Ann. Inst. Statist. Math.
30 (1978), Part A, 271-279

ON A GENERATION OF NORMAL PSEUDO-RANDOM NUMBERS

HIROTAKA SAKASEGAWA

(Received May 24, 1978; revised July 13, 1978)

1. Introduction

It goes without saying that uniform random numbers play an im-
portant role in statistical simulations. In many situations, however,
they are used after being transformed into variables with given distri-
bution rather than uniform distribution. There are several works on
generating normal random numbers. Among others are Box and Muller
[5], Marsaglia [9], Marsaglia and Bray [11], Marsaglia, MacLaren and
Bray [12], Ahrens [1], Ahrens and Dieter [2], [3], Fosythe [7], Brent [6],
Kinderman and Ramage [8], Shimizu [15] and so on.

Recently, Atkinson and Pearce [4] discussed the comparative merits
of some of these generators. It seems that they and the debaters of
that paper (see also [4]) were not satisfied with existing algorithms of
the normal random number generation, and we are still in need of
faster algorithm with a reasonable memory occupation. In this paper,
we propose two new algorithms of generating normal pseudo-random
numbers, the one is exact in principle and the other approximate by
nature. These two algorithms are recommended in that they require
less generation time and in that they are simple in construction. Algo-
rithms of an approximate normal random number generation have not
necessarily been appraised high (for example, see [4] cited above), but
if an algorithm of this kind produces well approximated sequence quick-
ly, then it would deserve consideration for most simulation experiments.
Our algorithms and their theoretical background are developed in Sec-
tion 2. Brief survey of many existing algorithms is given in Section
3. Results of timing tests are discussed in Section 4.

2. Algorithms of our new generators

2.1. Algorithm for gemerating exact sequences

Our first algorithm is based on the following three lemmas. These
lemmas are easy to prove and proofs are omitted.

LEMMA 1. Let X;, i=1,2 be independent random wvariables (r.v.)

271

272 HIROTAKA SAKASEGAWA

distributed uniformly on [a,, b and let ¢;, 1=1,2 be positive constants
such that c(b,—a)=cy(b,—a;). Then the density f(-) of eX,+eX, is
given by

0 if x=Zcio+ea, or x=ebi+ch;,

x - c;al - cZag
cicy(by—a,) (b, —ay)
fx)= 1
c(b;—ay)

if ca+ca,<x<ca+ebh, ,

if cat+ehsrlebtea,,

—&+cib+csb,
cic(b;—a;) (b, —ay,)

if eb,+ e, <x<eb +eb; .

LEMMA 2. Let F(-) be a distribution function which has the bounded
p.d.f. f(-) vanishing outside [a,b]. Let ¢ be the supremum of f(x) and
let X and Y be r.v.’s distributed uniformly on [a, b] and [0, c], respec-
tively. Then

Pr(X<z|Y<f(X))=F(x) .

LEMMA 3 ([10]). Let &(-) be the distribution function of the stand-
ard normal distribution and let X and Y be r.v.’s distributed uniformly
on [0,1). Then for any x>a>0,

Pr(a*—2log (X)<2*| Y*a*—2log (X))<a?)
=(2(x)—2(a))/(1 —2(a)) -

Now, let fi(x), i=1,---,k be p.d.f.’s with the shape like a sym-
metric trapezoid which is constant on [—=z,, 2] and is zero outside
[—%ip1s Xiq] fOr (=) <2, <X < 0+« <Xy < 00(=1244s). For given k, de-

k
termine p;, i=1,---,k and z,, i=1,---, k+1 in such a way that in,--
=1

fi(x) approximates the standard normal density ¢(x) from below as close
as possible. Later, we shall determine p,’s and z,’s heuristically, which
is sufficient for our purpose. Next, let gi(x), i=1,---,k+2 be defined
as follows:

2\ Wz i e<lal<a,
(2.1) g:(x)= { i

0 otherwise ,

where h(x)=go(x)—é p.fi(x). Then, we can represent ¢(x) as a mix-
i=1

ture of 2k+2 densities as follows:

ON A GENERATION OF NORMAL PSEUDO-RANDOM NUMBERS 273
k k+1
(2.2) so(rJC):i:Z1 p:.fi(x)+ pY Die+iGi() + Dae 129 +2(T)

where p,.,=2 Szi Mz)dx (i=1,---,k+2). A random variate with the

density fi(z), iéll,-- -,k can be generated from two uniform random
numbers according to Lemma 1. A random variate with the density
gi(x), 1=1,---,k+1 can be generated by the rejection method based
on Lemma 2. Finally, a random variate with the density g.,,(x) can
be generated by the tail method based on Lemma 3. For the later
use, write

(2:3) P=pt--+p and F@)=3 @/P)(2) .

Then the first term of the RHS of (2.2) becomes P-F(x), which we call
the principal part because the value of P has a great influence on gen-
eration speed. The formal description of our algorithm is given below.
In the list, u; denotes a (0, 1)-uniform random number and @, denotes
the sum of p,’s from 1 to j.

Algorithm I.

1. If @;_i<wu,=Q; then deliver y=a,u,+au,+a; (7=1,---, k).

2. If u,>Q,,, then go to 5.

3. If Quijm1<u;=Qi.; then go to 4(5) (4=1,---, k+1).

4(7). If h(bj;|u;—0.5|+b;)<bjsu; then repeat 4(j) using another u, and
U, else deliver y=sign (u,—0.5)(b,,|u,—0.5|+b,) (7=1,---, k+1).

5. If (u,—0.5)%(wi.,/2—log (us))>xi,1/8 then repeat testing with new u,
and u,, else deliver y=sign (4,—0.5)vz},,—2 log (%),
where

apn=(C;.1—2)[P;, @p=2;+%;11, a;=(Q;2;—Q;1%;.1)/D;

(j=1,"',k),
bi=2(x,—x;,,), bp=2;_; and b= sup hk(x)
xj_1<z<:cj
(G=1,---, k+1).

Using our algorithm, average number of uniform random numbers
required to produce one normal random number is given by

k+1 8 1 x:“
1+Qk+4§1bis(xi—:vi-l)+ — exp -5

Ti+1

Now, we give some numerical examples. For k=5, we use the values
0.1726, 0.5410, 1.5085, 1.9499, 2.4520 and 3.1650 for z,’s and 0.0345,

274 HIROTAKA SAKASEGAWA

0.4530, 0.2361, 0.1755 and 0.0868 for p,’s. These values were deter-
mined so as to make b;"s as close to each other as possible. In this
case, P in (2.3) becomes 0.9860, that is, only two uniform random
numbers are needed in 98.60 percent of all cases and it requires 2.046
uniform random numbers on an average for single normal random num-
ber generation. If k=4 or 6, P becomes, respectively, 0.9806 or 0.98389
using the similar procedure to determine x,’s and p,’s. Generally
speaking, the expected number of uniform random numbers required
can be reduced by letting k large, but on the other hand the larger
k becomes, the more steps for comparison are needed and this might
result in the increase of generation time. The optimal value for % is
not known as yet. But our numerical experiments in Section 4 shows
that k=5 or 6 is a reasonable choice. A copy of complete Fortran sub-
program will be delivered on request. :

1 00 1 50 2 00 2 50 3 00 3. 00
Fig. 2.1. The value of ¢(z)—P-F(zx) for k=5.

0.01

000

2.2. Algorithm for gemerating approximate sequences

There are many algorithms to generate approximate normal ran-
dom numbers (see Muller [13]). We can regard an algorithm as of
practical value in many simulation experiments if it generates a well
approximated normal sequence quickly. Now we propose one such al-
gorithm below.

The dissatisfaction of the approximative algorithm mainly arises
from the inaccuracy of approximation at the tail. In order to avoid
this, the proposed algorithm uses the exact method for the tail based
on Lemma 3. For the remainder, a random number is generated ap-
proximately by, what you call, the inverse function method. Now,
two questions arise: How can we decide the interval where the exact
method should be applied? How can we determine the inverse func-
tion? Again, we took a heuristic approach and obtained the satisfactory
result. First, we divide the unit interval [0, 1] into » congruent sub-
intervals and construct a quadratie function g,(x), 1=mn,, ne+1,---, n—

—1 for some n, which passes through three points

oGl BB = SR

ON A GENERATION OF NORMAL PSEUDO-RANDOM NUMBERS 275

Let G(x) be the piecewise quadratic function defined on [ny/n, (n—n,)/n]
as follows:

G(r)=gi(x) if (T=ng, my+1,---, m—my+1).

G~ '(x) is identical with @(x) at x=07(3/2n), 1=2n, 2n,+1,- - -, 2(n—mn,)
and approximates @(z) well for all x € [@ ! (ny/n), D ((n—my)/n)] if n
is sufficiently large and if =, is carefully chosen. Now, we use the
tail method to generate a number less than @~!(ny/n) or greater than
97 '((n—my)/n), otherwise, we use the inverse function method with
G(x). As an example, the formal description of this algorithm for
n=64 and n,=2 is given below.

Algorithm II.

1. Set v=u,—0.5 and ¢=[64|v[]4+1. If 1>30 then go to 2, else deliver
y=sign (v)(aV*+b;|v]|+c)).
2. Set x=1.734868—log (u,). If ulx>1.734868 then repeat 2 using an-
other u, and u,, else deliver y=sign (v)v2x.
(Here, 1.734868=(97(62/64))}/2 and [x] denotes the maximum integer
which does not exceed z).

Constants used in the above algorithm are contained in Table 2.1.
Average number of uniform random numbers required to produce single
normal random number is 1.151 in this case, and thus, the generation
speed is very high. The maximum discrepancy between the resulting
and the normal densities and between the corresponding distribution
functions are, respectively, 2x10~° at x=1.68 and of the order of 10-°.
Note that these functions are identical with each other for |z|>
97'(62/64)~1.86. Such an aspect of the approximation is well satis-
factory for many simulation experiments. The dimension of Table 2.1
is 90. If we double it, the maximum discrepancy between the densi-
ties will reduce to 4x107*.

0.001 7

0.0 AAAAAAAAAAAAA)\AAA /
AV

vv-v\/\/\/vv \/
168

Fig. 2.2. Discrepancy between the approximate density and the normal density
(with 64 subintervals).

276

HIROTAKA SAKASEGAWA

Table 2.1. ai’s, bi’s and c¢;’s for Algorithm II

i a, b. c.

1 1 1

1 0,0615%1875 2.506324066 2,0000600000
2 0.1354574326 2,502448720 0,000030302

3 D.310617553 2.464626574 0,000152508

i 0.439R56899 2,482515412 0,000436201.

5 0.574073735 2,465740308 0,000960400

6 0.7145r3523% 2.4437%50469 $0.0013177590

T 0.843547748 2,415849934 0,0031275¢66

8 1.0238%6001 2.330775749 0,005046295

9 1.196429166 2,3375%5377 N,007747385%

10 1.334198042 2.284758948 0,011464305%
11 1.592263939 2.219712172 0.01654813¢0
12 1.8238498R0 2.140066906 0,023296172
13 2,08520593¢ 2.0419%0229 0,032596898
14 2.380960409 1,921753693 0,04481718%
15 2.721912794 1,772497452 0,0611518R%
16 %5.,117550074 1.586917796 0,082913561
17 3,584029092 1,35353%358¢04 0,112104745
18 4.140651703 1.0576%0629 0,151432547
19 4.8126440255% 0.,679473816 N,204648%4¢4
20 5,5404013%1% 0.187520475 0,277724538
21 6.6761023018 -0,460277197 0,379018566
22 8,.009673837 -1,336146385¢ 0.522838620
23 9.,741245927 -2,527829750 0,727856833
24 12.100271689 =4,225193662 1,033115876
25 15.%953/8078 -6,668539578 1,4973445668
26 20,258171%57 -10,5015%20850 2,240861327
27 27.86108157¢ -16,686245664 3,498624547
28 40.812422555 -27,628516409 5,809834573
29 65,859434878 -49,606380015 10,625253%011
30 125,401552561 -10%,8341458753 22,9346996601

3. Other algorithms

There are many algorithms to generate normal pseudo-random num-
bers. Some of them are summarized below which are used in Section
4 for the purpose of timing tests.

[BM] (Box and Muller [5]). This is a well known and widely used clas-
sical algorithm using trigonometric and logarithmic functions. The
programming effort may be the least among other existing algo-
rithms, but generation speed is much slower because of using basic
external functions in Fortran program.

[PO] (Marsaglia [9]). This algorithm is the same as [BM] in principle
but it does not make use of trigonometric funection.

[BR] (Brent [6]). This algorithm is a refinement of the Forsythe al-
gorithm [7]. Generation speed is not fast in Fortran program be-
cause it requires a bit-level information.

ON A GENERATION OF NORMAL PSEUDO-RANDOM NUMBERS 277

Following algorithms are all constructed from three parts, ‘ quick-
generation’ part or principal part, rejection-method part and tail-method
part, similar to our algorithm I. We calculate for each algorithm the
probability P that a random number is generated by using the princi-
pal part.

[MB] (Marsaglia and Bray [11], Newman and Odell [14]). The density
of a principal part is a mixture of two convolutions, a convolution
of three uniform densities and a convolution of two uniform den-
sities. P=0.9745.

[AH] (Ahrens and Dieter [1]). This algorithm is a special case of our
algorithm with k=1. P=0.91954.

[KR] (Kinderman and Ramage [8]). The density of a principal part
is triangular-shaped and the second part utilizes the Marsaglia-
MacLaren-Bray technique ([12]). P=0.88407.

[SM] (Shimizu [15]). The density of a principal part is a convolution
of a uniform density and a step function. P=0.932.

In the following, we code our algorithms as [SKk] for the one in
Subsection 2.1 where k is the same notation as that section and [QD]
for the other in Subsection 2.2.

4. Results of comparison tests

In this section, we summarize results of comparison tests for algo-
rithms described in the preceding sections. For the tests, we used an
electronic computer HITACHI H-8700/0S7 which is installed in the In-
stitute of Statistical Mathematics. As it is drived under multipro-
gramming mode with multiplicity 5, elapsed time varies each occasion.
We measured the CPU" time to generate 20 thousand pseudo-random
numbers ten times for each algorithm and averaged all 10 figures. All
these algorithms are implemented as Fortran programs so we must use
CALL-statement to get a normal random number. The time for link-
age with main program and the generator-subprogram which takes
42.56 microseconds on an average is excluded, but the time for DO-loop
which is negligibly small is included. For the uniform random number
generator (UR generator, for short), we used the Lehmer (multiplica-
tive) congruential method. The machine we used has 32 bits for one
word and multiplication of two integers produces 32-bit integer which
is the ordinary product modulo 2. That is to say, the Lehmer method
is easily implemented as in-line generator. The first test was executed
using this (in-line) generator. From the point of view of generation
speed, this type of a generator is preferable. If uniform random num-
bers are furnished by some other algorithm, e.g. a physical random

278 HIROTAKA SAKASEGAWA

Table 4.1. Results of timing tests

Generator Test 1 Test 2 Generator Test 1 Test 2
[SK4] 35.91 120.33 [SM] 45.98 140.04
[S K5] 32.48 119.12 [MB] 41.21 163.13
[SK6] 32.53 120.83 [BM] 138.87 179.66
[AH] 42.34 131.45 [BR] 65.58 —
[P O] 79.28 134.60 [QD] 25.85 89.40
[KR] 44.46 134.98

device, the separate subroutine subprogram must be prepared. This
causes the generation of normal random numbers much time-consuming
because of the linkage requirement. Accordingly, the saving of uni-
form random numbers is quite important to reduce generation time in
this case. The second test was executed using the (subroutine) gener-
ator. The results of two tests are listed in Table 4.1. They are sum-
marized as follows.

(a) Excepting the approximate generator [QD], the fastest generator
is [SK5] and the differences between [SKk] and other algorithms
are significant.

(b) [QD] generator is extremely fast, so it is recommended as far as
circumstances permit.

(c) [MB] generator, which is recommended by Atkinson et al. ([4]),
is not good if the UR generator cannot built in, but it is rather
good if in-line UR generator is available.

(d) [PO] generator is surprisingly good if the UR generator is provided
by an exterior subroutine.

5. Conclusion

In this paper, we proposed two new algorithms to generate a nor-
mal sequence, the one generates exactly and the other generates ap-
proximately. Both algorithms work much better than the other algo-
rithms and are recommended from a standpoint of generation speed.

On the other hand, the quality of the resulting sequence is the
another problem. Almost all existing algorithms including those in
this paper generate a normal sequence by transforming the uniformly
random sequence and an ‘exact’ algorithm is exact only when the
basic random sequence behaves as truly random. Our algorithms also
share this limitation. It is conceivable that the non-uniformity and/or
dependence of the basic sequence have a bad effect on the quality of
the generated normal sequence, but all through our experiments, such
a situation has not occurred. To know the relation between the quali-

ON A GENERATION OF NORMAL PSEUDO-RANDOM NUMBERS 279

ties of both sequences is very important unknown problem and further
studies will be required.

Acknowledgement

The author would like to express his gratitude to the stimulative

referee who helped him in revising the original version of his paper.

THE INSTITUTE OF STATISTICAL MATHEMATICS

[1]
[2]
(3]
[4]
[5]
[6]
[7]
(8]
[91]
[10]
[11]
(12]
{13]
[14]

[15]

REFERENCES

Ahrens, J. H. and Dieter, U. (1972). Computer methods for sampling from the ex-
ponential and normal distributions, Comm. ACM, 15, 873-882.

Ahrens, J. H. and Dieter, U. (1973). Extension of Forsythe’s method for random
sampling from the normal distributions, Math. Comp., 27, 927-937.

Ahrens, J. H. and Dieter, U. (1974). Computer methods for sampling from gamma,
beta, Poisson and binomial distributions, Computing, 12, 223-246.

Atkinson, A. C. and Pearce, M. C. (1976). The computer generation of beta, gamma
and normal random variables, J. R. Statist. Soc., A139, 431-461.

Box, G.E.P. and Muller, M. E. (1958). A note on the generation of normal random
deviates, Ann. Math. Statist., 29, 610-611.

Brent, R. P. (1974). A Gaussian pseudo-random number generator, Comm. ACM, 17,
704-706.

Forsythe, G. E. (1972). Von Neumann’s comparison method for random sampling
from the normal and other distributions, Math. Comp., 26, 817-826.

Kinderman, A. J. and Ramage, J. G. (1976). Computer generation of normal random
variables, J. Amer. Statist. Ass., T1, 893-896.

Marsaglia, G. (1962). Improving the poler method for generating a pair of random
variables, Boeing Sci. Res. Lab. D1-82-0203.

Marsaglia, G. (1964). Generating a variable from the tail of the normal distribution,
Technometrics, 6, 101-102.

Marsaglia, G. and Bray, T. A. (1964). A convenient method for generating normal
variables, SIAM Rev., 6, 260-264.

Marsaglia, G., MacLaren, M. D. and Bray, T. A. (1964). A fast procedure for gen-
erating normal random variables, Comm. ACM, 7, 4-10.

Muller, M. E. (1961). A comparison of method for generating normal deviates on
digital computers, J. ACM, 6, 376-383.

Newman, T. G. and Odell, P. L. (1971). The Generation of Random Variates, Charles
Griffin, 22-26.

Shimizu, R. (1976). Central Limit Theorem (in Japanese), Kyoiku Shuppan, 232-243.

