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1. Introduction

Several authors have considered the problem of characterizing those
distributions which are closed under the formation of certain linear
statistics ({2], [4], [5], [8], [9], [10]). In this paper we consider the
related problem of characterizing those one-parameter exponential fami-
lies of probability distributions which are closed under the formation
of certain linear statistics. Let 5 denote a one-parameter exponential
family in 2 and # with natural parameter space ® and dominating o-
finite measure p:

(1) P={P,: €6, dP,=C(0) exp (6x)dy}

where @ is a non-degenerate interval in E.

If we denote the distribution of a random variable Y by P¥ then
the problem may be formulated as follows: characterize those one-
parameter exponential families 8 for which P*¥ e where (i) X=
Sa,X,— 3 a,X,, (i) P¥ep, j=1,---,n and (iii) the a,, j=1,---,
j=1 j=p+1

m, are fixed real numbers satisfying 0<a,<1, j=1,--, n.
As the number of cases which have to be considered separately is
quite large we restrict ourselves to the case p=m or equivalently X=

i‘.an, where 0<a,;<1, j=1,---, n.
j=1

We remark at this point that we shall always assume that the
dominating measure x4 is non-degenerate and that the points of ® which
correspond to the distributions of X and X, are interior points.

2. Preliminary results and further notation
2.1. Without loss of generality we may assume

(2) (a) the origin is an interior point of 8,
(b) the dominating measure g is a probability measure,
(¢) p=DP, the distribution corresponding to the param-
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eter value 4=0¢6,
(d) P, is the distribution of X=3]a,X,.
j=1

We leave it as an exercise to the reader to check the above statements.
We denote the characteristic function of X by ¢ so that

(3) o(2)= S(_w, _, exp (i) PX(dt)= S(_w, _, exp (i) P(dt) .

The maximal horizontal strip of analyticity of ¢ is given by
S={z2: —p,<Imz<py}

where

(4)  0<p=sup {'r: >0, S )exp('ra:)Po(da;)<oo}§oo

(—o0,00

and

(5) 0<p,=sup {’r: r>0, S )exp(—rx)Po(dx)<oo} <oo.

(—o0,00

The fact that p, and p, are both non-zero follows from (2-a) and the
natural parameter space € is then either (—p;, 1), (—pz 1], [—p2) 01)

or [—p;, p].
The distributions P*/ of the X, are assumed to belong to P so that

for each j there exists a b, € & such that P*’=P,. Thus if ¢, is the
characteristic function of X, we have

(6) @4(2)=p(z—1b;)/p(—b;)
and ¢, is analytic in the strip
S,={2: —p+b,<Imz2<p,+b,}
which is the maximal horizontal strip of analyticity of ¢,.

2.2. As the (X;)! are assumed to be independent the relation X =é a,X;
=1

leads to the functional equation

(1) o0)=TT edat)=TT (pla—b)p(—ib)),  —eo<t<oo.
LEMMA 1. The functional equation (7) holds for all z in & i.e.

(8) () =TT, (ola,2—b)/ o~ ib,)

Jor all z satisfying
(9) —p<Imz<p,
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where p, and p;, 0<p;, ;;=o0, are given by (4) and (5).

Proor. This is a special case of a theorem concerning the factor-
ization of analytic characteristic functions (see [7], p. 43). Moreover
this theorem implies that every factor ¢(a;z—1b,)/¢(—1b;) is also analytic
in &. However the maximal strip of analyticity &) of ¢,(a;2)=¢(a;z—
1b,)/o(—1b;) is given by

i={z: (—pi+b))a7' <Im 2<(p,+b,)a;'}
and as SC &) we may conclude
"'1 = min (Pl _ bj)afl gpl
1sjsn
and

”'2=min (p2+bj)a/‘;lgp2 .
1sjsn

If we set D={z: —r,<Im z<7;} then the ¢,(a,z) are analytic in D and
hence ScD. This implies =2 as otherwise the functional equation
(8) would yield an analytic continuation of ¢ into © contradicting the
fact that & is the maximal horizontal strip of analyticity of ¢. We
have therefore proved

THEOREM 1.
(a) If <o then p=max (b;/(1—ay)).
(b) If pu<oo then p=max (=b,/(1-a,)).

COROLLARY. If 6¢€ O then
00,,1' . .ajm+bj1 ajz' . 'ajm+ e +bjm € 6
Sfor all m=1 and (jy,- -+, ju) with 1=j,=n, 1sks=m.

2.3. If p,<oo we define p,=%#{j: b,/(1—a;)=p;} and if p,<oco we define
p,=#{7: —b,/(1—a,)=p;} where ${: } denotes the number of elements
in the set {: }. Theorem 1 implies that p,=1 and p,=1. Without
loss of generality we can and shall assume that if p=1 then p,=b,/
(1—a,), j=1,---, p, and that if p,=1 then p,=—b,/1—a;), j=n—n+
1’ cee, M.

If p=2 is an integer we define (0, p) and WA(a, p) for a=0 by

10) A0, p)={(c1,- -, ¢cy): ¢, real and positive, logec/loge; is
is irrational 1=<i1<j<p}

and
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11)  Wa, py={(c;,--+,¢p): ¢;=a™, j=1,---, p, where a>0 and
my,--+, m, are positive integers with highest
common factor 1} .

Each of the different cases we consider may now be represented
by an ordered set of the form (m: I3:I;) where

12) (a) m={n=1}4+2{n=2}.

(b) IN=co{p=0}+p {pi<oo and p.=1} +(o1, P, Wers, 1))
- {e<oo, ;=2 and (ay,- -, a'px)E ey, p1)} -

(¢) I=oo{p=00}+p{p:<oc and p,=1}+(pz, Do, Az, 12))
* {Pz<°°, p2;2 and (a'n-!-l-pzy' ] an) € S‘)I(az, pz)} .

Thus for example (2: p;, i, A(ay, p): o) denotes the case n=2, o< oo,
plgzy (alr’ c %y a’pl) € %I(ali pl) and 02 =00.

3. The cases (1:00: o) and (2: c0: o0)

THEOREM 2.

(a) The case (1: co: ) cannot occur.

(b) The case (2: co: oo) corresponds to a family of normal distri-
butions with common variance *>0. Furthermore, the (a,); satisfy

(13) Slai=1.

Jj=1

PROOF. As p,=p,=o0, ¢ is an entire function and we denote the
maximum modulus of ¢ in the circle |z|<» by

M(r)=max |¢(2)|=max (o(—ir), p(ir)) .

On iterating the functional equation (8) m times we obtain

o=l JT, (Fe el ottt )|
which implies

M(c™) < (max (p(icnc™ — idn)/p(— 1), ¢(—1Cme™ —1d,)/p( —id)))™™
where 1<e< 1/({225‘ a,) and where the ¢, and d, are such that },}_’ﬂ CnC™
=0 and Idmiggja;ﬂbjll(l—gag a;). Thus for sufficiently large m we
have

log M(¢™)<n™-constant
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which implies that ¢ is of finite order.

Suppose now that ¢ has a zero at z,. From (8) we conclude that
o(a; z—1b;)=0 for some j;, and on repeating this we obtain a sequence
(zx)7 of zeros of ¢ of the form

zk=a,1' . -a,kzo—i(b,xajz- o -a,k+ e +bjk)=ckz‘)’—?:dk
where lim ¢,=0 and d, is a bounded sequence of real numbers. The se-
k—oo

quence (z,); therefore has a point of accumulation iy on the imaginary
axis and we conclude that ¢(iy)=0. This is inconsistent with (3) and
therefore ¢ can have no zeros.

From Hadamard’s factorization theorem and the theorem of Mar-
cinkiewicz (see [7], pp. 14 and 63) it follows that ¢ is the characteristic
function of a normal distribution and hence ¢(2)=exp (1uz—(1/2)0%2%)
where ¢°>0. On substituting this into (8) and equating powers of z

we conclude that i a?=1 which proves (13). As 0<a,<1 we see from
j=t

(13) that »=2 and hence the case (1: co0: o) is impossible. This com-
pletes the proof of the theorem.

4. The cases (1:p;: ) and (1: c0: py)

THEOREM 3.
(a) In the case (1: oo: p,) the distribution function F' of X has the
Jorm

Fo)=(1-p | e*lsto)ds—eitro®) (t<0} + (20}

,

where p,=—b,/(1—a,), ¢>0 is a constant and g is a mon-negative right
continuous function satisfying

(i) g(s)=g(a;s) for all s<0,

(ii) |sfg(s) is mon-increasing for all s<0

and

(i) ps S( ertlsfy(s)ds=1.

(b) In the case (1:p;: o) the distribution function F if X has
the form

FO)=(p | esgeMs+erty) (20}

where py=>b/(1—a,), ¢>0 is a constant and g is a non-negative right con-
tinuous function satisfying

(i) g(s)y=g(a;s) for all >0,

(ii) s°g(s) is mon-decreasing for all s>0
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and

(iii) p, S«, ersglads=1.

ProorF. As the two cases are similar we restrict ourselves to a
proof of (a).
The fact p.=—b,/(1—a,) follows from Theorem 1. We define

a4 pa)=g(—in)=| __exp(@t)Fat)

so that ¢(x) is defined for all x> —p, and satisfies the functional equa-
tion

(15) d@)=Pax+b)/pb) ,  2>—p;.
Furthermore, as ¢(x)>0 for all x> —p, we may write
(16) {(@)=C(ax)—log ¢(b) , x>0,

where for x>0

L(z)=log ¢(—p;+x)=log ¢(b,/(1—a,)+2) .
The general solution of the functional equation (16) is
amn (@)= —c log z+2(x)

where ¢= —(log ¢(by))/log a, and where 1 is any function satisfying i(x)
=A(ayx) for x>0. We therefore obtain

(18) o(x)=7(p;+2)/(0,+2) , x> —ps,
where 7(x) satisfies
(19) p(@)=n(a,x) , x>0.

It follows from (14) and Fatou’s lemma that
(20) S( exp (—p)F(@)< lim inf ()
ooy Py
The function ¢(x) is continuous for all x> —p, and hence so is »(x).
The functional equation (19) implies
(21) 0<sup p(z)= sup p(x)<oo
x>0 a,<zs1

and hence if ¢ were strictly negative it would follow from (18) and
(21) that llim inf ¢(x)=0 contradicting (20). For ¢=0 we have

—pg

lim sup S( X exp («t)F(dt)<lim sup ¢(x)< oo
0, oo T—00

T—rco
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by (14), (18) and (21). This can only be the case if F(co)=F(0) and
we may therefore write

Hz)= S(_w exp (zf) F(dt) .
Suppose now that ¢=0. Then
FO—F(0-)=lim | __exp@)F(@d)=lim ¢(@)=lim 1(z)
by (18) with ¢=0. However, it follows from (19) that 1}}2 p(x) exists

if and only if p(x)=constant in which case ¢(x)=constant. This implies
that F corresponds to the unit mass situated at the origin which in
turn implies p,=oco0, a contradiction. We have therefore shown that
¢>0 and that F(0)=F((0—)=1.

We may therefore write

(22) Hz)= S(_w exp (zt)F(dt) .

For t<0 we define

(23) GO)=—|_, exp(—p9)F(ds) .

It follows that

@) g@=|__ exo@FEn=| _ exp(@+e)t)G(dt

for all x> —p,.
On integrating (24) by parts we obtain

P =(outa)ye | [thott/(ota))edt
where
(25) gt)=—|t[Ge), t<0,

and the constant ¢>0 is as in (18). From (18) we conclude that
@)= __ Itotiwedt, =>0,

and the functional equation (19) implies
|, traede={ __tro(tjar)evdt

for all >0.
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It follows from the uniqueness of the Laplace transform that g(t)
=g¢(t/a,;) for almost all ¢. However, as G(t) is right continuous because
of (23) we may in fact conclude that g(t)=g(t/a,) for all t<0 or

(26) git)=g(at), t<O0.
On using (23) ond (25) we obtain

&0 FO=1-p| _ Isko(s) exp (ps)ds—e*Itla(t)

for all t<0 which is the general form of F given in (a).

We have already shown in (26) that (i) of (a) holds. The fact that
(ii) holds follows from (23) and (25) as (23) implies that G is non-
decreasing (F' non-decreasing). Finally (iii) of (a) follows from the re-
quirement tlim F(t)=0.

Conversely it is easily seen that any function F of the form de-
scribed in (a) is a distribution function whose corresponding character-
istic function ¢ satisfies the functional equation ¢(z)=¢(a;z—1ib,)/p(—1b,).

5. The infinitely divisible cases
5.1. LEMMA 2. Let
L,=inf mln (b,la,,2 a; +bya;c-a; -0 +b; )>—00

m21 (f,+ 'm.

and
L,=sup max (bha,2 “a; +ba;- 0y +--+b; )<oo

mz1 (fy,°
where the minimum and maximum extend over all m-vectors (4,,-+-, Jm)
with 1<j,<n, 1<k<m. Suppose that S exp (¢L,)Pydx) and g
(=00, 00)

exp (xL,)Py(dx) are both finite. Then ¢ is an infinitely divisible charac-
teristic function.

(=00, 0)

PrROOF. The proof of this lemma is elementary and is omitted.

LEMMA 3.
(a) If P1<°° thEn L2=p1.
(b) If ;<o them Ly=-—

ProOF. The lemma follows from Theorem 1 and the corollary.

5.2. The cases which give rise to infinitely divisible families are those
for which pj=c0 or p,=2 together with g,=o or p,=2. We require
the following lemma.
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LEMMA 4.
(a) If p=co or ;22 then | __exp (Lu)Pidw)<co.
(b) If p=co or piz2 then | _exp(Lin)Pidx)<co.

PrOOF. We prove only case (a). If pj=o0 we have —p,<L,<p,
and hence from (4) and (5) we conclude that (a) of the lemma holds in
this case. We may therefore suppose that 0<p,<oo and that p,=2.
Let ¢(x) be the moment generating function of X as defined by (14)
where F is the distribution function of X. It is clear that ¢(x)>0
for —p,<x<p, and that ¢ satisfies the functional equation

(28) s@)=T1 daa+b)g),  —m<z<p.

Let p(x)=(d*/da?) log ¢(o,—x) for 0<x<p+p. and note that »(x)>0.
n
Then the one can show that 3 aj<1 and
j=1
o n 2! Py
@) @=n@+3( D 33 @ ae, ezt
8=1 \j;=p)+1 Jo=1 Fg=1
=ny(x) + Ky(x)
where ¢;=(1—a,;)0,—b,>0, p,+1=j=<m, sup Ry(x)<oo for all ¢ satis-

0<z<pytpy—e

» n
fying 0<e<p;+p,, and p(x)=lim X -- -/Zjl aj - -aj nla---a; x) is con-

m—oo f1=1

tinuous and satisfies the functional equation
121
(30) 7(%) =,§ ajnlax) , x>0.

The general non-negative right-continuous solution of the functional
equation (30) is given by Theorem 1 and Lemma 1 (including the foot-
note) of [2] and is as follows:

(31) n(®) =2~ "14(x)
"

where 8, is such that 3 aj"1=1 and where 4(x)=constant if (a;,---, a,)
j=1

€ A(0, p) and A(z)=4(x) if (a;, -, a,) € A, »). In either case 4(x)

p

is bounded and as p,=>2 it follows from p,=2 and Ela,§<1 that 0<p,
i=1

<2. We obtain

(32) 7z <Kz h+K,, 0<x<p

and hence
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p(x)<exp (Kyp—z) 1+ K), 0<z<p.
As $,<2 this implies litm ¢(x)<oo and hence from Fatou’s lemma we
zle
conclude 1

S(_m , exP (p)F(dt) <o .

As L,=p, by Lemma 3 part (a) of the lemma is proved.

LEMMA 5. The characteristic function ¢ is infinitely divisible in all
of the following cases: (2: oo :o0), (2: oo: py, De, ez, ), (2: p1, Dy,
ay, p1): ), 2: p1, i, Wew, P p2r D2y ez, D2)).

Proor. This is an immediate consequence of Lemmas 2 and 4.

5.8. According to the Kolmogorov representation for analytic infinitely

divisible characteristic functions we may write with the usual notation

(33)  o(z)=exp (i;zz—-%—a’z’—}—s (exp (izw)—1—izu)
, 0

ek

M(du)
uZ

(—

+ S( (exp (izu) —1—izu)
0,00

THEOREM 4.

(a) If min (o, p)<oo thenm $a§<1.

(b) The general form of M is as follows:
(i) If py=oo then M(u)=0

(i) If p<oo then Mw=3| exp(pw)Kidv), —oo<u<0,

where (1) Kyu)=—|ulTyw), (@) a 0<a<2, is such that 3)ai*=1, (3)
j=1

I(u)=constant >0 if (@n_pyi1,° " @a) € A0, 1), (4) [au)=I(u)>0 for
all u<0 if (@pepye1r "y @n) € U(az, ) with ,>0, (5) Ky(w) ts non-decreas-
ing and right-continuous, —oco<u<0, and (6) the K, (u) are defined re-
cursively by

K,()=3 <n§2 ST agl...a3l>

t=1 \j =1 jo=n—py+1 Jp=n—~py+1

3 exp (o(1—a,)ou+b, ) K.(dv) .
[u/(ajl-na.js),o)
(¢) The general form of N(u) is as follows:
(i) If py=o0 then N(u)=0.
(il) If p<oo them
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N(u)=§ S(o o &P (—pw)L(dv), 0<u<oo,

where (1) Lyfu)=u"dy(u), u>0, (2) a,0<a<?2, is such that ﬁ}aﬁ"’:l,
i=1

(3) d(u)=constant>0 if (a;,---,a,) € A0, p), (4) dfauw)=4(u)>0 for
al u>0 if (a1, -+, a,) € ey, p) with a,>0, (5) Ly(u) s non-decreasing
and right-continuous and (6) the L,(u) are defined recursively by

La@=5( 3 33 a,a)

t=1 /1=P1+1 Fo=1 Je=1

' S(O, u/(ajl-..a,j’)] exp ( - (Pl(l - ajl) - bjl)v)Ll(d’v) .

The proof of part (a) is simple. The proof of part (c) and hence
also of part (b) is similar to the proof of Theorem 6 below. The func-
tions 67 and 6" are replaced by the Laplace transforms I, and I of

certain Lebesgue-Stieltjes functions, thus for example, I, denotes the
Laplace transform of the Lebesgue-Stieltjes function

Lv)= S(o, , exp () Ndu) .

We omit the details.
The results of this section can be summarized as follows:

THEOREM 5. For the cases (2: p;, Dy, Ulay, ) : ), (2: o0 : py,ps,
2I(azs pz)) and (2: .01; pl! 2[(&1, pl) : PZ! er %I(az, p?.)) th’e following hdd:

(a) PALASE

(b) the characteristic function ¢ s infinitely divisible with ¢*=0
and Levy functions M and N as described in Theorem 4.

6. The cases (2:p,: ) and (2: oo : p,)

THEOREM 6.
(a) The general form of ¢(z) for the case (2: p,: o) 18 given by

¢(@)=exp (ip2) TT (p(#) exp (—ip2))

where
(1) ¢u2) is the general solution for the case (1: p,: o),
(ii) the ¢,(2) are defined recursively by

_17 17 (eda(aiz—1p(1—al))—1b))
p@=1L 11 ( ol — im0 —a) b)) )



308 LAURIE DAVIES AND LUDWIG BARINGHAUS
(iii) p, and p are respectively the means of the distributions associated
with ¢, and .
(iv) Sai<l.
j=1
(b) The general form of ¢(z) for the case (2: oo : p,) s as in (a) above

where however ¢y(z) is mow the general solution for the case (1: oo : p,)
and where a, and a, and p, and —p; are interchanged.

PrROOF. We restrict ourselves to a proof of part (a) of the theorem.
Again denoting the moment-generating function of the distribution
associated with ¢ by ¢(x) we have

34 _ Hlax+b) 1 Hlaa+d))
o HO=T00 T b,

On iterating the first term only m times and on remembering p,=b,/
(1—a,) we obtain

35 _glaretp(l—al) 7 17 $lafaiz+pe(l—ai))+b)
@) = =) AT gami—a)+b)

As 0<a,<1 the mean value theorem implies

. mt o ( a(aiztp(l—af)+b,) | _
(36) lim ﬂwﬂz( o= +b) >_x"(x)

exists for all z<¢,. From (35) it follows at once that

’ x<,01 .

37 li Plarr+p(1—ar)) =d,
@7 G I B

exists and from the results given in [1] we may conclude that ¢y(x)
is the moment generating function of a probability distribution and is
defined for all £<p,. Furthermore, it is easily seen that ¢,(x) satisfies
the functional equation

(38) Pu() = ol +b1)/olby) -

We may therefore write

P(@)=Po(@o() -
In general we obtain
(39) 9@ =11 g@)tn(a)

where X,, and ¢,, 0<s<m, are moment generating functions and are
defined recursively by
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(40) Gos 1(90)=ﬁ ﬁ ( ol (aix+p(1—ai))+b)) ) , 2 <oy,

£=0 =2 o.(a;0(1—al)+b;)
and
—T7 17 (Xas(ais+o(1l—ai)+b,)
a0 ne= i Lap(l—a) +b) ) w<en

On writing 6,(x)=log ¢,(s), 0=s<oo, we conclude that

(42) 0/, () = i P jz a28(aiw+p(1—ad))+b,)
and that
(43) 0y(2)=lim 6" (a? + p,(1—af))

where 6(x)=log ¢(x).
With 6(x) as defined above (34) implies

0"(2) = a0 (@@ +by)+ jz a26"(a,x+b)) .
=2

We obtain after some calculation

(44) 0"(2)=33 0.(@) + B.(=)

where

(45) 9o(@)=lim ai"0"(aPw+p(1—ap) ,

(46) Ry(x)=3) af' 3} a}6"(@fw+p(1—al)) +b))

and where the g, and R, are defined recursively by

(47) 0.(0)= 3 0 3} a}R.(a,(aio +pi(1—a))+b)
and
(48) Ro@)=3) o 3] iR a,(alz-+o(1—aD)+b)

It follows at once from (42), (43), (44) and (47) that g,(z)=6/(x) for all
r<p, and all s>0. As #"(x)>0 for all x<p, it follows that &/(x)>0
and R(x)>0 for all 2<p, and all $>0. From this and (44) we con-

clude that i 0/(x) converges for all x<p, and that lim R,(x)=R(x) ex-
8§=0 §—0c0

ists for all £<p,. We may therefore write
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(49) 0'(2)= 3, 0/(x)+ R(®) -
=

I;c may be shown that R(z)=0 if jZ‘,:la§<1 and that R(x)=constant if
Slaj=1. However, in the latter case we would have ¢(x)=exp (4+
Zalc+lzx2) which would contradict the assumption that p,<co. We there-
fore conclude that i a;<1 and that

(50) 0'(@)=30/(x), —oco<z<p;.
8=0
Since term by term integration is permissible we obtain

9(@)=exp (1) TT (4(x) exp (— )

where p,(¢) denotes the mean of the distribution associated with ¢,(¢).
On translating these results back into terms of ¢ we obtain part (a)
of the theorem.

7. The cases with max (p,, p;)<oo and min (p;, p;)=1
The remaining cases are covered by our final theorem.

THEOREM 7.
(a) The general form of ¢(2) for the case (2: p,: p,) 18 given by

@(2) =1(2)px(2)

where ¢(z) and ¢,(z) are the general forms of ¢(z) for the cases (2: p, : o)
and (2: oo : p,) respectively.

(b) The general form of ¢(z) for the case (2: p,: p;, D2y Wz, D)) 8
given by

o(2) = p:(2)ps(2)

where ¢(z) and ¢(2) are the general forms of ¢(z) for the cases (2: p, : )
and (2: oo : oy, D, ey, D;)) Tespectively.

(c) The general form of ¢(z) for the case (2: py, i, lay, Dy) : ps) 18
given by

¢(2)=pi(2)pe(2)

where ¢,(z) and ¢(2) are the general forms of ¢(z) for the cases (2: p,,
D1y, Wy, py) : ) and (2: oo : p;) respectively.

(d) In all cases we have "Z:l}laf;<1.
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ProOF. We restrict ourselves to proofs of parts (a) and (d) of the
theorem.
Arguing as in the proof of Theorem 6 we obtain

P(x) = xo(@)70(2) , —p<z<py,

where y(x) is a moment generating function which satisfies the func-
tional equation (88) for —p,<x<p,. Obviously 7(x) may be extended
to a moment generating function which is defined for all z<p, and
which satisfies the functional equation (38).

In general we obtain as in the proof of Theorem 6

(51) 9@ =1a@) [T 0@),  —p<a<pr,

where the moment generating function 7(x) is a general solution of
(38) and is defined for all z<p,. The moment generating functions y,
are recursively defined by (36) and (41) and the moment generating
functions 7, are defined recursively by

=TT 11 ( 2:0s(@iz+p,(1 —ai)) +b))
. = I et )

and are defined for all x<p,. The infinite product in (36) converges
for all = satisfying

—0:<x<p +21;1}2‘ ((p(1—a,)—by)/a,)

and it follows by induction that x,(x) is defined at least for all x satis-
fying

8+1

(53) —p2<x<pl+cj§__‘ia"’.

Similarly the »,(x), s=1, are defined at least for all  satisfying —oco<
x<p+e ﬁ a~’ respectively.
j=1

From (51) we have

(54) Am(2) = m41(X)m+1(2) —p:<e<p
and hence
(55) An(%) = Y41 (X tm11(2) —p:<x<p+c é a’.

On setting 4(x)=log ¢(x), 6.(x)=log 7,(x), and A(x)=log x,(x), s>0, we
obtain from (55)

(56) AR =00 @)+ (@), —p<z<pte ; a? .
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The functions 7, and x(x), s>0, are all moment generating functions
and hence the 1/(x) and 6/(x) are non-negative. This combined with

(56) implies that 7/(#)24.,.(+) 20 for all  satisfying —p<z<pi+c 3 a™
so that

(57) #'(z)=lim 2/(z)

exists for all 2> —p,.
From (51) we obtain

@)= 0/@)+ @),  —p<a<p,
and hence
(58) 0" (x)= % o)+ (x), —p<a<p .

Again as in the proof of Theorem 6 the convergence of ié’;’(w) im-
n 8=0

plies >} a?<1 which proves (d) of the theorem.
j=1

For all K sufficiently large such that —K<—a,K+b;, j=1,---,n
we have

sup 6/(x)< (( é‘; a?)/(l —a?))s sup 6)(x)

—K<z<p —K<z<lp;-c

and as sup 6)(x)<oco we may deduce that i‘; 07(x)< oo for all z<p,.

—K<x<pj—c

This implies that the infinite product

(59) T (22) exp (— )

converges for all x satisfying —oco<x<p,. Part (a) of Theorem 6 im-
plies the existence of a p such that if

(60) ¢u(x)=exp (um) TT (1(®) exp (—42))
that ¢,(x) satisfies the functional equation

(61) ¢1(x)=ﬁM , ._oo<x<p1.

j=1 ¢u(b;)
Similarly the fact that the 1J(x) are monotone decreasing and that
2'(x) as given by (58) exists for all x> —p, implies that there exists a
sequence (y,)r such that
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(62) x(x) =}nim Am(Z) €XP (—7n)

exists for all x> —p,. As the y, are moment generating functions this
implies that y(x) is also a moment generating function. On combining
this with (51) and (59) we deduce that

9(@)=exp (—x)1(@) TT (u(®) exp (—p2))
=exp (—ox)y(@)h(®) ,  —p<z<p;.

As ¢,(x) and ¢(x) satisfy the functional equation (61) for all x satisfy-
ing —p;<x<p,, it follows that

¢o(x)=exp (—ox)y(x)

also satisfies (61) for —p,<x<p;.

However, as ¢,(x) is a moment generating function which is de-
fined for all x> —p, it follows via Lemma 1 that ¢,(x) satisfies (61) for
all x> —p,. We have therefore shown that

H(x)=(2)P(2) , —p<x<p,

where ¢,(x) and ¢,(xr) are moment generating functions defined for all
x<p, and x> —p, respectively and which satisfy the functional equation

() =T Plax+b)) —
Sbl(x) ;[;l; _—.—(/l,,(bj) ’ (] 1, 2 ,

for £<p, and x> —p, respectively. On translating these results into
terms of the respective characteristic functions we obtain part (a) of
the theorem.
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