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1. Introduction and summary

Let X={X,, X;,---, Xy} be a set of successive observations on a
stationary system with the autoregressive structure

(1) X=a. X, 1+a.X, ;+---+a, X, .+e,,
t=-...,—-1,0,1,2,---,

where ¢’s are supposed to be independent normal variables with mean
0 and variance ¢°, and where the parameter 8=(¢% a,, a,,---, a.) is con-
tained in the set 6 of all vectors (¢, ¢;,- -+, ¢.) such that ¢,>0 and the
zeros of the polynomial zf—ecax’'—ext?—.-.—c, are located in the
unite circle in the complex plane, which guarantees stationarity of the
system.

The structure (1) is said to be a pth order autoregressive model
and is denoted by AR(p) if a,#0 and if a,,,=0a,.;=---=a,=0. We
are concerned with determination of the order p as well as estimation
of ¢* and a’s. If p is known, i.e., if we know in advance that a, =
@po=+--=a,=0, then the maximum likelihood principle will provide
good estimates for ¢’ and a’s. The principle does not, however, apply
if we want to estimate not only ¢* and a’s, but also the order p itself.

Let §=6(X) be an estimate of 4 based on X and let Z=(Z,,Z,, -,
Zy) be a set of observations taken from the system described by (1)
independently of X. The probability density f(z;#) for Z will be esti-
mated by f(z; 6(X)) which we call a predictive density function for Z.
If X is given, we can measure the distance between the predictive
and true densities for Z by (twice of) the Kullback-Leibler information :

— ()= — f(Z; 6)
(2) I=10)=~2E;log 77170 20.
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Estimating I by its sample analogue

s f(X;8)
(3) I*9)= Zlog—f(X;ﬂ) ,

Akaike ([2], [3]) introduced as a result of asymptotic theory a criterion
called AIC for evaluating badness of the estimated distribution. He
then proposed AIC for determination of the order » of an autoregres-
sive model.

The purpose of the present paper is to study the relation between
I and I* and to look into the asymptotic behavior of the criterion AIC.

2. Entropy maximization principle and AIC

The joint probability density function of the sample X from an
AR (p) is of the form

(4) f(x; 0)= (_J%)N.U—(N—p)_ |22 exp {_%(l :=1 T,

N

where ¥=(6;_n)im=1,3...., 18 the covariance matrix of (X, X;,---, X,),
("™ m=1,3,...., 18 the inverse matrix of ¢7%%, and where 6=(d*; a,, a,,
«ve,a;) with a,,,=a,,,=---=a,=0 is the parameter value specifying
the density function.

Following Akaike ([3], [56]), we wish to determine é(X ) in such a

way that the expected value Exl(é(X )) of I(é) be minimized, or what
is the same thing that the expected entropy —(1/2) Ex I(é(X )) of f(z;86)

with respect to f(z; 9) be maximized. We shall confine ourselves to
the estimates of the form

0K=(&2:d1!a27"'yaxy 0;"'10) ’

where K=K(X) is an estimate of the order p, and where, if K=k is

given, 9,,:(&2, a,,--+,a.,0,---,0) constitutes the approximate maximum
likelihood estimate of # defined by the Yule-Walker equation,

(5) L=alcl—l+é'zcl—2+'"+dkCl-k ’ l=1: 27"';’07

and

(6) F=5=C—3aC

=1

where CL=CL(X)=§ X,X,_,u/N with the convention X;=X_ =X ;=---
Jj=1
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=0. This amounts to approximating the density (4) by
(7) f(x;ﬂ):const.-a‘”-exp{—%;S(x;a,,-u,ap)} R
where
y4
G e+, 8)=N-C®)—2 2 aC0)+ 3 0,0,C_n(¥) ,

and maximizing it with respect to # assuming that p=Fk.

If k=p, then both I(ék) and —I*(ék) will be asymptotically distri-
buted according to the chi-square distribution with degrees of freedom

k+4+1. On the other hand if p>k, then I(é?k)/N and I*(é,,)/N converge
to a common positive number (see [1], [6], [7] and Proposition 2 in the

next section). Therefore, for sufficiently large N, EXI(é,c) is estimated
by ExI*6.)+2(k+1) with a bias, if £<p, of the order ExI(,)/N. Thus
the minimization of EXI(&E) reduces to that of EXI*(ék)+2(lc+1), or

equivalently, that of J,=—2Exlog f(X; ék)+2k. Akaike [3] estimates
Jv, k=0,1,.--., L by their unbiased estimates

(8) AIC(k)=—210gf(X; ék)_l_z":’ k:(), 17"',L.

He then proposes AIC (k) as a measure of badness of the estimated
model

(9) Z,Z&xZ,_l-{—' . '+ath—k+6t ’

claiming that the larger AIC (k) is, the worse is the model (9).

Based on this idea he further proposes to use AIC for determining
the order p. His method, called minimum AIC estimate (MAICE, for
short) consists of calculating (8) for k=0,1,..-, L and choosing k, as
an estimate of p if AIC (k) attains its minimum at k=k,.

3. The relation between I(4,) and I*@,)

In this section we shall investigate the relations between I(4,) and

its sample analogue I*(é,c) as defined in the previous section. Write
g=max (k, p) and let Y=(o,_n),m-1:,...,, e the covariance matrix of (Z,,
Zjiy vy Lyrqr). Let (by,---,b,) be the unique solution of

(10) 0,=bo,_1+bwi s+ -+ oy, 1=1,2,--+,k,

and put byy=---=b,=0 if p>k=0. Note that a,=b,, 1=1,2,---,¢q
hold if and only if k=p, and that b’s are characterized by
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(11) az(k)E min E (Zj—chj—l_ e _cij_k)z
eprenty
=E (Zj_b1Zj_1— e _kaJ_k)z .
Also we have
12) a*(k) =ao—$ ba,
(13) =0+ 3} (0=b)@n—b)oim

the second term of (13) vanishing if and only if k=p. We shall write
Q="+ =0,=0 whenever p>k. Then in view of (7) and (10), I(6,)
and I*(4,) are put in the following forms up to the terms which con-
verge to zero with probability one:

(14) I(0,)=N log &*/¢*— N+ No*/6*+ P|&*
and

(15) I*(8,)=N log &/s*+ N— N&*/a*+Q/s* ,
where

(16) P=P,=E,{S(Z; &, -, 4)—SZ; a, - -, a,)}

=Nl§j=. (@—) @n—,)0
and
amn Q=Q.=8(X; a,,---,a,)—S(X; a4, -+, ap)
- Nmii (8= ) (@n—a)Cin(X)

_2N é‘- (G—a) <CL(X)— mﬁ;‘,l a,,.C,-,,,(X)) .

Now, we shall prove
ProOPOSITION 1. If k=p, then
(18) lim (1) +I%@)=0  in P,
and
PROPOSITION 2. For k=0 we have with probability one,

>0, if k<p,

(19)  lim I,)/N=lim I*(8,)/N=log az(k)/az{
N N =0, if kgp ’
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and
1, if k<p,

(20) lim (I*(6,)/1(6,)) =
Noeo -1, if k=p.

As an illustration we give in the table below numerical values of
Ois I(@,c) and I*(ék) for a single observation of size N=500.

Values of 4%, X(0,) and I*#,) for a single observation of size N=500 from
the AR(2) with §=(1.0,1.1, —0.5,0.0,--+,0.0), 0%(0)=2.885, ¢%(1)=1.335,

and ¢%2)=0%3)=---=1.0.
k 0 1 2 3 4 5 6 7 8 9 10
i 2.776 1.341 1.034 1.033 1.033 1.032 1.031 1.027 1.023 1.023 1.023

Ké,) |528.726143.499 1.189 1.211 1.309 1.953 2.456 4.572 6.651 6.635 6.769
I*(ék) 492.720 129.067 —1.225 —1.254 —1.361 —2.018 —2.453 —4.436 —6.167 —6.315 —6.410

To prove propositions we require some lemmas.

LEMMA 1. For 1=0,1,---,q, C(X) converges to o, with probability
one. If k=p, then the distribution of VN (6*—d°) and the joint distri-
bution of VN (a,—a,), l=1,---, k converge, respectively, to the normal dis-
tribution with mean zero and the k-dimentional mormal distribution with
mean vector 0 and covariance matrixz ¢3!, where X=(o,_,).

For the proof see, e.g., Akaike ([1]), Doob ([6], pp. 493-498) and
Hannan ([7], pp. 326-333).

LEMMA 2. With probability one,

(21) limd,=b,, 1=1,2-.¢.
and
>d, if k<p
(22) lim 6*=d%(k)
N—ooo

=d*, if k=p.

PRrROOF. The assertions follow easily from Lemma 1 and the rela-
tions (5), (6), (10), (12) and (13) as well as the positive definiteness of 3.

LEMMA 3. For k=0 we have with probability one,

(28)  lim P,/N=lim Q/N= S} (@—b)(@n—bp)or-n=0"()—d* ,

i 1

and

1, if k<p
(24) lim Q,/P,=
Noeo -1, if k=p.
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If k=p, then
(25) Ilvim (P.+Q)=0 wn P.

PrROOF. The assertions (23), and (24) for the case k<p are simple
consequences of the expressions (16)-(17) and Lemmas 1-2. Now sup-
pose ¢g=k=p. Then we can use the relation (5) to reduce the expres-
sion (17) of @, to

(26) Q=—N 3 @-a)@—a)Cin(X) ,

and the assertion (25) follows at once from (16), (26) and Lemma 1.
To complete the proof of (24) let U be the orthogonal matrix of order
k(=q) such that U’YU is a diagonal matrix with diagonal elements z,>
0, I=1,--+-, k. Put C=(C,_,)im=1,...k; and let 7z}, be the l-m element
of the matrix U'(Y—C)U and let B; be the jth element of the row
vector (a,—a;, @;—a,, -+, d,—a;)- U. Let, finally, B be the maximum
of |B,] and r be the minimum of z, respectively. Note that r depends
only on ¢% and a’s. It, then, follows from (16) and (26) that

k k
E AlAm(a'l—m_Cl—m) ‘ 2 Bl mfz',(ml
’&_{_1‘ —_ | I,m=1 — I,m=1
P - k k
k l 2 AlAmUL—m l l Z Bfﬁ |
I,m=1 l=1
k
B 2 !T?:ml K .
—_—L:l—é_{ max If?fml )
7 3 B e

1)

i=1

and max |z},| converges to zero by Lemma 1.

ProOOF OF PROPOSITIONS. For any k=0, the assertions (19) of Prop-
osition 2 are simple consequences of expressions (14)-(15) and Lemmas
2-8. They imply in turn the assertion (20) for k<p. Suppose next
that k=p and let N be sufficiently large so that both |¢*/¢*—1| and
|o*/a*—1| be less than 1/4. It follows that

log &*/o*=log (1—(1—&Ya%) = —(1 —52/02)—%(1 — 80"+ ay(6Yo'— 1)
= —log (1~ (1=c&") = (1= o"/5") + 1 (L= &+ Bu(ls*~ 1)’

where |ay|<1/2 and |By|=1.
Then (14) and (15) reduce, respectively, to

27) I(6,)= N(&*— 0"?[26'+ P|5*+ By N(&*— *)/o* ,
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and
(28) I*(8,) = — N(6*—¥/20* + Q[a*+ ay N(6*— a%)*/s® ,

and Proposition 1 follows from Lemmas 1-3. Also we have from (27)
that

(29) 1(6,) = N(6*— 0°)*/4a*+ P[25*>0
and hence from (27)-(29) that

I*(6,) : o _
(30) [ o +1]§20 +2|% —I wtBal 15— .

0'

In view of Lemmas 2 and 3, each term of the right-hand side of (30)
converges to zero with probability one, proving (20) for k=p.

Remark. The content of Proposition 1 was roughly stated by H.
Akaike (Model selection and AIC, Proceedings of the Symposium on Data
Analyses for Natural Sciences, Tokyo, 1976, pp. 63-67, in Japanese).
His argument was based on the remark that the behavior of I(z), as
a function of r €@, in the neighbourhood of =8 is well approximated

by that of I*(z) in the neighbourhood of r=6.

4. Relation between I(4,) and AIC

As was stated in Section 2, E (AIC (k)) attains its minimum at k=p,
which provides the theoretical basis of the MAICE. However, this does
not imply that AIC(k)>AIC(p) even when N is sufficiently large, un-
less k<p, in which case the probability that this inequality holds tends
to 1 as N. Thus as was pointed out by Akaike [1] (in terms of the
FPE, which is asymptotically equivalent to the MAICE), and Shibata
[8], who obtained the asymptotic distribution of the estimated order,
the MAICE is apt to overestimate the order p. Now, the results of
the preceding section make it possible to look deeper into this phe-
nomena. One of the direct consequences of Propositions 1-2 is that if
k,l=p, then AIC (k)<AIC(l) is asymptotically equivalent to I(é,,)——I*(él)
>2(k—1). This means that AIC(k) attains its minimum at k=k(=p)
if and only if

I6,)— 6)>2(ke—1)  for all Izp.

Thus, the MAICE estimates the order to be & when I(ék)—I(ép) is large,
contrary to the entropy maximization principle. This is partly due to
the fact that the variance of AIC (k)—AIC (p) does not diminish as N
tends to infinity but approaches to 2(k—p), twice of its expected value.
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Note that AIC(k) can be viewed as an unbiased estimate of J,=

—2Exlog f(X; é,,)+2k based on the sample of size 1. This suggests
that we devide the given data X,,---, X, into several parts and re-
place AIC (k) by the arithmetic mean of AIC’s computed from each of
the devided data. Results of the numerical study on the behavior of
the modified procedures will be published elsewhere.
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