LINEAR STATISTICS AND EXPONENTIAL FAMILIES

LAURIE DAVIES AND LUDWIG BARINGHAUS

(Received Mar. 3, 1977; revised June 26, 1978)

1. Introduction

Several authors have considered the problem of characterizing those distributions which are closed under the formation of certain linear statistics ([2], [4], [5], [8], [9], [10]). In this paper we consider the related problem of characterizing those one-parameter exponential families of probability distributions which are closed under the formation of certain linear statistics. Let $\mathfrak P$ denote a one-parameter exponential family in x and θ with natural parameter space Θ and dominating σ -finite measure μ :

(1)
$$\mathfrak{P} = \{P_{\theta} : \theta \in \Theta, dP_{\theta} = C(\theta) \exp(\theta x) d\mu\}$$

where Θ is a non-degenerate interval in R.

If we denote the distribution of a random variable Y by P^{Y} then the problem may be formulated as follows: characterize those one-parameter exponential families \mathfrak{P} for which $P^{X} \in \mathfrak{P}$ where (i) $X = \sum_{j=1}^{p} a_{j}X_{j} - \sum_{j=p+1}^{n} a_{j}X_{j}$, (ii) $P^{X_{j}} \in \mathfrak{P}$, $j=1,\cdots,n$ and (iii) the a_{j} , $j=1,\cdots,m$, are fixed real numbers satisfying $0 < a_{j} < 1$, $j=1,\cdots,n$.

As the number of cases which have to be considered separately is quite large we restrict ourselves to the case p=n or equivalently $X=\sum_{j=1}^{n} a_{j}X_{j}$ where $0 < a_{j} < 1$, $j=1, \dots, n$.

We remark at this point that we shall always assume that the dominating measure μ is non-degenerate and that the points of Θ which correspond to the distributions of X and X_j are interior points.

2. Preliminary results and further notation

- 2.1. Without loss of generality we may assume
- (2) (a) the origin is an interior point of Θ ,
 - (b) the dominating measure μ is a probability measure,
 - (c) $\mu = P_0$, the distribution corresponding to the param-

eter value $\theta = 0 \in \Theta$.

(d) P_0 is the distribution of $X = \sum_{j=1}^{n} a_j X_j$.

We leave it as an exercise to the reader to check the above statements. We denote the characteristic function of X by φ so that

(3)
$$\varphi(z) = \int_{(-\infty,\infty)} \exp(izt) P^{x}(dt) = \int_{(-\infty,\infty)} \exp(izt) P_{0}(dt) .$$

The maximal horizontal strip of analyticity of φ is given by

$$\mathfrak{S} = \{z: -\rho_1 < \text{Im } z < \rho_2\}$$

where

$$(4) \qquad 0 < \rho_1 = \sup \left\{ r \colon r > 0, \int_{(-\infty,\infty)} \exp(rx) P_0(dx) < \infty \right\} \leq \infty$$

and

$$(5) \qquad 0<\rho_2=\sup\left\{r\colon r>0, \int_{(-\infty,\infty)}\exp(-rx)P_0(dx)<\infty\right\}\leq \infty.$$

The fact that ρ_1 and ρ_2 are both non-zero follows from (2-a) and the natural parameter space Θ is then either $(-\rho_2, \rho_1)$, $(-\rho_2, \rho_1]$, $[-\rho_2, \rho_1]$ or $[-\rho_2, \rho_1]$.

The distributions P^{x_j} of the X_j are assumed to belong to P so that for each j there exists a $b_j \in \Theta$ such that $P^{x_j} = P_{b_j}$. Thus if φ_j is the characteristic function of X_j we have

(6)
$$\varphi_j(z) = \varphi(z - ib_j)/\varphi(-ib_j)$$

and φ_j is analytic in the strip

$$\mathfrak{S}_i = \{z: -\rho_1 + b_2 < \operatorname{Im} z < \rho_2 + b_2\}$$

which is the maximal horizontal strip of analyticity of φ_j .

2.2. As the $(X_j)_1^n$ are assumed to be independent the relation $X = \sum_{j=1}^n a_j X_j$ leads to the functional equation

(7)
$$\varphi(t) = \prod_{j=1}^{n} \varphi_j(a_j t) = \prod_{j=1}^{n} (\varphi(a_j t - ib_j)/\varphi(-ib_j)), \quad -\infty < t < \infty.$$

LEMMA 1. The functional equation (7) holds for all z in \otimes i.e.

(8)
$$\varphi(z) = \prod_{j=1}^{n} (\varphi(a_j z - ib_j)/\varphi(-ib_j))$$

for all z satisfying

$$-\rho_1 < \operatorname{Im} z < \rho_2$$

where ρ_1 and ρ_2 , $0 < \rho_1$, $\rho_2 \leq \infty$, are given by (4) and (5).

This is a special case of a theorem concerning the factorization of analytic characteristic functions (see [7], p. 43). Moreover this theorem implies that every factor $\varphi(a_i z - ib_i)/\varphi(-ib_i)$ is also analytic in \mathfrak{S} . However the maximal strip of analyticity \mathfrak{S}'_i of $\varphi_i(a_iz) = \varphi(a_iz - a_iz)$ $ib_{j}/\varphi(-ib_{j})$ is given by

$$\mathfrak{S}_{j}' = \{z : (-\rho_{1} + b_{j})a_{j}^{-1} < \text{Im } z < (\rho_{2} + b_{j})a_{j}^{-1}\}$$

and as $\mathfrak{S} \subset \mathfrak{S}'_i$ we may conclude

$$r_1 = \min_{1 \le j \le n} (\rho_1 - b_j) a_j^{-1} \ge \rho_1$$

and

$$r_2 = \min_{1 \le j \le n} (\rho_2 + b_j) a_j^{-1} \ge \rho_2$$
.

If we set $\mathfrak{D} = \{z: -r_1 < \text{Im } z < r_2\}$ then the $\varphi_j(a_j z)$ are analytic in \mathfrak{D} and hence $\mathfrak{S}\subset\mathfrak{D}$. This implies $\mathfrak{S}=\mathfrak{D}$ as otherwise the functional equation (8) would yield an analytic continuation of φ into $\mathfrak D$ contradicting the fact that \mathfrak{S} is the maximal horizontal strip of analyticity of φ . We have therefore proved

THEOREM 1.

- (a) If $\rho_1 < \infty$ then $\rho_1 = \max_{1 \le j \le n} (b_j/(1-a_j))$. (b) If $\rho_2 < \infty$ then $\rho_2 = \max_{1 \le j \le n} (-b_j/(1-a_j))$.

COROLLARY. If $\theta \in \Theta$ then

$$\theta a_{j_1} \cdots a_{j_m} + b_{j_1} a_{j_2} \cdots a_{j_m} + \cdots + b_{j_m} \in \Theta$$

for all $m \ge 1$ and (j_1, \dots, j_m) with $1 \le j_k \le n$, $1 \le k \le m$.

2.3. If $\rho_1 < \infty$ we define $p_1 = \#\{j: b_j/(1-a_j) = \rho_1\}$ and if $\rho_2 < \infty$ we define $p_2 = \#\{j: -b_j/(1-a_j) = \rho_2\}$ where $\#\{:\}$ denotes the number of elements in the set $\{:\}$. Theorem 1 implies that $p_1 \ge 1$ and $p_2 \ge 1$. Without loss of generality we can and shall assume that if $p_1 \ge 1$ then $\rho_1 = b_j$ $(1-a_j), j=1,\dots, p_1$, and that if $p_2 \ge 1$ then $\rho_2 = -b_j/(1-a_j), j=n-p_2+$ $1, \cdots, n$.

If $p \ge 2$ is an integer we define $\mathfrak{A}(0, p)$ and $\mathfrak{A}(\alpha, p)$ for $\alpha \ge 0$ by

 $\mathfrak{A}(0, p) = \{(c_1, \dots, c_p): c_i \text{ real and positive, } \log c_i / \log c_j \text{ is }$ (10)is irrational $1 \le i < j \le p$

and

(11) $\mathfrak{A}(\alpha, p) = \{(c_1, \dots, c_p): c_j = \alpha^{m_j}, j = 1, \dots, p, \text{ where } \alpha > 0 \text{ and } m_1, \dots, m_p \text{ are positive integers with highest common factor } 1\}$.

Each of the different cases we consider may now be represented by an ordered set of the form $(m: \Gamma_1: \Gamma_2)$ where

(12) (a)
$$m = \{n=1\} + 2\{n \ge 2\}$$
.

(b)
$$\Gamma_1 = \infty \{ \rho_1 = \infty \} + \rho_1 \{ \rho_1 < \infty \text{ and } p_1 = 1 \} + (\rho_1, p_1, \mathfrak{A}(\alpha_1, p_1))$$

 $\cdot \{ \rho_1 < \infty, p_1 \ge 2 \text{ and } (\alpha_1, \dots, \alpha_{p_1}) \in \mathfrak{A}(\alpha_1, p_1) \}.$

(c)
$$\Gamma_2 = \infty \{ \rho_2 = \infty \} + \rho_2 \{ \rho_2 < \infty \text{ and } p_2 = 1 \} + (\rho_2, p_2, \mathfrak{A}(\alpha_2, p_2))$$

 $\cdot \{ \rho_2 < \infty, p_2 \ge 2 \text{ and } (a_{n+1-p_2}, \dots, a_n) \in \mathfrak{A}(\alpha_2, p_2) \}.$

Thus for example $(2: \rho_1, p_1, \mathfrak{A}(\alpha_1, p_1): \infty)$ denotes the case $n \geq 2$, $\rho_1 < \infty$, $p_1 \geq 2$, $(\alpha_1, \dots, \alpha_{p_1}) \in \mathfrak{A}(\alpha_1, p_1)$ and $\rho_2 = \infty$.

3. The cases $(1:\infty:\infty)$ and $(2:\infty:\infty)$

THEOREM 2.

- (a) The case $(1:\infty:\infty)$ cannot occur.
- (b) The case $(2:\infty:\infty)$ corresponds to a family of normal distributions with common variance $\sigma^2 > 0$. Furthermore, the $(a_i)_1^n$ satisfy

(13)
$$\sum_{j=1}^{n} a_{j}^{2} = 1.$$

PROOF. As $\rho_1 = \rho_2 = \infty$, φ is an entire function and we denote the maximum modulus of φ in the circle $|z| \le r$ by

$$M(r) = \max_{|z| \le r} |\varphi(z)| = \max (\varphi(-ir), \varphi(ir))$$
.

On iterating the functional equation (8) m times we obtain

$$\varphi(z) = \prod_{j_1=1}^{n} \cdots \prod_{j_m=1}^{n} \left(\frac{\varphi(a_{j_1} \cdots a_{j_m} z - i(b_{j_1} a_{j_2} \cdots a_{j_m} + \cdots + b_{j_m}))}{\varphi(-i(b_{j_1} a_{j_2} \cdots a_{j_m} + \cdots + b_{j_m}))} \right)$$

which implies

$$M(c^m) \leq (\max(\varphi(ic_mc^m - id_m)/\varphi(-id_m), \varphi(-ic_mc^m - id_m)/\varphi(-id_m)))^{n^m}$$

where $1 < c < 1/(\max_{1 \le j \le n} a_j)$ and where the c_m and d_m are such that $\lim_{m \to \infty} c_m c^m = 0$ and $|d_m| \le \max_{1 \le j \le n} |b_j|/(1 - \max_{1 \le j \le n} a_j)$. Thus for sufficiently large m we have

$$\log M(c^m) \leq n^m \cdot \text{constant}$$

which implies that φ is of finite order.

Suppose now that φ has a zero at z_0 . From (8) we conclude that $\varphi(a_{j_1}z_0-ib_{j_1})=0$ for some j_1 , and on repeating this we obtain a sequence $(z_k)_1^{\infty}$ of zeros of φ of the form

$$z_k = a_{j_1} \cdot \cdot \cdot a_{j_k} z_0 - i(b_{j_1} a_{j_2} \cdot \cdot \cdot a_{j_k} + \cdot \cdot \cdot + b_{j_k}) = c_k z_0 - id_k$$

where $\lim_{k\to\infty} c_k=0$ and d_k is a bounded sequence of real numbers. The sequence $(z_k)_0^{\infty}$ therefore has a point of accumulation iy on the imaginary axis and we conclude that $\varphi(iy)=0$. This is inconsistent with (3) and therefore φ can have no zeros.

From Hadamard's factorization theorem and the theorem of Marcinkiewicz (see [7], pp. 14 and 63) it follows that φ is the characteristic function of a normal distribution and hence $\varphi(z) = \exp(i\mu z - (1/2)\sigma^2 z^2)$ where $\sigma^2 > 0$. On substituting this into (8) and equating powers of z we conclude that $\sum_{j=1}^{n} a_j^2 = 1$ which proves (13). As $0 < a_j < 1$ we see from (13) that $n \ge 2$ and hence the case $(1 : \infty : \infty)$ is impossible. This completes the proof of the theorem.

4. The cases $(1:\rho_1:\infty)$ and $(1:\infty:\rho_2)$

THEOREM 3.

(a) In the case $(1:\infty:\rho_2)$ the distribution function F of X has the form

$$F(t) = \left(1 - \rho_2 \int_{(t,0)} e^{\rho_2 s} |s|^c g(s) ds - e^{\rho_2 t} |t|^c g(t)\right) \{t < 0\} + \{t \ge 0\}$$

where $\rho_2 = -b_1/(1-a_1)$, c>0 is a constant and g is a non-negative right continuous function satisfying

- (i) $g(s)=g(a_1s)$ for all s<0,
- (ii) $|s|^c g(s)$ is non-increasing for all s < 0 and
- (iii) $\rho_2 \int_{(-\infty,0)} e^{\rho_2 s} |s|^c g(s) ds = 1.$
- (b) In the case $(1:\rho_1:\infty)$ the distribution function F if X has the form

$$F(t)\!=\!\left(\rho_1\int_{(0,\,t]}e^{-\rho_1 t}s^cg(s)ds\!+\!e^{-\rho_1 t}t^cg(t)\right)\{t\!\ge\!0\}$$

where $\rho_1=b_1/(1-a_1)$, c>0 is a constant and g is a non-negative right continuous function satisfying

- (i) $g(s)=g(a_1s)$ for all s>0,
- (ii) $s^c g(s)$ is non-decreasing for all s>0

and

(iii)
$$\rho_1 \int_{(0,\infty)} e^{\rho_1 s} s^c g(s) ds = 1.$$

PROOF. As the two cases are similar we restrict ourselves to a proof of (a).

The fact $\rho_2 = -b_1/(1-a_1)$ follows from Theorem 1. We define

(14)
$$\phi(x) = \varphi(-ix) = \int_{(-\infty,\infty)} \exp(xt) F(dt)$$

so that $\phi(x)$ is defined for all $x > -\rho_2$ and satisfies the functional equation

(15)
$$\phi(x) = \phi(a_1x + b_1)/\phi(b_1) , \quad x > -\rho_2 .$$

Furthermore, as $\phi(x) > 0$ for all $x > -\rho_2$ we may write

(16)
$$\zeta(x) = \zeta(a_1 x) - \log \phi(b_1), \quad x > 0,$$

where for x>0

$$\zeta(x) = \log \phi(-\rho_2 + x) = \log \phi(b_1/(1-a_1) + x)$$
.

The general solution of the functional equation (16) is

(17)
$$\zeta(x) = -c \log x + \lambda(x)$$

where $c = -(\log \phi(b_1))/\log a_1$ and where λ is any function satisfying $\lambda(x) = \lambda(a_1x)$ for x > 0. We therefore obtain

(18)
$$\phi(x) = \eta(\rho_2 + x)/(\rho_2 + x)^c , \qquad x > -\rho_2 ,$$

where $\eta(x)$ satisfies

(19)
$$\eta(x) = \eta(a_1 x) , \qquad x > 0 .$$

It follows from (14) and Fatou's lemma that

(20)
$$\int_{(-\infty,\infty)} \exp(-\rho_2 t) F(dt) \leq \lim_{x \downarrow -\rho_2} \inf \phi(x) .$$

The function $\phi(x)$ is continuous for all $x > -\rho_2$ and hence so is $\eta(x)$. The functional equation (19) implies

(21)
$$0 < \sup_{x>0} \eta(x) = \sup_{a_1 < x \le 1} \eta(x) < \infty$$

and hence if c were strictly negative it would follow from (18) and (21) that $\lim_{x\to 0} \inf \phi(x) = 0$ contradicting (20). For $c \ge 0$ we have

$$\lim_{x\to\infty}\sup\int_{\scriptscriptstyle(0,\infty)}\exp{(xt)}F(dt){\leq}\lim_{x\to\infty}\sup{\phi(x)}{<}\infty$$

by (14), (18) and (21). This can only be the case if $F(\infty)=F(0)$ and we may therefore write

$$\phi(x) = \int_{(-\infty,0]} \exp(xt) F(dt) .$$

Suppose now that c=0. Then

$$F(0) - F(0-) = \lim_{x \to \infty} \int_{(-\infty,0]} \exp(xt) F(dt) = \lim_{x \to \infty} \phi(x) = \lim_{x \to \infty} \eta(x)$$

by (18) with c=0. However, it follows from (19) that $\lim_{x\to\infty} \eta(x)$ exists if and only if $\eta(x)\equiv \text{constant}$ in which case $\phi(x)\equiv \text{constant}$. This implies that F corresponds to the unit mass situated at the origin which in turn implies $\rho_2=\infty$, a contradiction. We have therefore shown that c>0 and that F(0)=F(0-)=1.

We may therefore write

(22)
$$\phi(x) = \int_{(-\infty,0)} \exp(xt) F(dt) .$$

For t < 0 we define

(23)
$$G(t) = -\int_{(t,0)} \exp(-\rho_2 s) F(ds) .$$

It follows that

(24)
$$\phi(x) = \int_{(-\infty,0)} \exp(xt) F(dt) = \int_{(-\infty,0)} \exp((x+\rho_2)t) G(dt)$$

for all $x > -\rho_2$.

On integrating (24) by parts we obtain

$$\psi(x) = (\rho_2 + x)^{-c} \int_{(-\infty,0)} |t|^c g(t/(\rho_2 + x)) e^t dt$$

where

(25)
$$g(t) = -|t|^{-c}G(t), \quad t < 0,$$

and the constant c>0 is as in (18). From (18) we conclude that

$$\eta(x) = \int_{(-\infty,0)} |t|^c g(t/x) e^t dt$$
, $x > 0$,

and the functional equation (19) implies

$$\int_{(-\infty,0)} |t|^c g(t) e^{xt} dt = \int_{(-\infty,0)} |t|^c g(t/a_1) e^{xt} dt$$

for all x>0.

It follows from the uniqueness of the Laplace transform that $g(t) = g(t/a_1)$ for almost all t. However, as G(t) is right continuous because of (23) we may in fact conclude that $g(t) = g(t/a_1)$ for all t < 0 or

(26)
$$g(t) = g(a_1 t), \quad t < 0.$$

On using (23) ond (25) we obtain

(27)
$$F(t) = 1 - \rho_2 \int_{(t,0)} |s|^c g(s) \exp(\rho_2 s) ds - e^{\rho_2 t} |t|^c g(t)$$

for all t < 0 which is the general form of F given in (a).

We have already shown in (26) that (i) of (a) holds. The fact that (ii) holds follows from (23) and (25) as (23) implies that G is non-decreasing (F non-decreasing). Finally (iii) of (a) follows from the requirement $\lim F(t)=0$.

Conversely it is easily seen that any function F of the form described in (a) is a distribution function whose corresponding characteristic function φ satisfies the functional equation $\varphi(z) = \varphi(a_1 z - ib_1)/\varphi(-ib_1)$.

5. The infinitely divisible cases

5.1. LEMMA 2. Let

$$L_1 \! = \! \inf_{m \geq 1} \min_{(j_1, \dots, j_m)} \left(b_{j_1} a_{j_2} \! \cdots a_{j_m} \! + \! b_{j_2} a_{j_3} \! \cdots a_{j_m} \! + \! \cdots \! + \! b_{j_m} \right) \! > \! - \! \infty$$

and

$$L_2 = \sup_{m \ge 1} \max_{(j_1, \dots, j_m)} (b_{j_1} a_{j_2} \dots a_{j_m} + b_{j_2} a_{j_3} \dots a_{j_m} + \dots + b_{j_m}) < \infty$$

where the minimum and maximum extend over all m-vectors (j_1, \dots, j_m) with $1 \le j_k \le n$, $1 \le k \le m$. Suppose that $\int_{(-\infty,\infty)} \exp(xL_1)P_0(dx)$ and $\int_{(-\infty,\infty)} \exp(xL_2)P_0(dx)$ are both finite. Then φ is an infinitely divisible characteristic function.

PROOF. The proof of this lemma is elementary and is omitted.

LEMMA 3.

- (a) If $\rho_1 < \infty$ then $L_2 = \rho_1$.
- (b) If $\rho_2 < \infty$ then $L_1 = -\rho_2$.

PROOF. The lemma follows from Theorem 1 and the corollary.

5.2. The cases which give rise to infinitely divisible families are those for which $\rho_1 = \infty$ or $p_1 \ge 2$ together with $\rho_2 = \infty$ or $p_2 \ge 2$. We require the following lemma.

LEMMA 4.

(a) If
$$\rho_1 = \infty$$
 or $p_1 \ge 2$ then $\int_{(-\infty,\infty)} \exp(L_2 x) P_0(dx) < \infty$.

(b) If
$$\rho_2 = \infty$$
 or $p_2 \ge 2$ then $\int_{(-\infty,\infty)} \exp(L_1 x) P_0(dx) < \infty$.

PROOF. We prove only case (a). If $\rho_1 = \infty$ we have $-\rho_2 < L_2 < \rho_1$ and hence from (4) and (5) we conclude that (a) of the lemma holds in this case. We may therefore suppose that $0 < \rho_1 < \infty$ and that $p_1 \ge 2$. Let $\psi(x)$ be the moment generating function of X as defined by (14) where F is the distribution function of X. It is clear that $\psi(x) > 0$ for $-\rho_2 < x < \rho_1$ and that ψ satisfies the functional equation

(28)
$$\phi(x) = \prod_{j=1}^{n} \phi(a_{j}x + b_{j})/\phi(b_{j}) , \qquad -\rho_{2} < x < \rho_{1} .$$

Let $\eta(x) = (d^2/dx^2) \log \psi(\rho_1 - x)$ for $0 < x < \rho_1 + \rho_2$ and note that $\eta(x) > 0$. Then the one can show that $\sum_{j=1}^{p_1} a_j^2 < 1$ and

(29)
$$\eta(x) = \eta_0(x) + \sum_{s=1}^{\infty} \left(\sum_{j_1=p_1+1}^{n} \sum_{j_2=1}^{p_1} \cdots \sum_{j_s=1}^{p_1} a_{j_1}^2 \cdots a_{j_s}^2 \eta(a_{j_1} \cdots a_{j_s} x + c_{j_1}) \right)$$

$$= \eta_0(x) + R_0(x)$$

where $c_j = (1-a_j)\rho_1 - b_j > 0$, $p_1 + 1 \le j \le n$, $\sup_{\substack{0 < x < \rho_1 + \rho_2 - \epsilon \\ p_1}} R_0(x) < \infty$ for all ε satisfying $0 < \varepsilon < \rho_1 + \rho_2$, and $\eta_0(x) = \lim_{m \to \infty} \sum_{j_1 = 1}^{p_1} \cdots \sum_{j_m = 1}^{m} a_{j_1}^2 \cdots a_{j_m}^2 \eta(a_{j_1} \cdots a_{j_m} x)$ is continuous and satisfies the functional equation

(30)
$$\eta_0(x) = \sum_{j=1}^{p_1} a_j^2 \eta_0(a_j x) , \quad x > 0 .$$

The general non-negative right-continuous solution of the functional equation (30) is given by Theorem 1 and Lemma 1 (including the footnote) of [2] and is as follows:

$$\eta_0(x) = x^{-\beta_1} \Delta(x)$$

where β_1 is such that $\sum_{j=1}^{p_1} \alpha_j^{2-\beta_1} = 1$ and where $\Delta(x) \equiv \text{constant}$ if $(a_1, \dots, a_{p_1}) \in \mathfrak{A}(0, p_1)$ and $\Delta(\alpha_1 x) = \Delta(x)$ if $(a_1, \dots, a_{p_1}) \in \mathfrak{A}(\alpha_1, p_1)$. In either case $\Delta(x)$ is bounded and as $p_2 \geq 2$ it follows from $p_1 \geq 2$ and $\sum_{j=1}^{p_1} a_j^2 < 1$ that $0 < \beta_1 < 2$. We obtain

(32)
$$\eta(x) < K_1 x^{-\beta_1} + K_2$$
, $0 < x < \rho_1$

and hence

$$\psi(x) < \exp(K_3(\rho_1-x)^{2-\beta_1}+K_4)$$
, $0 < x < \rho_1$.

As $\beta_1 < 2$ this implies $\lim_{x \uparrow \rho_1} \phi(x) < \infty$ and hence from Fatou's lemma we conclude

$$\int_{(-\infty,\infty)} \exp(\rho_i t) F(dt) < \infty.$$

As $L_2 = \rho_1$ by Lemma 3 part (a) of the lemma is proved.

LEMMA 5. The characteristic function φ is infinitely divisible in all of the following cases: $(2: \infty: \infty)$, $(2: \infty: \rho_2, p_2, \mathfrak{A}(\alpha_2, p_2))$, $(2: \rho_1, p_1, \mathfrak{A}(\alpha_1, p_1): \infty)$, $(2: \rho_1, p_1, \mathfrak{A}(\alpha_1, p_1): \rho_2, p_2, \mathfrak{A}(\alpha_2, p_2))$.

PROOF. This is an immediate consequence of Lemmas 2 and 4.

5.3. According to the Kolmogorov representation for analytic infinitely divisible characteristic functions we may write with the usual notation

(33)
$$\varphi(z) = \exp\left(i\mu z - \frac{1}{2}\sigma^{2}z^{2} + \int_{(-\infty,0)} (\exp(izu) - 1 - izu) \frac{M(du)}{u^{2}} + \int_{(0,\infty)} (\exp(izu) - 1 - izu) \frac{N(du)}{u^{2}}\right).$$

THEOREM 4.

- (a) If min $(\rho_1, \rho_2) < \infty$ then $\sum_{j=1}^{n} \alpha_j^2 < 1$.
- (b) The general form of M is as follows:
- (i) If $\rho_2 = \infty$ then $M(u) \equiv 0$

(ii) If
$$\rho_2 < \infty$$
 then $M(u) = \sum_{s=0}^{\infty} \int_{(-\infty,u)} \exp(\rho_2 v) K_s(dv)$, $-\infty < u < 0$,

where (1) $K_0(u) = -|u|^{\alpha} \Gamma_0(u)$, (2) α , $0 < \alpha < 2$, is such that $\sum_{j=1}^n a_j^{2-\alpha} = 1$, (3) $\Gamma_0(u) \equiv constant > 0$ if $(a_{n-p_2+1}, \dots, a_n) \in \mathfrak{A}(0, p_2)$, (4) $\Gamma_0(\alpha_2 u) = \Gamma_0(u) > 0$ for all u < 0 if $(a_{n-p_2+1}, \dots, a_n) \in \mathfrak{A}(\alpha_2, p_2)$ with $\alpha_2 > 0$, (5) $K_0(u)$ is non-decreasing and right-continuous, $-\infty < u < 0$, and (6) the $K_s(u)$ are defined recursively by

$$K_{s+1}(u) = \sum_{t=1}^{\infty} \left(\sum_{j_1=1}^{n-p_2} \sum_{j_2=n-p_2+1}^{n} \cdots \sum_{j_t=n-p_2+1}^{n} a_{j_1}^2 \cdots a_{j_t}^2 \right) \\ \cdot \int_{[u/(a_{j_1} \cdots a_{j_s}),0)} \exp(v((1-a_{j_1})\rho_2 + b_{j_1})) K_s(dv) .$$

- (c) The general form of N(u) is as follows:
- (i) If $\rho_1 = \infty$ then $N(u) \equiv 0$.
- (ii) If $\rho_1 < \infty$ then

$$N(u) = \sum_{s=0}^{\infty} \int_{(0,u]} \exp(-\rho_1 v) L_s(dv)$$
, $0 < u < \infty$,

where (1) $L_0(u) = u^{\alpha} \Delta_0(u)$, u > 0, (2) α , $0 < \alpha < 2$, is such that $\sum_{j=1}^n a_j^{2-\alpha} = 1$, (3) $\Delta_0(u) \equiv constant > 0$ if $(a_1, \dots, a_{p_1}) \in \mathfrak{A}(0, p_1)$, (4) $\Delta_0(a_1 u) = \Delta_0(u) > 0$ for all u > 0 if $(a_1, \dots, a_{p_1}) \in \mathfrak{A}(\alpha_1, p_1)$ with $\alpha_1 > 0$, (5) $L_0(u)$ is non-decreasing and right-continuous and (6) the $L_s(u)$ are defined recursively by

$$\begin{split} L_{s+1}(u) &= \sum_{t=1}^{\infty} \left(\sum_{j_1=p_1+1}^{n} \sum_{j_2=1}^{p_1} \cdots \sum_{j_t=1}^{p_1} a_{j_1}^2 \cdots a_{j_t}^2 \right) \\ &\cdot \int_{(0,u/(a_{j_1}\cdots a_{j_s}))} \exp\left(-(\rho_{\mathbf{I}}(1-a_{j_1})-b_{j_1})v \right) L_{\mathbf{I}}(dv) \;. \end{split}$$

The proof of part (a) is simple. The proof of part (c) and hence also of part (b) is similar to the proof of Theorem 6 below. The functions θ_s'' and θ'' are replaced by the Laplace transforms \tilde{L}_s and \tilde{L} of certain Lebesgue-Stieltjes functions, thus for example, \tilde{L} denotes the Laplace transform of the Lebesgue-Stieltjes function

$$L(\nu) = \int_{(0,\nu]} \exp(\rho_1 u) N(du).$$

We omit the details.

The results of this section can be summarized as follows:

THEOREM 5. For the cases $(2: \rho_1, p_1, \mathfrak{A}(\alpha_1, p_1): \infty)$, $(2: \infty: \rho_2, p_2, \mathfrak{A}(\alpha_2, p_2))$ and $(2: \rho_1, p_1, \mathfrak{A}(\alpha_1, p_1): \rho_2, p_2, \mathfrak{A}(\alpha_2, p_2))$ the following hold:

- (a) $\sum_{j=1}^n a_j^2 < 1,$
- (b) the characteristic function φ is infinitely divisible with $\sigma^2=0$ and Levy functions M and N as described in Theorem 4.
- 6. The cases $(2:
 ho_{\scriptscriptstyle 1}:\infty)$ and $(2:\infty:
 ho_{\scriptscriptstyle 2})$

THEOREM 6.

(a) The general form of $\varphi(z)$ for the case $(2: \rho_1: \infty)$ is given by

$$\varphi(z) = \exp(i\mu z) \prod_{s=0}^{\infty} (\varphi_s(z) \exp(-i\mu_s z))$$

where

- (i) $\varphi_0(z)$ is the general solution for the case (1: $\rho_1:\infty$),
- (ii) the $\varphi_s(z)$ are defined recursively by

$$\varphi_{s+1}(z) = \prod_{t=0}^{\infty} \prod_{j=2}^{n} \left(\frac{\varphi_{s}(a_{j}(a_{1}^{t}z - i\rho_{1}(1 - a_{1}^{t})) - ib_{j})}{\varphi_{s}(-ia_{j}\rho_{1}(1 - a_{1}^{t}) - ib_{j})} \right)$$

(iii) μ_s and μ are respectively the means of the distributions associated with φ_s and φ .

(iv)
$$\sum_{j=1}^n a_j^2 < 1.$$

(b) The general form of $\varphi(z)$ for the case $(2: \infty : \rho_2)$ is as in (a) above where however $\varphi_0(z)$ is now the general solution for the case $(1: \infty : \rho_2)$ and where a_1 and a_n and ρ_1 and $-\rho_2$ are interchanged.

PROOF. We restrict ourselves to a proof of part (a) of the theorem. Again denoting the moment-generating function of the distribution associated with φ by $\phi(x)$ we have

(34)
$$\phi(x) = \frac{\phi(a_1x + b_1)}{\phi(b_1)} \prod_{j=2}^{n} \frac{\phi(a_jx + b_j)}{\phi(b_j)} , \quad x < \rho_1 .$$

On iterating the first term only m times and on remembering $\rho_1 = b_1/(1-a_1)$ we obtain

(35)
$$\phi(x) = \frac{\phi(a_1^m x + \rho_1(1 - a_1^m))}{\phi(\rho_1(1 - a_1^m))} \prod_{s=0}^{m-1} \prod_{j=2}^n \frac{\phi(a_j(a_1^s x + \rho_1(1 - a_1^s)) + b_j)}{\phi(a_j \rho_1(1 - a_1^s) + b_j)} .$$

As $0 < a_i < 1$ the mean value theorem implies

(36)
$$\lim_{m\to\infty} \prod_{s=0}^{m-1} \prod_{j=2}^{n} \left(\frac{\phi(a_{j}(a_{1}^{s}x+\rho_{1}(1-a_{1}^{s}))+b_{j})}{\phi(a_{j}\rho_{1}(1-a_{1}^{s})+b_{j})} \right) = \chi_{0}(x)$$

exists for all $x < \varphi_1$. From (35) it follows at once that

(37)
$$\lim_{m \to \infty} \frac{\phi(a_1^m x + \rho_1(1 - a_1^m))}{\phi(\rho_1(1 - a_1^m))} = \phi_0(x)$$

exists and from the results given in [1] we may conclude that $\psi_0(x)$ is the moment generating function of a probability distribution and is defined for all $x < \rho_1$. Furthermore, it is easily seen that $\psi_0(x)$ satisfies the functional equation

(38)
$$\phi_0(x) = \phi_0(a_1x + b_1)/\phi_0(b_1) .$$

We may therefore write

$$\phi(x) = \phi_0(x) \chi_0(x) .$$

In general we obtain

(39)
$$\phi(x) = \prod_{s=0}^{m} \phi_s(x) \chi_m(x)$$

where χ_m and ϕ_s , $0 \le s \le m$, are moment generating functions and are defined recursively by

(40)
$$\psi_{s+1}(x) = \prod_{i=0}^{\infty} \prod_{j=2}^{n} \left(\frac{\psi_{s}(a_{j}(a_{1}^{i}x + \rho_{1}(1 - a_{1}^{i})) + b_{j})}{\psi_{s}(a_{j}\rho_{1}(1 - a_{1}^{i}) + b_{j})} \right), \qquad x < \rho_{1},$$

and

(41)
$$\chi_{s+1}(x) = \prod_{i=0}^{\infty} \prod_{j=2}^{n} \left(\frac{\chi_{s}(a_{j}(a_{1}^{i}s + \rho_{1}(1 - a_{1}^{i})) + b_{j})}{\chi_{s}(a_{j}\rho_{1}(1 - a_{1}^{i}) + b_{j})} \right), \quad x < \rho_{1}.$$

On writing $\theta_s(x) = \log \phi_s(s)$, $0 \le s < \infty$, we conclude that

(42)
$$\theta_{s+1}^{"}(x) = \sum_{t=0}^{\infty} a_1^2 \sum_{j=2}^{n} a_j^2 \theta_s^{"}(a_j^t x + \rho_1(1 - a_1^t)) + b_j)$$

and that

(43)
$$\theta_0''(x) = \lim_{m \to \infty} a_1^{2m} \theta''(a_1^m + \rho_1(1 - a_1^m))$$

where $\theta(x) = \log \phi(x)$.

With $\theta(x)$ as defined above (34) implies

$$\theta''(x) = a_1^2 \theta''(a_1 x + b_1) + \sum_{j=2}^n a_j^2 \theta''(a_j x + b_j)$$
.

We obtain after some calculation

(44)
$$\theta''(x) = \sum_{s=0}^{m} g_s(x) + R_s(x)$$

where

(45)
$$g_0(x) = \lim_{m \to \infty} a_1^{2m} \theta''(a_1^m x + \rho_1(1 - a_1^m)),$$

(46)
$$R_0(x) = \sum_{t=0}^{\infty} a_1^{2t} \sum_{j=2}^{n} a_j^2 \theta''(a_j^t x + \rho_1(1 - a_1^t)) + b_j)$$

and where the g_s and R_s are defined recursively by

(47)
$$g_{s+1}(x) = \sum_{t=0}^{\infty} a_1^{2t} \sum_{j=2}^{n} a_j^2 R_s(a_j(a_1^t x + \rho_1(1 - a_1^t)) + b_j)$$

and

(48)
$$R_{s+1}(x) = \sum_{t=0}^{\infty} a_1^{2t} \sum_{i=1}^{n} a_j^2 R_s(a_j(a_1^t x + \rho_1(1-a_1^t)) + b_j).$$

It follows at once from (42), (43), (44) and (47) that $g_s(x) = \theta''_s(x)$ for all $x < \rho_1$ and all s > 0. As $\theta''(x) > 0$ for all $x < \rho_1$ it follows that $\theta''_s(x) > 0$ and $R_s(x) > 0$ for all $x < \rho_1$ and all s > 0. From this and (44) we conclude that $\sum_{s=0}^{\infty} \theta''_s(x)$ converges for all $x < \rho_1$ and that $\lim_{s \to \infty} R_s(x) = R(x)$ exists for all $x < \rho_1$. We may therefore write

(49)
$$\theta''(x) = \sum_{s=0}^{\infty} \theta_s''(x) + R(x) .$$

It may be shown that $R(x)\equiv 0$ if $\sum_{j=1}^{n}a_{j}^{2}<1$ and that $R(x)\equiv \text{constant}$ if $\sum_{j=1}^{n}a_{j}^{2}=1$. However, in the latter case we would have $\phi(x)=\exp(\lambda_{0}+\lambda_{1}x+\lambda_{2}x^{2})$ which would contradict the assumption that $\rho_{1}<\infty$. We therefore conclude that $\sum_{j=1}^{n}a_{j}^{2}<1$ and that

(50)
$$\theta''(x) = \sum_{i=0}^{\infty} \theta_i''(x) , \quad -\infty < x < \rho_1.$$

Since term by term integration is permissible we obtain

$$\phi(x) = \exp(\mu x) \prod_{s=0}^{\infty} (\phi_s(x) \exp(-\mu_s x))$$

where $\mu_s(\mu)$ denotes the mean of the distribution associated with $\varphi_s(\phi)$. On translating these results back into terms of φ we obtain part (a) of the theorem.

7. The cases with $\max(\rho_1, \rho_2) < \infty$ and $\min(p_1, p_2) = 1$

The remaining cases are covered by our final theorem.

THEOREM 7.

(a) The general form of $\varphi(z)$ for the case $(2: \rho_1: \rho_2)$ is given by

$$\varphi(z) = \varphi_1(z)\varphi_2(z)$$

where $\varphi_1(z)$ and $\varphi_2(z)$ are the general forms of $\varphi(z)$ for the cases $(2: \rho_1: \infty)$ and $(2: \infty: \rho_2)$ respectively.

(b) The general form of $\varphi(z)$ for the case $(2: \rho_1: \rho_2, p_2, \mathfrak{A}(\alpha_2, p_2))$ is given by

$$\varphi(z) = \varphi_1(z)\varphi_2(z)$$

where $\varphi_1(z)$ and $\varphi_2(z)$ are the general forms of $\varphi(z)$ for the cases $(2: \rho_1: \infty)$ and $(2: \infty: \rho_2, \rho_2, \mathfrak{A}(\alpha_2, \rho_2))$ respectively.

(c) The general form of $\varphi(z)$ for the case $(2: \rho_1, p_1, \mathfrak{A}(\alpha_1, p_1): \rho_2)$ is given by

$$\varphi(z) = \varphi_1(z)\varphi_2(z)$$

where $\varphi_1(z)$ and $\varphi_2(z)$ are the general forms of $\varphi(z)$ for the cases (2: ρ_1 , p_1 , $\mathfrak{A}(\alpha_1, p_1)$: ∞) and (2: ∞ : ρ_2) respectively.

(d) In all cases we have $\sum_{j=1}^{n} a_j^2 < 1$.

PROOF. We restrict ourselves to proofs of parts (a) and (d) of the theorem.

Arguing as in the proof of Theorem 6 we obtain

$$\phi(x) = \chi_0(x)\eta_0(x)$$
, $-\rho_2 < x < \rho_1$,

where $\eta_0(x)$ is a moment generating function which satisfies the functional equation (38) for $-\rho_2 < x < \rho_1$. Obviously $\eta_0(x)$ may be extended to a moment generating function which is defined for all $x < \rho_1$ and which satisfies the functional equation (38).

In general we obtain as in the proof of Theorem 6

(51)
$$\phi(x) = \chi_m(x) \prod_{s=0}^m \eta_s(x) , \qquad -\rho_2 < x < \rho_1 ,$$

where the moment generating function $\eta_0(x)$ is a general solution of (38) and is defined for all $x < \rho_1$. The moment generating functions χ_s are recursively defined by (36) and (41) and the moment generating functions η_s are defined recursively by

(52)
$$\eta_{s+1}(x) = \prod_{t=0}^{\infty} \prod_{j=2}^{n} \left(\frac{\eta_s(a_j(a_1^t x + \rho_1(1-a_1^t)) + b_j)}{\eta_s(a_j \rho_1(1-a_1^t) + b_j)} \right)$$

and are defined for all $x < \rho_i$. The infinite product in (36) converges for all x satisfying

$$-\rho_2 < x < \rho_1 + \min_{\substack{2 \le j \le n}} ((\rho_1(1-a_j) - b_j)/a_j)$$

and it follows by induction that $\chi_i(x)$ is defined at least for all x satisfying

(53)
$$-\rho_2 < x < \rho_1 + c \sum_{j=1}^{s+1} a^{-j}.$$

Similarly the $\eta_s(x)$, $s \ge 1$, are defined at least for all x satisfying $-\infty < x < \rho_1 + c \sum_{i=1}^s a^{-i}$ respectively.

From (51) we have

(54)
$$\chi_m(x) = \eta_{m+1}(x)\chi_{m+1}(x) , \quad -\rho_2 < x < \rho_1$$

and hence

(55)
$$\chi_m(x) = \eta_{m+1}(x)\chi_{m+1}(x) , \qquad -\rho_2 < x < \rho_1 + c \sum_{j=1}^m a^{-j} .$$

On setting $\theta(x) = \log \phi(x)$, $\theta_s(x) = \log \eta_s(x)$, and $\lambda_s(x) = \log \chi_s(x)$, s > 0, we obtain from (55)

(56)
$$\lambda_m''(x) = \theta_{m+1}''(x) + \lambda_{m+1}''(x) , \qquad -\rho_2 < x < \rho_1 + c \sum_{j=1}^m a^{-j} .$$

The functions η_s and $\chi_s(x)$, s>0, are all moment generating functions and hence the $\lambda_s''(x)$ and $\theta_s''(x)$ are non-negative. This combined with (56) implies that $\lambda_m''(x) \ge \lambda_{m+1}''(x) \ge 0$ for all x satisfying $-\rho_2 < x < \rho_1 + c \sum_{j=1}^m a^{-j}$ so that

$$\lambda''(x) = \lim_{m \to \infty} \lambda_m''(x)$$

exists for all $x > -\rho_2$.

From (51) we obtain

$$\theta''(x) = \sum_{s=0}^{m} \theta''_s(x) + \lambda''_m(x)$$
, $-\rho_2 < x < \rho_1$,

and hence

(58)
$$\theta''(x) = \sum_{s=0}^{\infty} \theta_s''(x) + \lambda''(x) , \qquad -\rho_2 < x < \rho_1 .$$

Again as in the proof of Theorem 6 the convergence of $\sum_{s=0}^{\infty} \theta_s''(x)$ implies $\sum_{s=0}^{\infty} a_j^2 < 1$ which proves (d) of the theorem.

For all K sufficiently large such that $-K \leq -a_jK + b_j$, $j=1,\dots,n$ we have

$$\sup_{-K < x < \rho_1} \theta_s''(x) < \left(\left(\sum_{j=2}^n a_j^2 \right) / (1 - a_j^2) \right)^s \sup_{-K < x < \rho_1 - c} \theta_0''(x)$$

and as $\sup_{-K < x < \rho_1 - c} \theta_0''(x) < \infty$ we may deduce that $\sum_{s=0}^{\infty} \theta_s''(x) < \infty$ for all $x < \rho_1$. This implies that the infinite product

(59)
$$\prod_{s=0}^{\infty} (\eta_s(x) \exp(-\mu_s x))$$

converges for all x satisfying $-\infty < x < \rho_1$. Part (a) of Theorem 6 implies the existence of a μ such that if

(60)
$$\phi_1(x) = \exp(\mu x) \prod_{s=0}^{\infty} (\eta_s(x) \exp(-\mu_s x))$$

that $\phi_1(x)$ satisfies the functional equation

Similarly the fact that the $\lambda''_n(x)$ are monotone decreasing and that $\lambda''(x)$ as given by (58) exists for all $x > -\rho_2$ implies that there exists a sequence $(\gamma_m)_1^{\infty}$ such that

(62)
$$\chi(x) = \lim_{m \to \infty} \chi_m(x) \exp(-\gamma_m x)$$

exists for all $x > -\rho_2$. As the χ_m are moment generating functions this implies that $\chi(x)$ is also a moment generating function. On combining this with (51) and (59) we deduce that

$$\phi(x) = \exp(-\gamma x)\chi(x) \prod_{s=0}^{\infty} (\chi_s(x) \exp(-\mu_s x))$$
$$= \exp(-\delta x)\chi(x)\phi_1(x) , \qquad -\rho_2 < x < \rho_1 .$$

As $\phi_1(x)$ and $\phi(x)$ satisfy the functional equation (61) for all x satisfying $-\rho_2 < x < \rho_1$, it follows that

$$\phi_2(x) = \exp(-\delta x)\chi(x)$$

also satisfies (61) for $-\rho_2 < x < \rho_1$.

However, as $\phi_2(x)$ is a moment generating function which is defined for all $x > -\rho_2$ it follows via Lemma 1 that $\phi_2(x)$ satisfies (61) for all $x > -\rho_2$. We have therefore shown that

$$\phi(x) = \phi_1(x)\phi_2(x)$$
, $-\rho_2 < x < \rho_1$,

where $\psi_1(x)$ and $\psi_2(x)$ are moment generating functions defined for all $x < \rho_1$ and $x > -\rho_2$ respectively and which satisfy the functional equation

$$\phi_i(x) = \prod_{j=1}^n \frac{\phi_i(a_jx+b_j)}{\phi_i(b_j)}, \quad i=1,2,$$

for $x < \rho_1$ and $x > -\rho_2$ respectively. On translating these results into terms of the respective characteristic functions we obtain part (a) of the theorem.

Universität Essen

WESTFÄLISCHE WILHELMS-UNIVERSITÄT

REFERENCES

- Curtiss, J. H. (1942). A note on the theory of moment generating functions, Ann. Math. Statist., 13, 430-433.
- [2] Davies, L. and Shimizu, R. (1976). On identically distributed linear statistics, Ann. Inst. Statist. Math., 28, A, 469-489.
- [3] Feller, W. (1966). An Introduction to Probability Theory and Its Applications, Wiley, New York.
- [4] Linnik, Ju. V. (1962). Linear forms and statistical criteria I, I.M.S. and A.M.S. Selected Translations in Mathematical Statistics, 3, 1-40.
- [5] Linnik, Ju. V. (1962). Linear forms and statistical criteria II, I.M.S. and A.M.S. Selected Translations in Mathematical Statistics, 3, 41-90.
- [6] Lukacs, E. (1970). Characteristic Functions, Griffin, London, 2nd Edition.
- [7] Ramachandran, B. (1967). Advanced Theory of Characteristic Functions, Statistical Publishing Society Calcutta.

- [8] Ramachandran, B. and Rao, C. R. (1968). Some results on characteristic functions and characterizations of the normal and generalized stable laws, Sankhya, A, 30, 125-140.
- [9] Ramachandran, B. and Rao, C. R. (1970). Solutions of functional equation arising in some regression problems and a characterization of the Cauchy law, Sankhya, A, 32, 1-30.
- [10] Shimizu, R. (1968). Characteristic functions satisfying a functional equation (I), Ann. Inst. Statist. Math., 20, 187-209.