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1. Introduction and notation

The purpose of this note is to give a necessary and sufficient con-
dition for the existence of a Gauss-Markov (G-M) estimator of a mean
vector for a general linear model to be defined below. A careful exami-
nation of Theorem 3 in Kruskal [3] suggests that the proper context
for G-M estimation is within finite dimensional vector spaces without
inner products, even though Kruskal’s proof does involve an inner prod-
uct. Using results due to Kruskal [3], Eaton [1] gave necessary and
sufficient conditions for the existence of a G-M estimator when the
covariance operators in the linear model were non-singular.

The conditions given in the current paper do not require non-
singularity of the covariance operators. In fact, the arguments pre-
sented here show that the singularity or non-singular of the covariance
operators in the linear model is really irrelevant, and it is the intro-
duction of an inner product which leads one to worry about the sin-
gularity of covariance operators.

It is assumed that the reader is familiar with finite dimensional
vector space theory as presented in Halmos [2] or other comparable
texts. Throughout, V will be a finite dimensional real vector space,
V' will denote the dual space of V, and the value of the linear func-
tional £eV’ at x €V is [§, 2]. The usual canonical identification of V"
with V is assumed so the value of x € V (=V") at €€ V' is [z, £]=[¢, x].

Let YeV be a random vector with E [, YIP<+oo for all £€V’'. Then
the mean vector of Y, say ﬂEE Y, exists and the covariance operator
of Y, say Y=Cov(Y) exists.

By definition [¢, p]=E’[E, Y] for ¢eV’, and [, 2&]=Cov {[&, Y],
[&, Y]}. Thus ¥ is a linear transformation (l.t.) on V'’ to V and Y=0;
that is,  is self adjoint and positive semi-definite. If A: V—W is a
linear transformation, A’ is the adjoint of A, R(A) is the range of A,
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and N(A) is the null space of A. For a linear manifold MCV, M°'CV’
denotes the annihilator of M. In this notation, a result which is often

used in this paper is (R(A))°=N(A’) (Halmos [2]). Suppose I: V'—>V
and 3=0. Let M be a linear manifold in V. Then

(1.1) S(MYNM={0} .

To see this, first note that N(Z‘): {¢][¢, 2£]=0}.
, Now, u e M iff [¢, u]=0 for all £€ M"; and w € J(M") implies u=2I¢,
for & € M. Hence u=23¢ ¢ I(M°)N M implies [&,, 2&]=0 so u=3¢=0.

2. The simple linear model

By a simple linear model we mean a random vector YeV such
that: (a) the mean vector of Y, p, ranges over a fixed linear manifold
M and (b) Cov(Y)=2, where 3,=0 is a fixed known linear transfor-

mation. Given the simple linear model (V, M, %)), define the set A of
linear transformations on V to V by

2.1 A:{A|A: V-V, A=z, xc M} .

Clearly, if B: V—V, then BY is an unbiased estimator of u iff Be A.
DEFINITION 2.1. A, € A is a Gauss-Markov Operator (G-M.O.) iff

2.2) (&, A2 1A= [¢, A A'E]

for all ¢ V' and A€ A.

Since [¢, AZ,A’¢]=Var([¢, AY]), A € A is a G-M.O. if A, minimizes

Var([¢, AY] (over A) for all £¢ V'. This is the usual interpretation of
a G-M estimator.

THEOREM 2.1. Let NSV be a linear manifold complimentary to
M such that N=22X,(M°) and let P, denote the projection on M along N.
Then P; is a G-M.O.

PROOF. By assumption, N(P)23(M"). Since R((I—P))=[N(I—
P)I'=M°, PZ,(I—P,)Y=0 iff Px=0 for all x ¢ 3 (M"). Thus I\’T(P,)QZ'I(M")
is equivalent to

(2.3) Plzl(I—Pl)'=0 .
For Ac A, AP,=P, so A=AP,+A(I-P)=P,+A(I—P,). Thus
(2.4) Var[¢, AY]=Var [¢, P,Y+A(I—P)Y]
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—Var [¢, P,Y]+2[¢, P.3(I—P) A’
+Var[s, AU-P)Y] .

From (2.3), we have

(2.5) Var [§, AY]=Var [¢, P, Y]

with equality iff Var[¢, AU—P,)Y]=0 for all £eV".
THEOREM 2.2. A, € A is a G-M.O. iff N(A)23(M").

ProOF. From the condition for equality in (2.5), A4, is a G-M.O. iff
Var [¢, A,((I—P)Y]=0 if AI—P)X,(I—P)A’=0. Since 3,=0, A4, is a
G-M.O. iff

(2.6) A(I—P)3,=0.

But (2.6) holds iff N(AI)QR((I-—P,)EI). However, R((I—P)%,)=3,(M°
since R(P,)=M and N(P)23,(M").

COROLLARY 2.1. A G-M.O. s unique iff M+2,(M"=V.

COROLLARY 2.2. A, € A is a G-M.O. of AY and (I—P)Y are un-
correlated.

Proor. A,Y and (I—P,)Y are uncorrelated iff A,S([—P) =0 iff
N (4)2R((I—-P))=23(M". The conclusion follows from Theorem 2.2.

COROLLARY 2.3. If X,: V'—>V 1is non-singular, then the G-M.O.,
A,, s unique. Further A, is the projection on M along 3 (M°)=[2Z'(M)"].

PrROOF. From the previous results, we must only establish that
S (M%) =[2;Y(M)]’ and to do this, it will be shown that (Z(M"))'=37Y(M).
Now u € (T (M")" iff [u, 2;9]=0 for all »e M° iff [3u, y]=0 for all ye¢
M°. But [Jwu, 5]=0 for all »e M° iff we IT(M).

Remark. An alternative interpretation of a G-M.O. is the following.
Let C,: V—V’ be any positive definite self-adjoint linear transformation.

Consider the simple linear model (V, M, 2,). Define a bilinear function
T on pairs of linear transformations A, B (mapping V to V) by

@2.7) T(4, B)=E,[CA(Y—p), B(Y—p)] .

It is easy to show that if AY and BY are uncorrelated, then T(A, B)
=0. Further, T(4, A)=0 iff AY,A’=0. The following result is not
hard to prove.

THEOREM 2.3. A.,e/l s o G-M.O. iff T(A,, A)=T(A, A) for all
AcA.
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3. The general linear model

By a general linear model we mean a random vector Ye V such
that: (a) E‘( Y)=p ranges over a fixed linear manifold M, and (b) Cov
(Y)=2X ranges over a fixed set I" of positive semi-definite linear trans-
formations on V' to V.

DEFINITION 3.1. A, € A is a G-M.O. for the model (V, M, I') iff 4,
is a G-M.O. for each of the simple linear models (V, M, 3), S er.

With this definition, the following results are obvious.

THEOREM 3.1. A G-M.O. A, exists for the model (V, M, I") iff there
exists a manifold NSV complementary to M such that S(M)2N for
all X el

THEOREM 3.2. Consider the linear model (V, M, I') and suppose each
Y eI is non-singular. A G-M.O. exists iff S7'M=3;' M for all X,,3, €I

Note that Theorem 3.2 was given by Eaton [1] in the context of
inner product spaces. Also, if one is working with an inner product
space, then M° becomes M-—the orthogonal complement of M, and the
conditions in the above theorems are then in terms of X(M+).

In particular, when the identity operator on V to V is in I, then
application of Theorem 3.1 shows that a G-M.O. exists iff S(M+)S M+
for all Y eI". But S(M+)S M+ is equivalent to Y(M)<S M since each %
is self adjoint. Hence we have

THEOREM 3.3. Consider the linear model (V, M, ") where V 1is an
inner product space with inmer product (-,-) and 3: V-V, Yel, is
self adjoint and positive semi-definite with respect to (-,-). If Iel,
then a G-M.O. exists iff

3.1) MM  forall Tel'.

Applications of the results in this section include those given by
Eaton [1] and Kruskal [3]. Also, the references in these two papers
contain many examples to which the above results are directly appli-
cable.
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