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1. Introduction

In the earlier paper [3] we discussed about the regions of autocor-
relation coefficients (p;,- - -, p,) for various sets of the spectral distribu-
tion functions of the stationary time series. In this paper we obtain
the regions of (p;,---, p,) of the processes with the following spectral
densities of [0, =].

Autoregressive (AR (p)) type:

(L.1) f@10, )=

a9,

' l_é 0‘eiu|

Exponential (EX (p)) type:

1.2) f@\6,d " exp <ﬁ‘{ 6, cos sz) .
T =

Let & be the set of all probability distribution functions on [0, ].
For an arbitrary set U in &, we let

R (V)= {(pl, o)t pe= S cos s2dG(2), G € CU} .

We use notations AR (p) and EX (p) also as the sets of all normalized
spectral distribution functions with the spectral densities (1.1) and (1.2).
Let 0A mean the set of all boundary points of a set A.

2. Auvutoregressive type
THEOREM 2.1. For any positive integer p,
R, (AR (p))=R,(Z)—0R,Y) .

PrOOF. From Theorem 3.2 of [3], R (AR (p))CR,(F)—0oR(F). In
order to prove the converse half, we will first prove the convexity of
R, (AR (p)).
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Let {p,: 8=1,2,---} and {p;,: s=1,2,---} be the sequences of
the autocorrelations of two AR (p) processes. From Theorems 3.1 and
3.2 of [3], for any number v on the interval [0, 1], there is a stationary
process with the absolutely continuous spectral distribution function
whose autocorrelations p,, satisfy

0s,s=vp1,:+(1—v)py, , s=1,--+,p.

Let {@,} be the sequence of the partial autocorrelations of this process,
and let

¢* er s:]-;"'rp
' 0, s=p+1.

From Ramsey’s [4] Theorem 1, |@}|<1 for all s and {®F} defines a
unique positive definite sequence {p}} via the relation between auto-
correlations and partial autocorrelations. Therefore, there is a station-
ary process with the autocorrelations p}¥ and the partial autocorrelations
@F. That process is found to be AR (p) process from Ramsey’s [4]
Theorem 3, so that the convexity of R, (AR (p)) holds.

It is obvious that R,(AR(1))=R(F)—0oR,(F). When p=2, it is
easily found that for any number 2 on [0, z] there is a sequence {G,}
in AR (p) converging weakly to the one point distribution on 1. There-
fore the closure of R, (AR (p)) contains the curve {(cos2a,---, cospd): 0
A<z}. Since R, (AR (p)) is convex, this means from Theorem 3.1 of [2]
that R(AR (p))=R,(F)—oR(F). Q.E.D.

The following corollary shows that the special Yule-Walker esti-
mates exist in the stationary region of parameters.

n—s n
COROLLARY 2.1. Let p,=>) x,x,,,/> «; for observations x,,-:-, %,.
t=1 t=1

Let 0 =(0y,---,08,) be the Yule-Walker estimates of structural parameters
0 of the pth order autoregressive process obtained by using the p,’s, i.e.

él i)l

E :Toeplp [1’ i’l)' %y .bp—l]._1

0, P»
where Toepl,[---] is the pXp Toeplitz matrixz. Then, all the roots of
P—B0z — .- —0,=0 lie inside the unit circle.

ProoF. By Theorem 4.1 of [3], (o, -, pp) € R(F)—R(F), so that
the corollary follows from Theorem 2.1. Q.E.D.
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3. Exponential type

The density of exponential type is represented such as f(1|0)=1/=
-exp (ﬁ‘, 4, cos sz), where 6,=logs® and 6=(6,,---,6,). Let 7,0)=

=0
Sx cos 8Af(2|0)da and y(8)=(7«(8), -, r,(6)). The autocorrelation p,=
0

7:(0)/7((6) does not depend on 6,, so that we can define the function

ps=p(§) on R? and the mapping p(§)=(pi(§),- -+, p,(§)) where §=(6,,
<o+, 80,) € R?.

For any mxn matrix A(2)=(a;;(2)) whose components are meas-
urable functions on the real line and for any measurable set E, we

define S A(A)da or S Adi as the m xXn matrix (S a,-,(l)dl). Then the
E E E

following lemma holds.
LemMMmA 3.1. R,(EX (p)) ts an open set in RP.

ProOF. First we prove that the Jacobian |dp,/06,| is not zero for
any & Let P(1)=(1, cosi,---,cos pd). Then the Jacobian matrix of
the mapping 8—y is

J0)= () =|" POPGYsGI10)dR
k )

For any non-zero vector x, the equation P(1)x=0 has at most p real
roots, so that

x'(So Pp'fdz)x= So (P'x):fda>0 .

This means that J(@) is positive definite. Since dp,/36,=0 and dy,/36,=7,,

O O ... 91
o ... Ot 39, o6, ' a0,
o0, b, o o ... O
: s =1t a6, a6, a6,
%y ... QE_IL
a6, 36, 30, B0, .. s

06, a6, a6,

The Jacobian of the mapping from (ro,---, 7,) to (ro, o1, -+, pp) I8 757
so that above Jacobian is y;77!|J(8)] (#0).

Suppose that R, (EX (p)) is not open. Then there is a point & such
that p(§) ¢ 9R,(EX (p)). Since the Jacobian |dp,/d6,| at & is not zero,
some neighborhood of p(§) is contained in R, (EX (p)) by the inverse
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function theorem (e.g. [6], p. 68, Theorem 7A). This contradicts the
fact that p(§) € oR,(EX (p)). Q.E.D.

THEOREM 3.1. For any positive integer p,
R(EX (p))=R/(F)—0R/(F) .

Proor. It is clear that R (EX (p))CR,(F)—0dR,(F). In order to
prove the converse part, we assume that there is a vector a such that
a€ R(F)—oR(F)—R,(EX (p)). Let b be an arbitrary point in R,-
(EX (p)). Then there is a boundary point of R, (EX (p)) on the line
segment connecting @ and b, and that point is contained in R (ZF)—
R, (F) because of the convexity of R, (F)—0R,(F). Therefore, the
contradiction is derived by proving that if ce<dR,(EX(p)), then ce¢
IR (F).

Let p,=p(§;) be the sequence in R, (EX (p)) which converges to a
boundary point ¢. Suppose that the sequence &, is bounded. Then,
there is a subsequence §; which converges to some point &* ¢ R?. Since
p(8) is continuous, the equation c=p(§*) holds. Hence, ¢ € R (EX (p)).
This contradicts the Lemma 3.1. Therefore §;=(6;;,---, 0;,) disperses.

Without loss of generality we can assume that |4,,.|=|6;.| (t=1,

.., p) for some integer k which is not dependent on j, the 4,,’s are
all positive or all negative and v,,=6,./0,, (t=1,---, p) converge to
values y, respectively. First we shall consider the case where the 8, ,’s
are all positive.

The sequence of the probability distribution functions with the

densities f(zle,,az)/ S S(¢|8;, ")y has the subsequence converging
0

weakly to some probability distribution function G, and ¢ is an autocor-
relation vector for G. In order to show that G has probability masses

only on the points which maximize the function i v, cos sA, we select
s=1

arbitrary numbers «, g and e such that a—e>pB+¢, ¢>0 and that the
Lebesgue measures of the sets

E= {2 € [0, ]: ﬁ v, COS szga}

8=1

and

D= {1 € [0, ]: ‘5’_,:1 v, cosslgﬁ}

are both positive. Then

Q18 @) fGlg. )
. Sf(mej, g “l. S:fmej,a’)dydx
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= SE {exp <§ v;,, COS sl)} i / SD {exp (él v; , COS sl)} i

and for sufficiently large 7,

Joeo

= {exp (a—pB—2¢)}’»* SE dz/gn di— oo

which shows that G has probability masses only on the maximizing points
of EP‘_, v, cos s2. The function ﬁ v, cos 82 is the polynomial of cos 2 whose
8=1 8=1

degree is not less than %k and is at most p, because v,=1. Hence, if
we count 1=0 and = as half points and other 2 as one point, the num-

ber of the maximizing points of the function ﬁ v, cos s on [0, z] is at
8=1

most p/2. Therefore by Theorem 2.1 of [2] the vector ¢ is located on
0R, (). Similarly we can prove this in the case when the 6, ,’s are
all negative. Q.E.D.

Bloomfield [1] expected a good fit of the exponential model. A part
of such expectation is justified by this theorem.
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