorems 3.1 and 3.2 of [3], for any number ν on the interval [0,1], there is a stationary process with the absolutely continuous spectral distribution function whose autocorrelations $\rho_{3,s}$ satisfy

$$\rho_{3,s} = \nu \rho_{1,s} + (1-\nu)\rho_{2,s}$$
, $s = 1, \dots, p$.

Let $\{\Phi_s\}$ be the sequence of the partial autocorrelations of this process, and let

$$\Phi_s^* =
\begin{cases}
\Phi_s, & s = 1, \dots, p \\
0, & s \geq p+1.
\end{cases}$$

From Ramsey's [4] Theorem 1, $|\Phi_i^*| < 1$ for all s and $\{\Phi_i^*\}$ defines a unique positive definite sequence $\{\rho_i^*\}$ via the relation between autocorrelations and partial autocorrelations. Therefore, there is a stationary process with the autocorrelations ρ_i^* and the partial autocorrelations Φ_i^* . That process is found to be AR (p) process from Ramsey's [4] Theorem 3, so that the convexity of $R_p(AR(p))$ holds.

It is obvious that $R_1(AR(1)) = R_1(\mathcal{F}) - \partial R_1(\mathcal{F})$. When $p \geq 2$, it is easily found that for any number λ on $[0, \pi]$ there is a sequence $\{G_j\}$ in AR(p) converging weakly to the one point distribution on λ . Therefore the closure of $R_p(AR(p))$ contains the curve $\{(\cos \lambda, \cdots, \cos p\lambda) : 0 \leq \lambda \leq \pi\}$. Since $R_p(AR(p))$ is convex, this means from Theorem 3.1 of [2] that $R_p(AR(p)) = R_p(\mathcal{F}) - \partial R_p(\mathcal{F})$. Q.E.D.

The following corollary shows that the special Yule-Walker estimates exist in the stationary region of parameters.

COROLLARY 2.1. Let $\hat{\rho}_s = \sum_{t=1}^{n-s} x_t x_{t+s} / \sum_{t=1}^{n} x_t^s$ for observations x_1, \dots, x_n . Let $\hat{\theta} = (\theta_1, \dots, \theta_p)'$ be the Yule-Walker estimates of structural parameters θ of the pth order autoregressive process obtained by using the $\hat{\rho}_s$'s, i.e.

$$\begin{pmatrix} \hat{\theta}_1 \\ \vdots \\ \hat{\theta}_p \end{pmatrix} = \operatorname{Toepl}_p [1, \hat{\rho}_1, \cdots, \hat{\rho}_{p-1}]^{-1} \begin{pmatrix} \hat{\rho}_1 \\ \vdots \\ \hat{\rho}_p \end{pmatrix}$$

where $\operatorname{Toepl}_p[\cdots]$ is the $p \times p$ Toeplitz matrix. Then, all the roots of $z^p - \hat{\theta}_1 z^{p-1} - \cdots - \hat{\theta}_p = 0$ lie inside the unit circle.

PROOF. By Theorem 4.1 of [3], $(\hat{\rho}_1, \dots, \hat{\rho}_p) \in \mathbf{R}_p(\mathcal{F}) - \partial \mathbf{R}_p(\mathcal{F})$, so that the corollary follows from Theorem 2.1. Q.E.D.

3. Exponential type

The density of exponential type is represented such as $f(\lambda|\boldsymbol{\theta}) = 1/\pi$ $\cdot \exp\left(\sum_{s=0}^{p} \theta_{s} \cos s\lambda\right)$, where $\theta_{0} = \log \sigma^{2}$ and $\boldsymbol{\theta} = (\theta_{0}, \dots, \theta_{p})'$. Let $\gamma_{s}(\boldsymbol{\theta}) = \int_{0}^{\pi} \cos s\lambda f(\lambda|\boldsymbol{\theta})d\lambda$ and $\gamma(\boldsymbol{\theta}) = (\gamma_{0}(\boldsymbol{\theta}), \dots, \gamma_{p}(\boldsymbol{\theta}))'$. The autocorrelation $\rho_{s} = \gamma_{s}(\boldsymbol{\theta})/\gamma_{0}(\boldsymbol{\theta})$ does not depend on θ_{0} , so that we can define the function $\rho_{s} = \rho_{s}(\boldsymbol{\xi})$ on R^{p} and the mapping $\boldsymbol{\rho}(\boldsymbol{\xi}) = (\rho_{1}(\boldsymbol{\xi}), \dots, \rho_{p}(\boldsymbol{\xi}))'$ where $\boldsymbol{\xi} = (\theta_{1}, \dots, \theta_{p})' \in R^{p}$.

For any $m \times n$ matrix $A(\lambda) = (a_{ij}(\lambda))$ whose components are measurable functions on the real line and for any measurable set E, we define $\int_E A(\lambda)d\lambda$ or $\int_E Ad\lambda$ as the $m \times n$ matrix $\left(\int_E a_{ij}(\lambda)d\lambda\right)$. Then the following lemma holds.

LEMMA 3.1. $\mathbf{R}_{p}(\mathrm{EX}(p))$ is an open set in \mathbb{R}^{p} .

PROOF. First we prove that the Jacobian $|\partial \rho_i/\partial \theta_j|$ is not zero for any $\boldsymbol{\xi}$. Let $\boldsymbol{P}(\lambda) = (1, \cos \lambda, \cdots, \cos p\lambda)'$. Then the Jacobian matrix of the mapping $\boldsymbol{\theta} \rightarrow \boldsymbol{\gamma}$ is

$$J(\boldsymbol{\theta}) = \left(\frac{\partial \gamma_j}{\partial \theta_k}\right) = \int_0^{\pi} \boldsymbol{P}(\lambda) \boldsymbol{P}(\lambda)' f(\lambda | \boldsymbol{\theta}) d\lambda .$$

For any non-zero vector x, the equation $P(\lambda)'x=0$ has at most p real roots, so that

$$x'\left(\int_0^{\pi} PP'fd\lambda\right)x = \int_0^{\pi} (P'x)^2fd\lambda > 0$$
.

This means that $J(\theta)$ is positive definite. Since $\partial \rho_j/\partial \theta_0 = 0$ and $\partial \gamma_0/\partial \theta_0 = \gamma_0$,

$$\begin{vmatrix} \frac{\partial \rho_{1}}{\partial \theta_{1}}, & \cdots, \frac{\partial \rho_{1}}{\partial \theta_{p}} \\ \vdots & \vdots \\ \frac{\partial \rho_{p}}{\partial \theta_{1}}, & \cdots, \frac{\partial \rho_{p}}{\partial \theta_{p}} \end{vmatrix} = \gamma_{0}^{-1} \begin{vmatrix} \frac{\partial \gamma_{0}}{\partial \theta_{0}}, \frac{\partial \gamma_{0}}{\partial \theta_{1}}, & \cdots, \frac{\partial \gamma_{0}}{\partial \theta_{p}} \\ \frac{\partial \rho_{1}}{\partial \theta_{0}}, \frac{\partial \rho_{1}}{\partial \theta_{1}}, & \cdots, \frac{\partial \rho_{1}}{\partial \theta_{p}} \\ \vdots & \vdots & \vdots \\ \frac{\partial \rho_{p}}{\partial \theta_{0}}, \frac{\partial \rho_{p}}{\partial \theta_{1}}, & \cdots, \frac{\partial \rho_{p}}{\partial \theta_{p}} \end{vmatrix}.$$

The Jacobian of the mapping from $(\gamma_0, \dots, \gamma_p)$ to $(\gamma_0, \rho_1, \dots, \rho_p)$ is γ_0^{-p} , so that above Jacobian is $\gamma_0^{-p-1}|J(\boldsymbol{\theta})|$ $(\neq 0)$.

Suppose that $\mathbf{R}_p(\mathrm{EX}(p))$ is not open. Then there is a point $\boldsymbol{\xi}$ such that $\boldsymbol{\rho}(\boldsymbol{\xi}) \in \partial \mathbf{R}_p(\mathrm{EX}(p))$. Since the Jacobian $|\partial \rho_i/\partial \theta_j|$ at $\boldsymbol{\xi}$ is not zero, some neighborhood of $\boldsymbol{\rho}(\boldsymbol{\xi})$ is contained in $\mathbf{R}_p(\mathrm{EX}(p))$ by the inverse

function theorem (e.g. [5], p. 68, Theorem 7A). This contradicts the fact that $\rho(\xi) \in \partial R_p(EX(p))$. Q.E.D.

THEOREM 3.1. For any positive integer p,

$$\mathbf{R}_{p}(\mathrm{EX}(p)) = \mathbf{R}_{p}(\mathcal{F}) - \partial \mathbf{R}_{p}(\mathcal{F})$$
.

PROOF. It is clear that $R_p(\mathrm{EX}\,(p)) \subset R_p(\mathcal{F}) - \partial R_p(\mathcal{F})$. In order to prove the converse part, we assume that there is a vector \boldsymbol{a} such that $\boldsymbol{a} \in R_p(\mathcal{F}) - \partial R_p(\mathcal{F}) - R_p(\mathrm{EX}\,(p))$. Let \boldsymbol{b} be an arbitrary point in R_p . (EX (p)). Then there is a boundary point of $R_p(\mathrm{EX}\,(p))$ on the line segment connecting \boldsymbol{a} and \boldsymbol{b} , and that point is contained in $R_p(\mathcal{F}) - \partial R_p(\mathcal{F})$ because of the convexity of $R_p(\mathcal{F}) - \partial R_p(\mathcal{F})$. Therefore, the contradiction is derived by proving that if $\boldsymbol{c} \in \partial R_p(\mathrm{EX}\,(p))$, then $\boldsymbol{c} \in \partial R_p(\mathcal{F})$.

Let $\rho_j = \rho(\xi_j)$ be the sequence in $R_p(\mathrm{EX}(p))$ which converges to a boundary point c. Suppose that the sequence ξ_j is bounded. Then, there is a subsequence ξ_{j_n} which converges to some point $\xi^* \in R^p$. Since $\rho(\xi)$ is continuous, the equation $c = \rho(\xi^*)$ holds. Hence, $c \in R_p(\mathrm{EX}(p))$. This contradicts the Lemma 3.1. Therefore $\xi_j = (\theta_{j_1}, \dots, \theta_{j_p})'$ disperses.

Without loss of generality we can assume that $|\theta_{j,k}| \ge |\theta_{j,t}|$ $(t=1, \dots, p)$ for some integer k which is not dependent on j, the $\theta_{j,k}$'s are all positive or all negative and $\nu_{j,t} \equiv \theta_{j,t}/\theta_{j,k}$ $(t=1,\dots,p)$ converge to values ν_t respectively. First we shall consider the case where the $\theta_{j,k}$'s are all positive.

The sequence of the probability distribution functions with the densities $f(\lambda|\boldsymbol{\xi}_{j},\sigma^{2})/\int_{0}^{\pi}f(\mu|\boldsymbol{\xi}_{j},\sigma^{2})d\mu$ has the subsequence converging weakly to some probability distribution function G, and c is an autocorrelation vector for G. In order to show that G has probability masses only on the points which maximize the function $\sum_{s=1}^{p}\nu_{s}\cos s\lambda$, we select arbitrary numbers α , β and ε such that $\alpha-\varepsilon>\beta+\varepsilon$, $\varepsilon>0$ and that the Lebesgue measures of the sets

$$E = \left\{ \lambda \in [0, \, \pi] : \, \sum_{s=1}^{p} \nu_s \cos s \lambda \geqq \alpha \right\}$$

and

$$D = \left\{ \lambda \in [0, \pi] : \sum_{s=1}^{p} \nu_{s} \cos s\lambda \leq \beta \right\}$$

are both positive. Then

$$\int_{E} \frac{f(\lambda|\boldsymbol{\xi}_{j},\sigma^{2})}{\int_{0}^{\pi} f(\mu|\boldsymbol{\xi}_{j},\sigma^{2}) d\mu} d\lambda \Big/ \int_{D} \frac{f(\lambda|\boldsymbol{\xi}_{j},\sigma^{2})}{\int_{0}^{\pi} f(\mu|\boldsymbol{\xi}_{j},\sigma^{2}) d\mu} d\lambda$$

$$= \! \int_{E} \left\{ \! \exp \left(\sum_{s=1}^{p} \nu_{j,s} \cos s \lambda \right) \! \right\}^{\theta_{j,k}} \! d\lambda \! / \! \int_{D} \left\{ \! \exp \left(\sum_{s=1}^{p} \nu_{j,s} \cos s \lambda \right) \! \right\}^{\theta_{j,k}} \! d\lambda$$

and for sufficiently large j,

$$\geq \{\exp\left(\alpha - \beta - 2\varepsilon\right)\}^{\theta_{j,k}} \int_{E} d\lambda / \int_{D} d\lambda \xrightarrow{f \to \infty} \infty$$

which shows that G has probability masses only on the maximizing points of $\sum_{s=1}^{p} \nu_s \cos s\lambda$. The function $\sum_{s=1}^{p} \nu_s \cos s\lambda$ is the polynomial of $\cos \lambda$ whose degree is not less than k and is at most p, because $\nu_k=1$. Hence, if we count $\lambda=0$ and π as half points and other λ as one point, the number of the maximizing points of the function $\sum_{s=1}^{p} \nu_s \cos s\lambda$ on $[0,\pi]$ is at most p/2. Therefore by Theorem 2.1 of [2] the vector c is located on $\partial \mathbf{R}_p(\mathcal{F})$. Similarly we can prove this in the case when the $\theta_{j,k}$'s are all negative.

Bloomfield [1] expected a good fit of the exponential model. A part of such expectation is justified by this theorem.

Acknowledgement

The author wishes to thank a referee for valuable comments.

TOKYO METROPOLITAN UNIVERSITY

REFERENCES

- [1] Bloomfield, P. (1973). An exponential model for the spectrum of a scalar time series, *Biometrika*, **60**, 217-226.
- [2] Karlin, S. J. and Studden, W. J. (1966). Tchebycheff Systems: with Applications in Analysis and Statistics, Wiley, New York.
- [3] Nakatsuka, T. (1977). Regions of autocorrelation coefficients and of their estimators in a stationary time series, Ann. Inst. Statist. Math., 29, 407-414.
- [4] Ramsey, F. L. (1974). Characterization of the partial autocorrelation function, Ann. Statist., 2, 1296-1301.
- [5] Whitney, H. (1957). Geometric Integration Theory, Princeton University Press, Princeton.