REGIONS OF AUTOCORRELATION COEFFICIENTS
IN AR (p) AND EX (p) PROCESSES

TOSHIKAZU NAKATSUKA

(Received Oct. 31, 1977; revised June 7, 1978)

1. Introduction

In the earlier paper [3] we discussed about the regions of autocorrelation coefficients \((\rho_1, \ldots, \rho_p)\) for various sets of the spectral distribution functions of the stationary time series. In this paper we obtain the regions of \((\rho_1, \ldots, \rho_p)\) of the processes with the following spectral densities of \([0, \pi]\).

Autoregressive (AR (p)) type:

\[
\begin{align*}
\varphi(\lambda | \theta, \sigma^2) &= \frac{\sigma^2}{\pi} \left| 1 - \sum_{i=1}^{p} \theta_i e^{i\lambda} \right|^{-2}. \\
\end{align*}
\]

Exponential (EX (p)) type:

\[
\begin{align*}
\varphi(\lambda | \theta, \sigma^2) &= \frac{\sigma^2}{\pi} \exp \left(\sum_{i=1}^{p} \theta_i \cos s\lambda \right). \\
\end{align*}
\]

Let \(\mathcal{F}\) be the set of all probability distribution functions on \([0, \pi]\). For an arbitrary set \(\mathcal{U}\) in \(\mathcal{F}\), we let

\[
\mathcal{R}_p(\mathcal{U}) = \left\{ (\rho_1, \ldots, \rho_p) : \rho_\pi = \int_0^\pi \cos s\lambda dG(\lambda), \ G \in \mathcal{U} \right\}.
\]

We use notations \(\text{AR} (p)\) and \(\text{EX} (p)\) also as the sets of all normalized spectral distribution functions with the spectral densities (1.1) and (1.2). Let \(\partial A\) mean the set of all boundary points of a set \(A\).

2. Autoregressive type

Theorem 2.1. For any positive integer \(p\),

\[
\mathcal{R}_p(\text{AR} (p)) = \mathcal{R}_p(\mathcal{F}) - \partial \mathcal{R}_p(\mathcal{F}).
\]

Proof. From Theorem 3.2 of [3], \(\mathcal{R}_p(\text{AR} (p)) \subset \mathcal{R}_p(\mathcal{F}) - \partial \mathcal{R}_p(\mathcal{F}).\) In order to prove the converse half, we will first prove the convexity of \(\mathcal{R}_p(\text{AR} (p))\).
Let \(\{\rho_{s,t}: s=1, 2, \ldots \} \) and \(\{\rho_{s,t}: s=1, 2, \ldots \} \) be the sequences of the autocorrelations of two AR\((p)\) processes. From Theorems 3.1 and 3.2 of [3], for any number \(\nu \) on the interval \([0, 1]\), there is a stationary process with the absolutely continuous spectral distribution function whose autocorrelations \(\rho_{s,t} \) satisfy

\[
\rho_{s,t} = \nu \rho_{s,t} + (1-\nu)\rho_{s,t}, \quad s=1, \ldots, p.
\]

Let \(\{\Phi_s\} \) be the sequence of the partial autocorrelations of this process, and let

\[
\Phi^*_s = \begin{cases}
\Phi_s, & s=1, \ldots, p \\
0, & s \geq p+1.
\end{cases}
\]

From Ramsey's [4] Theorem 1, \(|\Phi^*_s| < 1 \) for all \(s \) and \(\{\Phi^*_s\} \) defines a unique positive definite sequence \(\{\rho^*_s\} \) via the relation between autocorrelations and partial autocorrelations. Therefore, there is a stationary process with the autocorrelations \(\rho^*_s \) and the partial autocorrelations \(\Phi^*_s \). That process is found to be AR\((p)\) process from Ramsey's [4] Theorem 3, so that the convexity of \(R_p(AR(p)) \) holds.

It is obvious that \(R_p(AR(1)) = R_p(\mathcal{F}) - \partial R_p(\mathcal{F}) \). When \(p \geq 2 \), it is easily found that for any number \(\lambda \) on \([0, \pi]\) there is a sequence \(\{G_j\} \) in AR\((p)\) converging weakly to the one point distribution on \(\lambda \). Therefore the closure of \(R_p(AR(p)) \) contains the curve \(\{(\cos \lambda, \ldots, \cos p\lambda): 0 \leq \lambda \leq \pi\} \). Since \(R_p(AR(p)) \) is convex, this means from Theorem 3.1 of [2] that \(R_p(AR(p)) = R_p(\mathcal{F}) - \partial R_p(\mathcal{F}) \). Q.E.D.

The following corollary shows that the special Yule-Walker estimates exist in the stationary region of parameters.

Corollary 2.1. Let \(\hat{\rho}_r = \sum_{i=1}^{n-r} x_i x_{i+r} / \sum_{i=1}^{n} x_i^2 \) for observations \(x_1, \ldots, x_n \).

Let \(\hat{\theta} = (\theta_1, \ldots, \theta_p)' \) be the Yule-Walker estimates of structural parameters \(\theta \) of the \(p \)th order autoregressive process obtained by using the \(\hat{\rho}_s \)'s, i.e.

\[
\begin{pmatrix}
\hat{\theta}_1 \\
\vdots \\
\hat{\theta}_p
\end{pmatrix} = \text{Toepl}_p \left[1, \hat{\rho}_1, \ldots, \hat{\rho}_{p-1} \right]^{-1} \begin{pmatrix}
\hat{\rho}_1 \\
\vdots \\
\hat{\rho}_p
\end{pmatrix}
\]

where \(\text{Toepl}_p[\ldots] \) is the \(p \times p \) Toeplitz matrix. Then, all the roots of \(z^p - \hat{\theta}_1 z^{p-1} - \cdots - \hat{\theta}_p = 0 \) lie inside the unit circle.

Proof. By Theorem 4.1 of [3], \((\hat{\rho}_1, \ldots, \hat{\rho}_p) \in R_p(\mathcal{F}) - \partial R_p(\mathcal{F}) \), so that the corollary follows from Theorem 2.1. Q.E.D.
3. Exponential type

The density of exponential type is represented such as \(f(\lambda | \theta) = \frac{1}{\pi} \exp \left(\sum_{j=0}^{p} \theta_j \cos s \lambda \right) \), where \(\theta_0 = \log a^2 \) and \(\theta = (\theta_1, \ldots, \theta_p)' \). Let \(\gamma(s) = \int_0^s \cos s \lambda f(\lambda | \theta) d\lambda \) and \(\gamma(\theta) = (\gamma_0(\theta), \ldots, \gamma_p(\theta))' \). The autocorrelation \(\rho_s = \gamma_s(\theta)/\gamma_0(\theta) \) does not depend on \(\theta_s \), so that we can define the function \(\rho_s = \rho_s(\xi) \) on \(\mathbb{R}^p \) and the mapping \(\rho(\xi) = (\rho_1(\xi), \ldots, \rho_p(\xi))' \) where \(\xi = (\theta_1, \ldots, \theta_p)' \in \mathbb{R}^p \).

For any \(m \times n \) matrix \(A(\lambda) = (a_{ij}(\lambda)) \) whose components are measurable functions on the real line and for any measurable set \(E \), we define \(\int_E A(\lambda)d\lambda \) or \(\int_E A\lambda d\lambda \) as the \(m \times n \) matrix \(\left(\int_E a_{ij}(\lambda)d\lambda \right) \). Then the following lemma holds.

Lemma 3.1. \(R_p(\text{EX}(p)) \) is an open set in \(\mathbb{R}^p \).

Proof. First we prove that the Jacobian \(|\partial \rho_s/\partial \theta_j| \) is not zero for any \(s \). Let \(P(\lambda) = (1, \cos \lambda, \cdots, \cos p\lambda)' \). Then the Jacobian matrix of the mapping \(\theta \to \gamma \) is

\[
J(\theta) = \left(\frac{\partial \gamma_j}{\partial \theta_k} \right) = \int_0^s P(\lambda)P(\lambda)'f(\lambda | \theta)d\lambda.
\]

For any non-zero vector \(x \), the equation \(P(\lambda)'x = 0 \) has at most \(p \) real roots, so that

\[
x'(\int_0^s PP'f d\lambda)x = \int_0^s (P'x)'f d\lambda > 0.
\]

This means that \(J(\theta) \) is positive definite. Since \(\partial \rho_s/\partial \theta_s = 0 \) and \(\partial \gamma_s/\partial \theta_s = \gamma_s \),

\[
\begin{vmatrix}
\frac{\partial \rho_1}{\partial \theta_1} & \cdots & \frac{\partial \rho_1}{\partial \theta_p} \\
\vdots & \ddots & \vdots \\
\frac{\partial \rho_p}{\partial \theta_1} & \cdots & \frac{\partial \rho_p}{\partial \theta_p}
\end{vmatrix}
= \gamma_s \begin{vmatrix}
\frac{\partial \gamma_1}{\partial \theta_1} & \cdots & \frac{\partial \gamma_1}{\partial \theta_p} \\
\vdots & \ddots & \vdots \\
\frac{\partial \gamma_p}{\partial \theta_1} & \cdots & \frac{\partial \gamma_p}{\partial \theta_p}
\end{vmatrix}^{-1}
\begin{vmatrix}
\frac{\partial \gamma_0}{\partial \theta_1} & \cdots & \frac{\partial \gamma_0}{\partial \theta_p} \\
\vdots & \ddots & \vdots \\
\frac{\partial \gamma_p}{\partial \theta_1} & \cdots & \frac{\partial \gamma_p}{\partial \theta_p}
\end{vmatrix}.
\]

The Jacobian of the mapping from \((\gamma_0, \ldots, \gamma_p) \) to \((\gamma_0, \rho_1, \ldots, \rho_p) \) is \(\gamma_0^{-p} \), so that above Jacobian is \(\gamma_0^{-p} |J(\theta)| (\neq 0) \).

Suppose that \(R_p(\text{EX}(p)) \) is not open. Then there is a point \(\xi \) such that \(\rho(\xi) \in \partial R_p(\text{EX}(p)) \). Since the Jacobian \(|\partial \rho_s/\partial \theta_s| \) at \(\xi \) is not zero, some neighborhood of \(\rho(\xi) \) is contained in \(R_p(\text{EX}(p)) \) by the inverse
function theorem (e.g. [5], p. 68, Theorem 7A). This contradicts the fact that \(\rho(\xi) \in \partial R_p(\mathbb{E}(p)) \).

Theorem 3.1. For any positive integer \(p \),

\[
R_p(\mathbb{E}(p)) = R_p(\mathcal{F}) - \partial R_p(\mathcal{F}) .
\]

Proof. It is clear that \(R_p(\mathbb{E}(p)) \subset R_p(\mathcal{F}) - \partial R_p(\mathcal{F}) \). In order to prove the converse part, we assume that there is a vector \(a \) such that \(a \in R_p(\mathcal{F}) - \partial R_p(\mathcal{F}) - R_p(\mathbb{E}(p)) \). Let \(b \) be an arbitrary point in \(R_p(\mathbb{E}(p)) \). Then there is a boundary point of \(R_p(\mathbb{E}(p)) \) on the line segment connecting \(a \) and \(b \), and that point is contained in \(R_p(\mathcal{F}) - \partial R_p(\mathcal{F}) \) because of the convexity of \(R_p(\mathcal{F}) - \partial R_p(\mathcal{F}) \). Therefore, the contradiction is derived by proving that if \(c \in \partial R_p(\mathbb{E}(p)) \), then \(c \in \partial R_p(\mathcal{F}) \).

Let \(\rho_j = \rho(\xi_j) \) be the sequence in \(R_p(\mathbb{E}(p)) \) which converges to a boundary point \(c \). Suppose that the sequence \(\xi_j \) is bounded. Then, there is a subsequence \(\xi_{j_n} \) which converges to some point \(\xi^* \in R^p \). Since \(\rho(\xi) \) is continuous, the equation \(c = \rho(\xi^*) \) holds. Hence, \(c \in R_p(\mathbb{E}(p)) \). This contradicts the Lemma 3.1. Therefore \(\xi_j = (\theta_{j,1}, \ldots, \theta_{j,p})' \) disperses.

Without loss of generality we can assume that \(|\theta_{j,k}| \geq |\theta_{j,i}| \) (\(t = 1, \ldots, p \)) for some integer \(k \) which is not dependent on \(j \), the \(\theta_{j,k} \)'s are all positive or all negative and \(\nu_{j,i} = \theta_{j,i}/\theta_{j,k} \) (\(t = 1, \ldots, p \)) converge to values \(\nu_i \) respectively. First we shall consider the case where the \(\theta_{j,k} \)'s are all positive.

The sequence of the probability distribution functions with the densities \(f(\lambda|\xi_j, \sigma^2)/\int_0^\infty f(\mu|\xi_j, \sigma^2) d\mu \) has the subsequence converging weakly to some probability distribution function \(G \), and \(c \) is an autocorrelation vector for \(G \). In order to show that \(G \) has probability masses only on the points which maximize the function \(\sum_{i=1}^p \nu_i \cos s\lambda \), we select arbitrary numbers \(\alpha, \beta \) and \(\varepsilon > 0 \) such that \(\alpha - \varepsilon > \beta + \varepsilon, \varepsilon > 0 \) and that the Lebesgue measures of the sets

\[
E = \left\{ \lambda \in [0, \pi]: \sum_{i=1}^p \nu_i \cos s\lambda \geq \alpha \right\}
\]

and

\[
D = \left\{ \lambda \in [0, \pi]: \sum_{i=1}^p \nu_i \cos s\lambda \leq \beta \right\}
\]

are both positive. Then

\[
\int_0^\infty \int_0^\pi f(\lambda|\xi_j, \sigma^2) d\lambda / \int_0^\pi f(\mu|\xi_j, \sigma^2) d\mu \quad \text{and} \quad \int_0^\pi \int_0^\infty f(\lambda|\xi_j, \sigma^2) d\lambda / \int_0^\pi f(\mu|\xi_j, \sigma^2) d\mu
\]
REGIONS OF AUTOCORRELATION COEFFICIENTS

\[\int_E \left\{ \exp \left(\sum_{i=1}^p \nu_i \cos s \lambda \right) \right\}^{\ell_j, k} d\lambda / \int_D \left\{ \exp \left(\sum_{i=1}^p \nu_i \cos s \lambda \right) \right\}^{\ell_j, k} d\lambda \]

and for sufficiently large \(j \),

\[\geq \left\{ \exp (\alpha - \beta - 2s) \right\}^{\ell_j, k} \int_E d\lambda / \int_D d\lambda \xrightarrow{f \to \infty} \infty \]

which shows that \(G \) has probability masses only on the maximizing points of \(\sum_{i=1}^p \nu_i \cos s \lambda \). The function \(\sum_{i=1}^p \nu_i \cos s \lambda \) is the polynomial of \(\cos \lambda \) whose degree is not less than \(k \) and is at most \(p \), because \(\nu_k = 1 \). Hence, if we count \(\lambda = 0 \) and \(\pi \) as half points and other \(\lambda \) as one point, the number of the maximizing points of the function \(\sum_{i=1}^p \nu_i \cos s \lambda \) on \([0, \pi]\) is at most \(p/2 \). Therefore by Theorem 2.1 of [2] the vector \(c \) is located on \(\partial R_p(\mathcal{E}) \). Similarly we can prove this in the case when the \(\theta_j, k \)'s are all negative.

Q.E.D.

Bloomfield [1] expected a good fit of the exponential model. A part of such expectation is justified by this theorem.

Acknowledgement

The author wishes to thank a referee for valuable comments.

Tokyo Metropolitan University

REFERENCES

