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1. Introduction

Let P(-) be an orderly stationary point process on the set of points
o={t;; =0, £1, +£2,---} € 2 with no fixed atoms on the real line R.
Here we take -.-<t_;<0<t,<t;<---, and it is assumed that the set
® has no limit point.

The counting measure N(A)=N(4, o) is defined for each bounded
Borel subset A of R to be the cardinal of the set oN A.

The complete intensity function and intensity function of the point
process on the s-algebra H,, are defined respectively as follows:

At, 0)=lim % P [N{[t, t+0)} >0| H_...]
(1.1)
1¥(t, o)=1lim % P [N{[t, t+3)} >0| H, ]=E {i(t, v)| H, }

where H,, denotes the o-field generated by {N(u,{]; s<u=t}.

"We consider a family of parametrized stationary complete intensity
processes {A,(t, »); 8 € 6C R’} which are assumed to correspond uniquely
to the stationary point processes {P,; 8 € ®}. Thus we have the exact
log-likelihood on the interval [0, T'] as follows:

(1.2) L;(o):-—S: X, m)dt—{—SoT log 2(t, w)AN(E) .

The maximum likelihood estimator é,:é(ti; 0<t,<7T) is defined by
the estimator of # which maximizes the exact likelihood (1.2) under
observations from the stationary point process P,. Several asymptotic
properties of likelihood procedures for the point processes are suggested
in [10]. In this paper we will give some proofs, and develop the as-
ymptotic properties of the maximum likelihood estimator. For this
purpose we consider theoretically a conditional log-likelihood under the
information from the infinite past
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(1.3) Lo (6)=— S: A, w)dt+ g: log A(t, »)dN(t) ,

and it will be seen later that we can identify L#(9) with L,(6) for
sufficiently large T under the Assumptions C given in Section 2. In
Section 2 assumptions are collected together, and examples which satisfy
them are given. In Section 3 it will be proved that the maximum
likelihood estimator is consistent, asymptotically normal, and efficient.
In the last section Poisson processes will be characterised by a maximum
likelihood estimator of parametrized renewal processes.

2. Assumptions and examples

Three groups of assumptions are given. Assumptions A are for
observations. Assumptions B are the regularity conditions for the par-
ametric family of complete intensity processes. Assumptions C are
given for the relations between ¥ and 2, in order that some limit
theorems for some functional of 2F remain valid.

For convenience, the following notation will be introduced. Let
0 log 2,(t, ®)/06; and 3,(t, )/30; be denoted by ad log /38, and 34/36, respec-
tively, with similar notation being employed for second- and third-order
derivatives. In addition, alog 2/32,),, will be denoted the value of dlog
2/06; at the point ¢ € ® with the same convention used for other func-
tions. Instead of E, (-) and P,(-), where 6, is the true value of the pa-
rameter, let us agree to write E(-) and P(-).

ASSUMPTIONS A.

(A1) The point process is stationary, ergodic and absolutely continuous
with respect to the standard Poisson process on any finite interval.
(A2) The point process is orderly; lim (1/6) P [N{[0, 6)} =2]=0.
3-0

(A3) E[sup (1/9)N(0, o] <co.

We say the process &= {&(f, »); t=0} is adapted (with respect to
the underlying point process N(-, w)) if for fixed t=0 &(t, w) is H_o. .-
measurable. Further, we say the process & is predictable if the map-
ping £: R, x2—R is measurable with respect to the P(-)-completed
g-algebra which is generated by left continuous functions from R, into
R (see [7], p. 2 for example). It will be sufficient for our purpose to
note that the adapted process ¢ is predictable if the sample paths &(¢, »)
are left continuous on (0, ) for a.s. .

In Section 1 we have already used the stochastic Stieltjes integrals

ST &(t, )dN(t)= > &(t(w), ) which are defined pathwise for the meas-
0 05t =T
urable process & fsee [8], p. 89). It should be noted that for any finite
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predictable process ¢ satisfying ST E {2,(t, 0)|é(t, 0)[}dt<co we are allow-
[

ed to do the following calculation :
2.1) E [S: £, w)dN(t)} —E [S: &(t, ) E {dNG)| H_w,,}]
=E [ST §(t, W)t w)dt] :

Thus for integrands of finite predictable processes we can use the formal
relation E{dN({)|H-«,} =4,(t, 0)dt. Similarly, E{dN(¢)| H, .} =25(t, w)dt.
The proof of (2.1) is directly derived from a theorem of [7], p. 23.
We next list a variety of regularity conditions which will be needed
at different places in the sequel.

AssumpTIONS B.

(Bl) 6 is a compact metric space with some metric p, and 6 R".

(B2) 1, is predictable for all . (¢, ) is continuous in 4, and 2,00, w)
>0 a.s. o for any 6 ¢€6.

(B3) 2,00, w)=2,(0, ) a.s. if and only if §,=6,.

(B4) o log 2/06,, 3" log /30,06, and * log /36,060,060, exist and are continu-
ous in # for all %,7,k=1,2,---,d, te R, and a.s. w€ Q. 02/00;
and 9%2/06,00; have finite second moments for any 4 ¢ 6.

(B5) For any 6 ¢ ® there exist a neighbourhood U=U(6) of # such that
for all ¢ € U,

120, 0)|<A(w) and [log 1,(0, 0)|< A(o) ,

where 4, and 4, are random variables with finite 2nd moments.
(B6) For every 6 € 0, the matrix I(6)={L,;(6)} -1,....« With L;(8)=E {(1/2)
-(02/06,)-(94/36,)} is nonsingular, and each element (1/2)-(2/06,)-
(04/36,) has finite 2nd moment.
(B7) For any 6 €6, there exists a neighbourhood U of # such that if

max sup __M =H(, o) ,
1si,j,ksd 0'eU | 06,080,000,
3
max su _Plogd =G(t, w)
1si,,k<e 0'cU | 06,006,060,

then E {H(0, ®)} <oo and E {4,(0, ®)'G(0, »)*} < oo.

It is known by [38] that if the intensity function of the point pro-
cess on the half-line exists, then a predictable version of the intensity
function can always be chosen. In (B2) we assume that the same is
true for the complete intensity function of a stationary process. By
the continuity conditions (B4) all of the derivatives are separable with
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respect to #. From this fact it can be shown that the processes in
(B4) and their supremum with respect to # € U are also predictable.

A further set of assumptions, rather technical in character, are
needed for the stochastic approximations of 2, by 2¥. Condition (C1)
is needed for the proof of consistency, (C2) and (C4) for the discussion
of the Hessian, and (C3) for the proof of asymptotic normality, etec.
Each assumption (ii) of (C1), (C2) and (C4) is for the uniform integra-
bility conditions with respect to the true probability P,. We will make
use of the theorems T20 and T21 in Meyer [14] Chapter 2.

AssumpTIONS C.
(C1) For any #€ 6O there is a neighbourhood U of # such that
(i) ;cs,lelg]x,,(t, 0)—2%(t, 0)|—0 in probability as t— oo,
(ii) gug]log 2%(t, w)| has, for some «>0, finite (2+a)th moment
u;iform bounded with respect to t.

(C2) (i) For any 6€6 and 1, j=1,2,---,d the following tend to zero
in probability as t—oo;

a_ o g Pa_ ax

W—iF, 2 .
T %6, a6, 00,00, 36,06,

(ii) For any @# €6 the following have, for some a>0, finite (2+
a)th moments uniformly bounded with respect to ¢,

2
A 1o a4

, = ,0,5=1,2,---,d.
w7 o6, a8, 36,38, I

(C3) For any #¢0 and ¢=1,2,.--,d, as T— oo

1 (7|82 o+
B[22 ) o ang
YT )o 136, a0, -0 an
1 (T 1 aa*
E{——_-_S a—a L dt} 0.
VT , [ X a0, -

(C4) For any €@ and 4, 7,k=1,2,---,d there is a neighbourhood U
of 6 such that

. 2 o°A* . s
(1) — —0 in probability as t— oo,
vev | 90,00,00,  00,00,00,
" BA* 3 log 2* .
ii) sup——="—— and sup———==— have finite (24+a)th mo-
(W) sup 29,0, v<v 36,00,30, (2+a)

ments which are uniformly bounded with respect to t.

We now give some illustrative examples for our results.
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FErxample 1. Stationary Poisson process

It follows directly from Theorem 2 of [6], for example, that the
complete intensity process is deterministic and positive constant if and
only if the corresponding point process is stationary Poisson. Put A,(¢,
o)=p(0), then the log-likelihood function on the interval [0, T] is given

(2.2) L#(6)= — (6) T+ N(O, T) log x(6)
and the maximum likelihood estimator of p(#) is given by N(0, T)/T.

Example 2. Stationary delayed renewal process

Suppose the parametrized survivor functions 1—F,(t), t=0, are
given. In this case the complete intensity function coincides with the
hazard function (¢, w)=fy(t—1t*(®))/{1—Fyt—t*(w))}, where f,(-) is the
left continuous p.d.f. of F(-), and t*(w) is the last occurrence time
such that t*(w)<t. Then it is easily seen that A,(t, ) is a predictable
process (note i(t, ») is not a predictable process if t*(w) is defined such
that t*(w)<t). The stationary joint distribution of forward and backward

recurrence times is given by P(X=u, Y<v)=p;" Su {F(v+w)—F(w)}dw,
where y,= Sm tdF,(t) (see [12]). Since P(X=Zv|Y>t)= Sm F(v+w)—F(w)}
[1] t

/S:o {1—F(w)}dw, we see that 2*(t, 0)=E {i(t, 0)| H,,} = {1_F(t)}/8:° =

F(w)}dw if there are no points in (0, t], otherwise A*(t, ®)=21(f, ). Thus
we have the exact log-likelihood function for the observation 0=t,<
e+ <t,1=T on the interval [0, T,

n—1
(2.3) L¥(0)=log p1; l{l—ﬂ(t°)}+§ log fi(t;—t:-)+log {1—F(T—t,,)} .
Let us briefly check the assumptions for renewal processes. (C1)-(i)
and (C2)-(i) are automatically satisfied because, for example,

P {sup | 2%(t, ®)—2,(t, )| >} <P {no events in (0, ]}
0'elU

=(1/p) Sw {1—F(s)}ds=J(t) (say) by the facts above. By the similar idea
and usintg Cauchy-Schwartz inequality we also see that the conditions
in (C3) are satisfied if (1/¥'T) ST J(t)"*dt—0, which in turn are satisfied
if F(t) has a finite variance. 0 Integrability in Assumptions B and C
depend on the decreasing rate of J(t) or 1—F(t).

Example 3. Wold process (Markov-dependent intervals)

The 0-memory Wold process is defined formally with a complete
intensity function which is independent of any of the past occurrence



248 YOSIHIKO OGATA

times, and m-memory is defined with a complete intensity function
At, @)=at—1t_y, -+, t—t_,) which depends only on the m most recent
occurrence times t¢_,,---,t_,,. These processes are extensions of the
renewal process with the hazard function, and exist as finite order
Markov processes. The relation between the conditional hazard func-
tions and survivor functions is given in the last chapter of [9]. For
example, if the process is 2-memory and P, (t—t_,, t_;—t_;) is the prob-
ability of no points in the interval (¢_,;, t_;) and one point in the inter-
val (t_;, t] under the condition that we have just two most recent points
t_s, t_y, then

0 o/ o 0
e mte== 2o 32 &t}
¢ @)=h(z, 9) ot o8 o \oe or/ " (=, )
where r=t—t_, and ¢=t_;—t_,. It should be noted that the complete
intensity function coincides with the conditional hazard function in the
case of the finite memory processes.

Example 4. Hawkes’ self-exciting process

Consider the point process which is formally defined with a com-
plete intensity function of the form
(2.4) A, w)=y+g” rt—wdNw), 0=, )
=v+ Z Tﬂ(t'—ti)
ti<t

where v>0, 7,(u)=0, 7, is left continuous for ©=0, and Sw r(w)du<l.
0

Note that the range of the integral in (2.4) is (—oo, %), in other
words, the sum is taken for all integers ¢ such that ¢,<t; this guaran-
tees the predictability of A,(t, ). If we take the integral on the range
(—oo,t], then A(t, ») is no longer predictable. It is easily seen that
this difference between (—oo,?) and (—oo, t] also appears significantly
when we calculate the likelihood under given data. It was shown in
[6] that the stationary self-exiting point process exists uniquely as a
generalized Poisson cluster process, in which the cluster structure is
that of a birth process. For a simple special case y(u)=ae " (a<p),
Ozaki [8] performed simulations for given parameters ¢=(v, a, ) such
that v>0, a<B, and successfully obtained maximum likelihood estimates
from the simulated data. It is easily seen that Assumption C is al-
ways satisfied by the simple case above.

In general, we see for (C1)-(i) that E {glug [25(t, @) — 2 (t, @)} S2 E {4}

-Sm sup 7.u)du with the rate of decrease of the left-hand side depend-

t (v,m)elU
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ing on the rate of decrease of (sgpv r.u). Assumption (C2)-(i) and (C3)

are satisfied similarly. For the integrability conditions it should be
noted that A(t, ) and Af(¢, ) in this example are uniformly bounded
away from 0. Thus we can see that integrability conditions depend
on the rate of decrease of the tail of 7,, dr./00,, d%,/06,06, and &',/
00,00,00,, and are certainly satisfied when 7, has exponential form.
Finally, though 2f(t, 0)=E {2(t, w)| H;,.} gives the best approximation
of 2(t, w), it is difficult to get the exact likelihood numerically. So,
practically, we can use

X, w)=u+g‘n(t—u)dN(u)=u+ S oi—t) .
0 0se,<t

This is predictable and satisfies the assumptions similarly.

3. Asymptotic properties of the likelihood procedure
LEMMA 1. Under the Assumptions A we have

(i) E{MNQO,1)}<oo,

(if) lim '51‘ P (NG, t4+0)22|H-.. .} =0,

(i) lim L E {N(t, t4+6)*| How,,} =lim L E (N(t, t+0)| H_....}.
-0 O 0 0

PROOF. (i) is obtained directly from (A3). For the proof of (ii)
note that
%P{N(t,t+6);2|H_w,,}§ i 2P (NG, t46)=i|H ...}

E {N(, t+0)’| H-....} .

04|)—A Oalb—‘

Then by (A2), (A3) and the dominated convergence theorem

E{hm P (NG, t+5)>2[H_M}]—hm P {N(t, t+8)=2} =0 .

-0

Therefore with probability one

lim L P {N(t, t+8)=2|H... .} =0 .
0 0

Proof of (iii). By (A83) we have

2 N(fb k+1> ;‘;:N<_1’_z_, _k_;*?,;l>_+0 a.s. as n—0,
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since with probability one each interval [k/n, (k+1)/n] will ultimately
have either zero or one event in it. Also we have

N, 1)= EN(" ’“:1> and

(5 S (S0 £ v

since all terms are non-negative. It therefore follows from the domi-
nated convergence theorem and stationarity that

nE {N(o, l>2}—+E{N(0, 1)]  as nooo,
n
that is, for any ¢=0
lim % E {N(t, t+0)') =lim % E (N, t+3)} =E [N(©0, 1)} .
Thus we have
E [lim 1 B (M@, t+0) | H . }—lim L E (NG, t+5)|H_w,,}]
30 0 =0 g
—lim [% E [N, t+6)° —_;_ E (NG, t+6)}] =0

and the integrand above is always non-negative since N(t, t+4) is non-
negative integer-valued. This completes the proof.

THEOREM 1. Under the Assumptions A, (B2) and (B4)-(B6)

3.1) E{M} =0, 1=1,2,---,d
aﬂt 6=10,

and

aL.(9) aLT(ﬂ)} _ BZLT(ﬁ)}
32) E {_T____ _ _g [®L:(0)
( ) ao,; 601 =0, { 30,30,; =6y

=TE{la_ii"_} . 4,§=1,2,---,d.
A aﬂi 30, 0=0

Proor. By (ii) of Lemma 1
lim L B (N[t t46)| H_...} =lim L P (N[, t+8)=1|H_...}
3—0 a §—0 6 R

=2’0(t’ (D) .
This means formally that E {dN(t)| H-...} =2,(t, ®)dt. Thus we have by
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(B2), (B4), (B5) and (2.1) that

dlog 2
E{l, |
. a6, —=2dN(t) o

ll

2 -t

o 2 -rn(2
o 00, =0, 00, ) o=0,

for 1=1,2,--.,d. This implies (3.1). Similarly we have for ¢, j=1, 2,
'y d:

(25,

B[ 32 E@NOIH-b ],
5

36,00,

T o T 1 1 82 02
R - (12 Zam)

o 06,00, + o2 aoiae, aN(b) = o A 96, 96, ®) =0,
=E{ S 1 6 ok t} -_-_TE{lﬂX_} )

o A 301 30, =0, 2 30,;30, 0=06,

On the other hand from (B5) and (B6) each of the following terms exists.
B [Lel0) 3Ls(0)
0"0

%6, a0,
o 0 -t st
dN(s)dN(t) ”
A(8)A(t) 0=0
=B {S S(0§S<LST)+S S(OSt<ssT}+S S(osa:zsﬂ]a:o‘,
=L+L+L .

From the relation (2.1) and
E {dN(s)dN(t)| H ...} =dN(s) E {dN(t) | H_..,.} =A(t, 0)d N(s)dt

for s<t, we have ,=0. Similarly I,=0. For the third term I note
that (iii) of Lemma 1 means formally that

E{dN®} | H-o, J=E {dN(t)| H-..,} = (t, o)d? .
Thus we see from (2.1) that

L=E {ST l_m_ﬂdt} =TE{-1__a£_ﬂ_}
’ o A 06, 06, #=dy A a0, 34 0=00.
This completes the proof.

Remark. We can get the same results as Theorem 1 except the
last equality for i* and L¥, if we replace H_.., with H,, in (2.1) et al.
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In order to carry through the further argument we need the fol-
lowing lemma which is a version of the ergodic theorem.

LEMMA 2. Suppose (Al) holds. If £={&(t, w); t=0} is a stationary
predictable process with finite second-order moment. Then

3.3) lim % S: £(t, w)dt=E {£(0, o)}
with probability one, and

1 (7 ANGE) _ Y
(3.4) lim 7 |, 46, )20 =E 0, )

with probability one, where A(t)=2,(t, w).

ProOOF. Since for each ¢, &(f, w) is a measurable functional of the
point process {N(s, t); s<t}, the stationary process & satisfies the er-
godic theorem (3.3). The proof of (3.4) is not so simple. Consider
dN(t) _

A(t)

_—.[2] Y= {()(T, 0)—7([T], )}

(T, @)= ST £(t, ) ST £(t, w)dt

where Y,=7(%, o)—p(t—1, »), ©=1,2,.--,[T]. Then we see that E{Y|
Yy, -+, Y,.;}=0 by the same way as (3.1). This implies Kolmogorov’s
inequality (see [4], p. 235 for example). Since by the same way as
(3.2) we see that E{Y}?} are finite and independent of 7, we get with

probability one that (1/[T])[§. Y,—0 as T—oo. Thus (1/T)(T, w)—0
i=1
with probability one, which, with (3.3), implies (3.4).

The next lemma treats Kullback-Leibler’s information for stationary
point processes.

LEMMA 3. For the likelihood ratio on the umit interval [0, 1],

AL, )
(¢, )

E {4(6,; 6} =0 always holds, and the equality holds if and only if 2,0, w)
=12,(0, ) a.s.

4053 0)={ {4, 0) = 2(t, o)}dt+ 10g NG,  0eo,

ProoF. From (2.1) we have

E {4(0h; 0)} =E [2,(0, 0) {;ﬂﬂ%‘:’o—))— 1+log __‘2?((3 :’))} ]
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Thus the lemma is immediately obtained by the following elementary
fact; for positive x, log x—1-+(1/x)=0 always holds and equality holds
if and only if xz=1.

Remark. 1t is easily seen by the preceding proof that a similar
result is valid for the non-stationary case, i.e. for
(¢, o)
A, o)

1505 0= (¢, 0)—2t, o)}t + | log NGy, 0e6

E {4f(6; 0)} 20, and the equality holds if and only if 2%, w)=245(t, »)
for a.s. (¢, w).

THEOREM 2. Under the Assumptions (A1), (B1)~(B3), (B5) and (C1),

the maximum likelihood estimators éTzé(ti; 0=t,<T) converge to 6, in
probability as T— oo.

Proor. By (B2), and (B5) we have
E {ing 2:(0, ®)}—E {2,(0, 0)} ,
8'e

and

BL2,0. ) 08 (1,0, lsup 40, 1= 2 0. ) o 245"

as the neighbourhood U of # shrinks to {#}. Let U, be an open neigh-
bourhood of #,. Then by Lemma 3 and (B3) there is a positive ¢ such
that E {4,(6,; #)} =8¢ for any 6¢6\U,. Now for any 6 € 6\U,, we can
choose U small enough so that

E[ ﬁmg 4(0, @) — 2, (0, w)+2,(0, w) log {2,(0, w)/§1€18 2:(0, @)}]
=E {4,(0,; 0)} —« .
Select a finite number of #, such that U,=U,, 1=s<N, cover O\U,.
Since inf 2,(t, ») and sup 4,(t, @) are predictable processes, by Lemma 2
¢’ elU 0'elU

there exists, for any ¢>0, T,= Ty(¢) depending on the sample such that
for any T>T, and s=1,2,---, N,

1 1
(3.8) 75 Lx(00) —Sup L:(6)

zao(t’ (l)) dN(t)

1(7,. 1(”
g? So {f'lenli Ally @)=t w)}dt+7 So log sup A4(t, w)

deU

;E {/11(00; 0)} —26_28 .
It follows that there exists T,=T(¢, U)> T, such that for all 7> T,
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(3.6) sup L(8)= sup Lp(0)+<T.
ano 0&8\U0

From (Cl) we easily see that the inequality (3.5) and (3.6) remain
valid for the case of 2f({, ) and L¥(#) with probability going to one

as T—oo. But (3.6) means 6 €U, This completes the proof.

THEOREM 3. Under Assumptions A, (B2, 4, 6, 7) and (C2) the Hessian
matriz {(1/T)(0*L¥(0)/30,00,)}; ;-1,3,....« 18 asymplotically megative-definite
wn some meighbourhood U of 6,.

PrROOF. Let U be some neighbourhood of 4,. If ¢ € U, then by (B4),

(B7) and the mean value theorem we get for 4, j=1,2,--.,d
1 oL(6) _ 1 ST a2 {dN(t) —dt} _lg 1 92 o AN(t)
T 36,009, T o 6,00, 2 o T Jo 2 36, 00, e

“:H a|0—6:| H(t, o)dt+ 7 S BlO—6,| G(t, ) NE) ,

where |0—6,| denotes length in R? and a, 8 are random variables such
that |af, |g|<d. From (B4, 6,7) and Lemma 2 we have as T— oo

1 ST . ‘1“ST 1
0

T o 96,00, ls, T Jo 2 36,00,

dN(t)—0 ,

L)

L t)—I1,06,) ,
0 22 30¢ aoj % ( )_’ j( 0)

N~ N

|, Het, 0)dt—E (HO, o)} ,
and
_;_ ST G(t, 0)AN(E)— E{A(0, 0)G(0, »)}
with probability one. Suppose ¢>0 is given. Choose d=4d(¢) in such a

way that 6<e and {¢; |#—6,|<6}cU. Having chosen 4, choose Ty=
Ty(e) large enough so that if T'= T, then with probability exceeding 1—e

_lST 32 lSTl 92 dNtl 5
l T Jo 96,06, les T Jo 2 36,06, o @] <o,
S 1(7 —1 a2 8
—1 82 aa
1.6 ._S____ dNtI 5
A LIRS
and

(3.8) |%§ —aH(t, o)dt+L S BG(t, w)dN(t)l < 2dM?
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for 4, j=1,---,d. Also choose § so small that {#; |¢#—6,|<d}c U and
that if (¢,;) is any dXd-symmetric matrix with |¢;;—I,|<26(1+d*M?®)
for 4, j=1,2,---,d then (g;;) is positive definite. Thus from (3.7) and
(3.8), for any @ such that [§—6,|<d

1 3Ly(6)

() 0+0+2d*M*
T 36,00, +1,(60) | <0+0+

holds with probability going to one as T—oo. Therefore from (C2)
with probability going to one, the matrix {0°L%()/06.96,} is negative-
definite for every ¢ such that |¢#—6,|<é.

Example. In the following cases the Hessians are always non-posi-
tive definite a.s. w;

a
(@t )= 0£FE0)+ 7" 0), 5 9>0 as. 0,

5, o) =exp (3106, 0)+7¥(t o)) |

where &, 7 are some predictable processes with respect to the corre-
sponding point processes respectively. In fact, we have for any real
Uiy i=1121"‘;d

& g, SLEO) _ (7T (3 .
i,%l Wtk ) a0, go EZ’ &, )25, w)} dN(t)
=—S: {Z ZH w)} X, o)t ,
respectively.

THEOREM 4. Under Assumptions A, (B2,4,6) and (C3) (1/¥T)-
(0L*(8,)/00) converges in law to N(O, I(8,)) as T— oo.

ProoF. Since for 0<S<T and 1=1,2,---,d

E {2Ls(@)
00,

_ 9Ls(6)
By =20 1 g (5, 1) Hy)

where Hy=H_.. s, and using (2.1) and the definition of conditional ex-
pectation

E {4(S, T)| Hs} =E [S AN() —dt}

60{ A

Hs:|:0 ’

%

we see dL.(6,)/08 is a martingale. If we put

aLT(eo) kg A(k—1, k)+4(T1, T) ,
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then {4(k—1, k)}i-y,,... is a sequence of stationary ergodic martingale
differences with E {4(0, 1)4(0,1)'}=1(6,) by Lemma 1. Thus [T]‘”Zg

A(k—1, k) converges in law to N(0, I(4,)) as T— oo by the central limit
theorem for martingale differences (see [2]). On the other hand we
see that T-V:4([T], T)—0 in probability as T—occ. Assumption (C3)
completes the proof.

Remark. 1f (A2) or (A3) do not hold, the covariance matrix is dif-
ferent from I(6,) as defined in (B6). For example E {4(0, 1)4(0,1)}=
E [(1/2*)(04/36,) (32/36,)] if E[dAN(t)| H_o,.]=pt, w)dt.

THEOREM 5. Suppose the maximum likelihood estimator 9T satisfies
the equation oL¥(6)/00=0. Then under the Assumptions A, (B2,4,6,7)
and (C2, 8, 4), as T— o,

(3.9) VT (67 —6,)— N0, I(6,)™)
and

(3.10) 2{L¥(6:)— L0} 1
wm law.

Proor. From (C2) and (C4) we have the following with probability
going to one as T— oo,

1 6L¥G) , 1 *L¥6) /7,2
0=_1 OLr 1 T (6—6,
JT 30 T o000 VT (6—0)
T

A T A
VT O =00 {2 | Ht, o)it+-E | G, 0)dN®)| 6r—0)
T 0 T 0
where H, G are given in (B7), and «, 8 are random matrices with |a,;|,

|B:;|=d*/2. Since |5T—001—+0 as T—oo, we get from the last part in
the proof of Theorem 3

(3.11) L _OLHO) _ T 1) 6y —80)| S er VT (6r—0)]

vT 660
for some e, such that ¢,—0 in probability as T—ooc. Hence we have
(3.9) by Theorem 3 and by Theorem 10.1 of [2]. Now we have from
(C2) and (C4) with probability going to one as T— oo that

A % A A 2T %k A
2(LHG)~ 1100} =2 220 G, — )+ G — 0 TLED) G, g,

16— f {S: aH(t, w)dt+ S: 8G(t, w)dN(t)}
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for 6, € U, where a, 8 are some random variable such that |al, |8|<d?/3.
Since the last term tends to zero in probability, we get (3.10) by Theo-
rem 3 and Theorem 4 and (3.11).

We now state and prove the Cramer-Rao inequality for finding a
lower bound of the variance of the estimate. Let 0=ty(w)<t(w)<---
<t.1(w)ET be the observation on the interval [0, T] from the point
process P;*(-) which has the Radon-Nykodim derivative p¥(w,#)=exp

{ST log 2¥(t, w)d N(t)+ ST (11—, a)))dt} with respect to the standard Pois-

son process, (see Theorem 13 in [6] for example). An estimate 6,(w)=
dr(ty,- -+, t,_1), not necessarily unbiased, is wanted for the vector param-
eter # ¢ O R®. Consider the following additional conditions.

CONDITIONS D.
(D1) E,{6;(0)’} <oo for all f€6.

(D2) Ea{ST 1 94 @) 9K o) dt}<oo for all #€® and 4, 5=1,

0 ;k(t’ w) aoz 301
.o, d.
2 (T, _ (T 8kt o)
3) - S (¢, w)dt S 2. 9) 4 an

g Jo

o (7 )

._S log 2(t, w)dN(t):S 9 Yog 25(t, @)dN(t) for all 0 ¢6.
a6 Jo o 06

(D4) aie S So(@)0i(@, 0)H(dw)=§ 5T(w)§0_p>;(w, 0)I(dw) for all g€,

where IT is the probability measure of the standard Poisson
process.

THEOREM 6. If E,{d;(w)}=0-+b,(6), and b(0) is differentiable, then
under the regularity Conditions D

E, [{3r(0) —0—b7(8)} {3r(0)—6—b7(6)}]
b _ ad '
> 2 *(9)~1 9
2 {r+-2 vl oy 1+-20.0),
where I is d Xd-identity matrix, A=B means that the matrix A—B 1is
non-negative definite, and

Ky o1 (L, w) 0Af(t, ») }
IF(6)=E, {So 25, @) % 2 dt: .

Proor. By (1.2)

E, {3:(0)} = | 0:(@)P1(d) = 3r()pt(, O (do)
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Thus by (D4) and (1.2)/
d _ [
2B, (0:()) _S 1) p3 (0, O)IT(do)
- S 52(0) {_330_ log p¥(o, o)} o¥(w, O)IT(dw)
—E, {aT (w)% log p¥(w, 0)} :

By (2.1) and (D3)

E, {% log p#(w, )} = {{ i (tl, m s (at(; 2 ane- |’ “g+@dt} =0.

Thus by Schwartz’s inequality we have for any vectors s, t ¢ R¢
125,00
[t {I+ 2 b,(o)}s
a 2
=[# cov, far(@)-2- 10g o2(0, )} 5]
<E, [ {51(0’)—0—br(0)} {07(0)—60—b7(0)}'t]
E, {s% log pi(o, 0)530_, log p¥(w, o)s} .
Put
s=E, {i log p¥(w, 6) -2 log p¥(o, o)} - {I+ _a_b,(o)}' t.
26 o6’ a6’
Then we have for any vector t ¢ R¢,
142 5,0) B 12 og o0, 0)-2, Tog o0, )] T+-2 by(0))
t{I+ 25 @ Eai =5 108 o¥(@, )= log pi(, O)) 1 I+—-br(0); ¢
St E,[{0:(0)—0—b,(0)} {0,(0)—6—b(0)}]E .
Note that by the similar method to the proof of (3.2), we have

E, { ‘?9 log p¥(w, 0)%log ¥, 0)}

]

—E, {ST 1 0t @) 04X, ®) dt} )
o X, o) a6 ae’

This completes the proof.
By Assumption (C2) it is easily seen that

1lg {ST 1 it @) 9t @) g
T 7 Ue 2t 0) 00 o0’

}—»I(a) .
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Therefore together with Theorem 4 we have the following.

THEOREM 7. If the mazimum likelihood estimator 6, satisfies the
conditions of Theorem 6, then it is an asymptotically efficient estimator,
that is, O asymptotically attains the lower bound of the variance of
estimates.

4. Characterization of Poisson processes by a maximum likelihood
estimator

Suppose a stationary delayed renewal process has a survivor funec-
tion 1—F,(t), 0<t<oo, where F,(t) is a probability distribution function
with density function f,(t) such that

(4.1) |, 0=\ thityit=p0) -

Remember the definition of the maximum likelihood estimator given

in Section 1, that is, #, maximizes the likelihood (1.2) under the ob-
servation from the stationary delayed renewal process. Assume the
following conditions.

CONDITIONS E.

(E1) For any t>0 the maximum likelihood estimator 6= {f,(w)} is a
measurable function from (¢, 0) X2 onto 6, that is, for any ¢ 6
and for any t>0 there are T(f)>t and w(f) € 2 such that #=
070 (@(0)) maximises the log-likelihood (2.3).

(E2) log (1—F(s)) and log fi(s) are differentiable in 4.

Then we have the following.

THEOREM 8. The maximum likelihood estimator depends only on T
and n=N(0, T) if and only if F(t)=1—e*"" where p(08)>0 for all 6 € 6.

PrROOF. See Example 1 for the proof of “if” part. Now consider
the “only if” part. Suppose 6* is given. Then by (E1l) there are
T(6*), m(6*)=N(0, T(6*)) and ¢, t,,- - -, t,om-1 Such that #* maximizes (2.3).
Now fix n*=n(6*) and T*=T(6*). Then

3
4.2 0=-2_L}.(6*
(4.2) o LH(0%)

n*—1
=2 log pi (1~ Fult))+ 5] 2 log fulti—t.-)

% log (L—Fp(T*—t,_) .

+=
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Put

G,(s)=§;— log £(s) , Ha(s)=§6T log piGY(1—Fi(s)) ,
(4.3)
K,(S)=aa—0 log(1-F(T*—s)) and  s;=t,—t, 4,
1=1,2,-..,n*=1, s,=t,.

Then Gy(-), Hy(-) and K,(-) are measurable functions such that
n*—1 n*—1
(4.4) Has)+') G,.(sJ:K,.(E si) .

By (E1) and the assumption of the theorem s,, ¢=0,1,--.,n*—1, are
arbitrary positive numbers independent of #* and T*. Therefore the
equation (4.3) is a kind of Pexider’s functional equation (see [11],
Chapter 3 for example), and we have the general solution for s>0

Gun(s)=a(6*)s+b(6*) , H,(s)=a(0%)s+c(6%) ,
K(0) =a(0%)s+(n* — 1)b(6%) +¢(6%) . |

Since 6* is arbitrary and a(8), b(#) are indefinitely integrable by (E2),
solving the first differential equation (4.3) above we have

fd8)=DB(@)e*™: .

Since f,(t) is a probability density function satisfying (4.1) we get
Fi)=pO)e " .

Therefore
Fy(t)y=1—e,

This completes the proof.

COROLLARY. If Fyt)=F(6t), >0, then N, T)/T is a mazimum
Likelihood estimator of 8 if and only if F(t)=1—e™".

Remark. 1t is easily seen by the Palm-Khinchine theory that N(0,
T)/T is an unbiased estimator of #, that is, ¢ is equal to the intensity
of the stationary delayed renewal process.

Remark. 1t is easily seen also that the estimator N(0, T')/T is not
always asymptotically efficient estimator of the intensity ¢ of the re-
newal process. In fact we see that

lim T'E,, [{N©O, T)/ T—0}]=0'¢",
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where ¢° is the variance of the failure-time distribution.
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