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Summary

For survival data with several concomitant (regressor) variables a
large sample non-parametric procedure is presented which provides sig-
nificance tests of hypotheses about a subset of the concomitant variables.
This non-iterative procedure resembles linear model methodology in
simplicity and form. The method is useful to eliminate unimportant
concomitant variables prior to estimation of model parameters.

1. Introduction

In multiparameter experiments we are often mainly interested in
some composite hypothesis in which only a subset of the parameters
are specified. Parametric formulations, particularly the general linear
model, have provided a unified approach to significance tests in the pres-
ence of nuisance parameters. Non-parametric methods, however, are
considerably more restrictive in their applicability to this kind of prob-
lem. Extant non-parametric methods require either a designed experi-
ment (e.g., a two-way layout such as random blocks and treatments)
(see e.g., Friedman [7], Kruskal [12], Bhapkar [1]), or (iterative) tech-
niques to eliminate nuisance parameter effects (see e.g., Puri and Sen
[14]). One major area of application of non-parametric methodology has
been in the analysis of lifetime data. Increasingly, however, multi-
parameter survival problems arise which do not lend themselves to anal-
ysis using either of the above non-parametric methodologies. For a
special but important subset of survival models, Cox [3] has given a
formulation in which the overall effect of the complete set of param-
eters may be tested using linear rank statistics. The purpose of this
paper is to show that the general formulation of survival models as
given by Cox can be used to provide large sample tests of composite
hypothesis using linear rank methodology. This non-iterative approach
is based on the work of Hajek [8] and Hoeffding [10]. We will see
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that the resulting methodology resembles the parametric linear model
approach both in form and in simplicity.

In the next section of this paper, the Cox model is reviewed. It
is assumed a priori that the concomitant variables are random variables,
the realizations of which are inputs to the survival function. In the
third section the test statistic is presented in a general form. The
statement of assumptions, the preliminaries, and the proof for the re-
sults for the two parameter case are given in subsequent sections.

2. Cox survival model

Recently, increased interest has been given to the use of concomi-
tant variables (covariables) which characterize experimental units (e.g.,
patients). In addition to the treatment received, concomitants, such as
for example, weight, sex, and blood pressure, will often play a role in
the probable lifetime of a patient. Several researchers have studied
survival methodology in the presence of concomitants. Of these, Cox
[3] gives a ‘likelihood’ type formulation which provides a fertile basis
for analyzing survival data.

The formulation of Cox [3] for failure models is given as follows.
Consider an experiment in which the failure time, or censoring time, is
observed for each of n individuals. Suppose, in addition, that a set of
p concomitants Z'=(Z,,---, Z,) is observed for each individual. These
can be regressor type variables such as age or dose level, or indicator
variables. Following Cox, it is assumed that the relationship between
the realizations z of Z to the failure time density function is expressed
in the hazard function as

(1) At, 2)=2(t) exp (z'B) ,

where B is a vector of unknown coefficients. Let R(f;) be the set of
labels attached to the individuals at risk just prior to time ¢, i.e., in-
dividuals who have neither failed nor been censored prior to time ¢,.
Assuming that censoring is independent of failure time, Cox modeled
the likelihood of failure at time ¢, as conditional on the set of individ-
uals whose failure or censoring time is at least ¢;. Explicitly, the likeli-
hood associated with the 7th failure conditional on R(t,) is

l,= exp (2(»* B) .
(2) S exp(@-B)

LeR(ty

The resulting “likelihood ”, L=]:Tli, gives the likelihood estimating

equations
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(3) L _UB=31Ga—A)  L=L2-,p
B =1
where 7 is the number of observed failures, and
> zcexp(zip)
(4) Aicz lER(Zi)
> exp(zip)
LeR(li)

The Fisher information matrix is given by

(5) IB) ={L/(B)} ,

where
LB=X P KO ER)
A= 3., XP (#B) o

Under mild conditions the “maximum likelihood ” estimate, 8, of g will
be asymptotically normally distributed with covariance matrix I-'(5)
where B, obtains (see Cox [4]). Hence the statistic U'(8,)=(Ui(B:),- -,
U,(By)) is asymptotically multinormal with covariance matrix I(8,) when
By obtains. Under the global hypothesis H,: g,=8,=---=8,=0 and (1)
above, the statistic

(6) Q:=U"(0)I"'(0)U(0)

has asymptotically a chi-square distribution.
To relate this model to linear rank statistics, let us view the prob-
lem in a different perspective. Write equation (3) as

(7) M(ﬂ):é‘:z(i)c 1_ E eXp(zzi)ﬁ) Czl, 2'___,1).
i=1 ( J:RjSRy ze%j(tj) exp (z{ﬂ) )

In this form, if we put 8=0 then U/(B) is a simple linear rank statistic
with regressor variable z, and score function

N exp (z(i)ﬂ)
(8) a“»'i‘(R') 1 J:’%Ri <z %(] )eXp (2:.8) ) ,
€ R(t5

where R, is the rank of the failure time ¢; associated with z; among
all the failures. This linear rank relationship and resulting connection
with log rank tests has been pointed out by several researchers (see
e.g., Downton [6] and Crowley [5]).
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3. Tests of a general composite hypothesis

Consider now the composite or partial null hypothesis which specifies
only a subset of the parameters as null, ie., H;: gi==---=§,=0,
where r<p. To form the test, let V be the estimated covariance ma-
trix of the observed concomitants z;, 1=1,---, n, from a sample of size
n. Let PP'=V-' where P is a lower triangular matrix and V-! is as-
sumed to exist. Let P be partitioned as

(9) P=[P, Pj],

where P, is a pXr matrix and P, is a pX(p—7r) matrix. Then, the
multiparameter corollary of Lemma 1, given below, states that, under
certain assumptions, the statistic

(10) Q:=U'(0)P,(P/I(0)P,)"'P/U(0)

has asymptotically a (central) chi-square distribution when H, holds.
Consequently, for large samples, significance tests for the partial null
hypothesis H, can be simply formed using (10). In the following we
make the foregoing more exact for the case p=2 and r=1.

4. Preliminaries

Let Z=(X,Y) be a random vector of concomitant variables which
has a bounded range and cumulative distribution function G(z, ) such
that the second moments of X and Y are non-null, and the covariance
of X and Y is zero. Let T; be a random variable with continuous
cumulative distribution function F(¢, Bz, B;4:), where z, and y, are re-
alizations of X and Y. F' is assumed to be absolutely continuous and
such that all second partial derivatives of 3F/dt with respect to x and
y are continuous. For a sample of n realizations of T, denoted by
{t.}, let R, be the rank of ¢, among ({,-:-,t,).

Define the regressors cf=c¥(x;) as functions of outcomes z; and let

(11) cinzc;':z—an ’
where

n
c,,=n"z2l ck .

Define the score a,(t) which is generated by the function ¢(¢), 0<t<1
in one of the following two ways:

(12 a,)=p(
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or
(13) a.(1)=E ¢(U™) ,

where U™ represents the ith order statistic from a sample of size =

from a uniform distribution over (0, 1). The score function ¢(-) will be
made more explicit below.

The test statistic of interest is based on the simple linear rank
statistic

(14) S=31 cutu(R) -

To show the asymptotic normality for a given fixed sequence z;=(x,, %),
1=1,.-+, of outcomes, we make the following assumptions.

ASSUMPTION 1. ¢(t)=¢,(t)—g¢s(t), 0<t<1, where ¢(t) and ¢,(t) are
both non-decreasing, square integrable, and absolutely continuous inside
0, 1).

AssuMPTION 2. For any 7>0 there exists an N, such that for all
n>N,

(15) Var (S)>yn i ct, .
i=1
ASSUMPTION 3.
(16) [ era—tapm<eo, k=12,
0

Then, (conditional upon the sequence of realizations z;, i=1,-..) the
following theorem proved by Hajek [8] (Theorem 2.3) holds.

THEOREM 1 (Hajek). Under Assumptions 1 and 2, for every >0
and >0 there is an N,, such that for n>N,,

1 sup | Pr (S—E S<x-d)—(2x)" Sm exp (—y2)dy| <e ,
where
#=31c | (@e)—prat
and
—_ 1
g=|, aitrit .

To determine the value of ES we have the following theorem by
Hoeffding [10].
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THEOREM 2 (Hoeftding). Under Assumptions 1, 2 and 3, Hajek’s
result (17) holds when E S s replaced by

(18) #

Stea | HHOWFE 26, v6)
where

HO)=— 3 F(t, 2.6, 6 -

Since Hajek’s useful result is conditional upon any sequence z; satis-
fying the three assumptions, an immediate corollary can be seen by
making the following additional definition and assumption. Let F“ be
the sigma field of all possible series of outcomes of z,,2,,---. Let A,¢
F“ be such that for n=n,, and fixed » all possible series of outcomes
whose first n components do not satisfy Assumption 2 are elements of
A (complement of A,). Due to the strong law of large numbers, the
measure of A4, is greater than 1—a, for some positive sequence of num-
bers a, monotonically decreasing to zero as 7 increases.

ASSUMPTION 4. A, is compact for any 7.

COROLLARY. Under Assumptions 1, 3 and 4, equation (17) holds
unconditional upon the outcomes of Z. In addition, ES may be replaced
by Hoeffding’s centering constant (18).

OUTLINE OF PROOF. For a fixed 5, a value n, can be fixed such
that given some series of possible outcomes, say 0 € 4,, n>n,, the the-
orem above holds for any fixed ¢>0 with E S=g.

Assumption 4 implies that for ¢>0, there exists an N, such that for
n>N,

(19)  sup sup| Pr (S,—E S,<wd,)—(2r)"" Sw exp (—y2/2)dy‘ <e.

Thus
(20) Pr {sup i Pr (S—E S<wd)— (21)~"* S’” exp (—y2/2)dy‘ < e} Sl—a, .

Hence asymptotically the linear rank statistic is distributed as a nor-
mal variable since a,—0 as n— oco.

5. Testing a composite hypothesis

Using a rank statistic, the hypothesis that the score function a(r)
in (8) associated with 2., is ‘independent’ of the value of 2., may be
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tested in small samples by enumeration of the values of U(j) and in-
voking the permutation argument to determine the exact size of the
test (see Hajek and Sidak [9]). It is important to note, however, that
the ‘independence’ of z., with a(R,) is not equivalent to the hypothesis
that B,=0 unless Z,, and Z,, are independent. Large sample ap-
proximate chi-square tests can also be formed. (See e.g., Puri and Sen
[14)).

To test the composite hypothesis H,: §,=0 we would anticipate
from Cox’s global formulation that a test statistic would be of the form

(21) S.s=Ul(B)=3 (&—F)a.,(R)

as defined above by setting 8=0.
In order to obtain a test statistic, the following assumption limit-
ing the degree of dependency of X and Y is made.

AssuMPTION 5. The quantity

n 1
(22) E (3| sH@) @) 0~ m}F2¢ 0, mpdt]
is bounded as m increases, where
*F
@ — .
5 atoy*

LEMMA 1. Under Assumptions 1, 3, 4 and 5, the statistic Q=S}/d*
has asymptotically a (central) chi-square distribution with one degree of
Sfreedom when H, is true, where S,=S,, evaluated at B=0, and d* is as
defined in Theorem 1.

PrOOF. Recall for fixed z and &, there exists an 7, such that if
n>n, then

w

(23) sup | Pr (Sgwd)—(zn)—wg wexp(—(i_z‘“—’)z>dt‘<s,

where

p=3 B [ G(HEFE, 0, u8:) -

By SLLN for large n we may replace d with d,=+vng?- (S: (¢(t)—$)2dt>l/2,

where ¢i=Var X, and we may also replace H(t) with H(t)=F(t, 0, p,8:)
provided H, is true. To make (23) unconditional on the outcome of Z
we have, suppressing 7,
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(24)

zﬂL Pr (S<wd,)dG(z, y)

—SA,, " exo (_(t;zﬁzﬁ>dtda(x, v)|<e

since ¢ is independent of z. Clearly we can change the order of inte-
gration in the second term. Expanding in a Taylor series about 0 we
have

(25) gww S exp <—_(§:2F‘_=)Z>dG(x, y)dt

= S: SA,. {exp (—t*/2)+p,t exp (—t/2)
#-1
2

+ exp <—(t—;—012)}dG(x, y)dt ,

where ¢ (0,u,). We now expand the expression p, about EY=g, to
get

(26) = (2 @) | pEOF 0, et

+S @B ) | JEEIO 0, )t
+3 @B ) | HHEIE, 0, 0)dt)

where 6, is between p, and y,, f(-)=af(-)/oy and fP(-)=a"f(-)/oy".
Substituting (26) into (25) and integrating with respect to # and y we get

27 Sio SA exp <—(t—_23i>dG(x, Y)= Sl exp (—t2/2)dt+§‘{ bin

n

where

b=, e SE—D@—nt (| dH) O, 0,000t

- exp < >dG(x y)dt ,

b= —a, Sw exp (—t¥2)dt , (a, is as described before),

—1

b= [, ZE=D" E @), 0, yp)do} !
- exp <—(t_Ta)>dG(x, y)dt ,

and



NON-PARAMETRIC TEST FOR COMPOSITE HYPOTHESES 289
b4n= S—“ SAc 2 (xi —E) (yi"l‘y) { gfw ¢(H-1(’U))f(1), 0, #yﬁz)dv}t
- exp (—t*/2)dG(x, y)dt .

Now as n increases, b,—0 by Assumption 5 and the fact that X
and Y are bounded random variables. b,,— 0 since a,— 0 as % increases.
by,—0 by the strong law of large numbers and the fact that X and Y
are bounded. b,,—0 as n increases since X and Y are bounded, and
the measure of A goes to zero. Consequently, from (27), for large n,
S,/d has approximately a standard normal distribution. Hence the re-
sult.

At this point several remarks are in order concerning Assumption 5.

Remark 1. If essentially all of the dependency between two pos-
sible concomitant random variables X* and Y* can be accounted for by
linear correlation, then the transformation of X* and Y* by their co-
variance matrix to give X and Y will satisfy Assumption 5.

Remark 2. Often the distribution of concomitant variables is well
known before the actual experiment is done. For example, a clinic
may be able to determine the distribution of age, sex, and perhaps,
the extent of the disease of incoming patients. Although the effect of
a treatment on survival will be unknown beforehand, the distribution
of concomitants such as these may not be. In many of these cases,
transformations exist which satisfy the conditions of Remark 1.

Remark 3. Cox proposed a global chi-square statistic for testing
the hypothesis H,. For asymptotic power considerations one often
chooses a sequence of Pitman alternatives to H, indexed by 7 of the
form

_ T
22— »\/W ’
where 7, and 7, are unknown, non-null constants. If the hypothesis H,

is reformulated such that B, is either 7,/ or null under either H, or
its alternative, then Assumption 5 of boundedness is satisfied.

ALT, : ,B,=J—’W, 8

Remark 4. Often one of the ‘concomitants’ is the treatment ad-
ministered. In this case treatments are randomized across the second
concomitant (or a balanced blocking of the second concomitant), so that
Assumption 5 is satisfied. This case resembles the conditions given by
Ogawa in several papers (see e.g., Ogawa [13] for references).

Cox’s global test statistic is based upon the ‘information’ matrix
I(0) as defined in equation (5). The manner in which the linear rank
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statistics are generated using the proportional hazard assumption (1)
makes it much easier to calculate the variance estimate based upon (5)
rather than using d’. Thus, a simpler statistic for H,, and one more
in the vein of Cox’s global chi-square, would be

(28) Q:=U(0)/1,,(0) .

The asymptotic equivalence of this statistic with @, can be shown as-
suming that the ‘likelihood’ estimates which maximize L are consistent.
In this case, for a fixed sequence of outcomes z,

(29) Var (U(8y)=1(5:) +0(1)

when B, obtains. Under Assumption 5, using the strong law of large
numbers, we see that (29) implies E (I;(0)—d?’—0 when B,=0 (see
Theorem 3.1 of Puri and Sen [15]).

6. Application to survival problems

To apply the above results, consider a failure model with concomi-
tants as described in Section 2. Let the observed concomitants be (x¥,

y¥), 1=1,.--, n with associated failure times t,, i=1,---,n. Let V be
the observed covariance of (z}, ¥}), and let P be a lower triangular

matrix such that PP'=V-!. We assume that the effects of these con-
comitants can be related to the failure time distribution as given in
the Cox model

A(t)=4(t) exp (x*B+y*B,) -

The resulting vector of rank statistics is

1*(0)} [ > xz*a(Rt)}
30 U*(0)= = .
0 O=| oo L 3 ytet
Premultiplying by P’ we have

> za(R))
31 P'UX0)=
1) © [Z yia(Ri):‘

where z,=pux}+p,9F¥ and y,=p.y¥. The effect of this transformation
is that (asymptotically) X; and Y; are uncorrelated thus satisfying an
assumption from Section 4. In addition, the linear rank statistic Uy(0)
=" z,a(R;) corresponds to the following reparametrization of the Cox
hazard function;

(32) A(t)=2(t) exp (x6,+y6) ,
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[&}_P_l[ﬂl]_[pﬁf"ﬂl :l

) Bl LooBtps8 ]

Hence using the result of Section 4 we can test the hypothesis H;: 6,
=0 under the lemma. However, for any given set of outcomes of Z
we note that 6,=0 if and only if ,=0. Hence for large sample sizes
Q,=UX0)/d} is asymptotically distributed as chi-square when H, (or H,)
is true (under the assumptions of Lemma 1).

It is important to note that although @, can be used to test if g
=0, the quantity U2(0)/d? derived in a similar manner has an approxi-
mate chi-square distribution if #,=0 and Assumption 5 is satisfied when
x and y are reversed. This is not equivalent to 8,=0 unless, addition-
ally, either g,=0 or p{{®=0.

Using Lemma 1 we thus see that a simple test procedure for test-
ing H,: B,=0 can be formulated based upon H4jek’s results on linear
rank statistics. @, can be formed using matrix multiplication procedures
and, for large samples, has an approximate chi-square distribution when
B:=0 obtains. This asymptotic result does not require an estimate of
B: but instead depends upon Assumption 5. An indication of the neces-
sary sample size and the magnitude of the effects of Assumption 5 were
obtained from the following Monte Carlo study. For samples of size 8
and 16, the concomitant ¥ was selected from a truncated normal dis-
tribution with mean 1 and variance 1. Truncation was implicitly ac-
complished by the fact that the machine has finite word length (10
digits) in generating uniform random numbers. Conditional on the out-
come of Y, the concomitant X was selected from a truncated normal
distribution with mean p,, and variance 1, where

(33) ten=2+p(y—1)+q(y—1) .

The parameters p took the values 0, .2, and .4 and ¢ took values 0, .2,
.4 and .8. With each set of “observed” concomitants (z, y), the failure
time was simulated. The exponential hazard model

(34) At)y=exp (xB;+YpB:)

was used where B,=1 and B, took on values from 0 up. The test for
the hypothesis that p,=0 was calculated as above. This was repeated
1000 times for each set of B,, p and ¢ values.

Table I gives the proportion of times the test statistic was signifi-
cant at the .05 significance level of the chi-square distribution. For
¢=0 either X and Y are independent or only linearly correlated and
hence satisfy Assumption 5. For ¢=.2, ¢=.4, or ¢=.8, Assumption 5

where
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Table I Simulated power for the hypothesis Hy: f:=0, for various values
p represents correlation, ¢ represents quad-

of 81 when B:;=1.

ratic effect.

N=8
g=0 q=.2
b1
o=0 =.2 =.4 0=0 =.2 p=.4
0 .027 .025 .022 .027 .024 .028
.5 .070 .057 .049 .092 .056 .052
1.0 .222 .199 .159 .221 .200 .162
1.5 .417 .348 .294 .419 .363 .272
2.0 .587 .503 .426 .594 .484 .436
2.5 .667 .586 477 .706 .602 .471
3.0 .768 .667 .538 .770 .641 .536
q=.4 qg=.8
B1
0=0 p=.2 o=.4 p=0 p=.2 p=.4
0 .028 .029 .022 .021 .029 .026
.5 .071 .080 .073 .112 .098 .100
1.0 .262 .218 .181 .334 .308 .252
1.5 .470 .395 .329 .513 .466 .461
2.0 .593 .514 .468 .617 .590 .504
2.5 722 .624 .517 709 .670 .622
3.0 .758 .667 .593 .751 727 .638
N=16
q=0 =.2
B
=0 =.2 p=.4 0=0 =.2 o=.4
0 .015 .015 .012 .012 .018 .017
.5 172 .137 114 .150 .138 .097
1.0 .591 .504 .379 .564 .483 .369
1.5 .869 .785 .683 .847 770 .635
2.0 .947 .898 .839 .952 .895 .802
2.5 .979 .943 .895 .966 .946 .893
g=4 =.8
b1
0=0 =.2 o=.4 p=0 =.2 =.4
0 .019 .022 .019 .021 .017 .022
.5 171 141 .115 .242 .208 .176
1.0 .630 .539 .454 726 .672 .579
1.5 .874 .804 .719 .901 .846 .812
2.0 .945 911 .823 .950 .930 .892
2.5 .970 .959 .894 .974 .954 .930
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is violated. The effect of this on the size and power of the composite
hypothesis can be readily seen in Table I.

The theoretical asymptotic power of the statistic, under a set of
suitable alternatives, provides a useful comparison. Consider, for ex-
ample, the set of Pitman type alternatives

(35) H,: B=T/VT .

To satisfy Assumption 5 let us assume that under H, or H,, B.=7,/vV/ 1
where 7; (non-null) and 7, are constants. If we expand f(¢, z7,/v™,
y7/¥w) about B, =0 we have

(36) St xdi/vn, YTV n)

=7t 0, gy ) gy LELITNR) | o).

Proceeding as in the proof of Lemma 1 writing f'=df(¢, a, b)/oa we
have

@ E2s| Ise-a| s e o vnvm
+20 £1(8, 0,y B)+olL)] dtdG(z, 1)
(33) =, g Sema | @O0, mr/w)

W= 0 YT D] 06, )

Assuming that we can pass the limit through the two integrals, under
the assumption that (3/3y)f’(¢, 0, p,72/¥/ %) is bounded as n increases, we
have

(9  HmESe—_Tee " s(E )0, 00t .
- (|, wey—pyat)” 7

In our case, with no censoring, #(t)=log (1—t). Hence, for the simu-
lated example

(40) lim E %“T"” .

The resulting non-centrality parameter is 7%Z%/2. Table II gives the
resulting expected power for the simulations in Table I based upon the

above assumptions. It is reasonable to expect that with all of the large
sample approximations made, the asymptotic power and the actual power
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Table II Expected power under Pitman alternatives

o n=8 n=16
S;/x/ n
Si/2 Power Si/2 Power

.5 1 .292 2 .516
1.0 4 .808 8 .979
1.5 9 .989 18 .999
2.0 16 .999 32 .999
2.5 25 1.000 50 1.000

will be substantially different. Comparisons of Table I with Table II
shows this to be the case. Although Table I indicates that the test
procedure may be useful, the power we would expect if all the linear
approximations were correct is considerably higher. (Further simula-
tions indicate that for n=32 the discrepancy between observed and
theoretical asymptotic power is nearly negligible.)

7. Discussion

Use of the above results can be summarized by three points. First,
if the number of concomitants in a study is very large, the above re-
sults suggest a method for eliminating possibly many of these concomi-
tants before iterative techniques of parameter estimation are applied.
This initial step does not require an estimate of parameters associated
with nuisance concomitants but rather some degree of independence as
given in Assumption 5. This assumption appears to be similar to, but
stronger than, Cox’s [4] requirement on U, (see p. 274).

Secondly, sufficient conditions for the concomitants are given in
Assumptions 1 through 4 to insure the quadratic forms @, and Q, to be
chi-square distributed for large samples. (Assumption 5 is necessary to
obtain a null noncentrality parameter for @, when H, obtains). Several
papers addressing the Cox model allow the concomitants to be time-
dependent. The assumption that Z,, Z,,.-- be identically distributed
can be relaxed to provide for this case. However, the stability assump-
tion that must be used as a replacement must include Assumption 2.
It is the author’s experience that this assumption is more prohibitive
than it seems.

Kalbfleisch and Prentice [11] have proposed a marginal likelihood
formulation of the proportional hazard model which, when no ties or
censoring are present, is identical to Cox’s model. When censoring or
ties are present, however, the two formulations differ. The mathe-
matical justification given by Kalbfleisch and Prentice suggests that in
this case their model be used in lieu of Cox’s. Unfortunately, the esti-



NON-PARAMETRIC TEST FOR COMPOSITE HYPOTHESES 295

mating equations in their model can be considerably more difficult.
(With 10 failures at the same time the estimating equations to be min-
imized will contain literally millions of summands.) The procedure de-
scribed above can be applied to this new likelihood, however, with about
the same simplicity as with the Cox model. Thus estimating such a
model as proposed by Kalbfleisch and Prentice could be greatly simpli-
fied if the procedure described above was used to initially discard un-
important parameters.

RADIATION EFFECTS RESEARCH FOUNDATION, HIROSHIMA, JAPAN*
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