ON A CHARACTERIZATION OF THE EXPONENTIAL DISTRIBUTION BY SPACINGS

M. AHSANULLAH*

(Received Sept. 20, 1977)

Summary

Let X be a non-negative random variable with probability distribution function F. Suppose $X_{i,n}$ ($i=1, \ldots, n$) is the ith smallest order statistic in a random sample of size n from F. A necessary and sufficient condition for F to be exponential is given which involves the identical distribution of the random variables $(n-i)(X_{i+1,n}-X_{i,n})$ and $(n-j)(X_{j+1,n}-X_{j,n})$ for some i, j and n, ($1 \leq i < j < n$).

1. Introduction

Let X be a random variable (rv) whose probability density function f is given, for some $\theta > 0$, by

$$f_\theta(x) = \begin{cases} \theta^{-1} \exp(-x/\theta), & x > 0, \\ 0, & \text{otherwise}. \end{cases}$$

Suppose X_1, X_2, \ldots, X_n is a random sample of size n from a population with density f and let $X_{1,n} < X_{2,n} < \cdots < X_{n,n}$, be the associated order statistics. We shall define the standardized spacings as

$$D_{r,n} = (n-r)(X_{r+1,n}-X_{r,n}), \quad 1 \leq r < n, \text{ with } D_{0,n} = nX_{1,n} \text{ and } D_{n,n} = 0.$$

Kotz [7] and Galambos [5] discussed various characterizations of the exponential distribution. Puri and Rubin [8] proved that if X_1 and X_2 are independent copies of an rv X with density f, then X and $D_{1,2}$ have the same distribution if and only if f is as given in (1.1). Ahsanullah [2], [3] gave characterization of the exponential distribution by assuming respectively the identical distributions of $D_{i,n}$, $D_{0,n}$ and $D_{i,n}$, X.

* The work was partly completed when the author was at the Dept. of Statistics, University of Brasilia, Brazil.

Key Words and Phrases: Exponential distribution, Characterization, Identical distributions, Spacings, Monotone hazard rate, Order statistics, Non-negative random variable.
In this paper we will give a characterization of the exponential distribution by considering identical distributions of $D_{i,n}$ and $D_{j,n}$ with some i, j and n, $(1 \leq i < j < n)$.

2. Notation and results

Let F be the distribution function of a non-negative rv X with the density f and $\bar{F}=1-F$ and with hazard rate $H(x)$ as $H(x)=f(x)\cdot (\bar{F}(x))^{-1}$, for $x \geq 0$, and $\bar{F}(x)>0$. We will call F has increasing hazard rate (IHR) if $H(x) \leq H(x+y)$, $x, y \geq 0$ and F has decreasing hazard rate (DHR), if $H(x) \geq H(x+y)$, $x, y \geq 0$. We will say that F belongs to class C if F is either IHR or DHR.

Theorem. Let X be a non-negative rv having an absolutely continuous (with respect to Lebesgue measure) distribution function F that is strictly increasing on $[0, \infty)$. Then the following properties are equivalent:

(a) X has an exponential distribution with density as given in (1.1).

(b) For some i, j and n, $1 \leq i < j < n$, the statistics $D_{i,n}$ and $D_{j,n}$ are identically distributed and F belongs to class C.

Proof. It is known (see, Galambos [5]) that (a)\Rightarrow(b), so we prove only that (b)\Rightarrow(a). From the conditional joint density of $X_{i,n}$ and $X_{j+1,n}$ given $X_{i,n}=x$, which is given e.g. by Govindarajulu [6], it follows that the conditional density of $D_{j,n}$ given $X_{i,n}=x$, is

\[
(2.1) \quad f_{D_{j,n}}(d|X_{i,n}=x)=K \int_0^\infty ((\bar{F}(x)-\bar{F}(x+s))(\bar{F}(x))^{-1})^{j-i-1} \\
\times ((\bar{F}(x+s+d(n-j)^{-1}))(\bar{F}(x))^{-1})^{n-j-1} \\
\times (f(x+s)(\bar{F}(x))^{-1})(f(x+s+d(n-j)^{-1})) \\
\times (\bar{F}(x))^{-1})ds,
\]

where $K=(n-i)!(j-i-1)!(n-j)!^{-1}$, and $1 \leq i < j < n$. Integrating (2.1) with respect to d from d to ∞, we get

\[
(2.2) \quad \bar{F}_{D_{j,n}}(d|X_{i,n}=x)=K \int_0^\infty ((\bar{F}(x)-\bar{F}(x+s))(\bar{F}(x))^{-1})^{j-i-1} \\
\times ((\bar{F}(x+s+d(n-j)^{-1}))(\bar{F}(x))^{-1})^{n-j} \\
\times (f(x+s)(\bar{F}(x))^{-1})ds.
\]

Again we know (see, e.g. Galambos [5], p. 82) that the conditional distribution of $D_{i,n}$ satisfies the following relation

\[
(2.3) \quad \bar{F}_{D_{i,n}}(d|X_{i,n}=x)=((\bar{F}(x+d(n-i)^{-1}))(\bar{F}(x))^{-1})^{n-i}, \quad 1 \leq i < n.
\]
Since \(F \) belongs to class \(C \) and the distributions of \(D_{i,n} \) and \(D_{i,n} \) are identical, so also their conditional distributions given \(X_{i,n} = x \). Writing
\[
K^{-1} = \int_0^\infty (\bar{F}(x+s))(\bar{F}(x))^{-i}((\bar{F}(x) - \bar{F}(x+s))(\bar{F}(x))^{-i})^{-1}
\times f(x+s)(\bar{F}(x))^{-i}ds,
\]
we get on simplification from (2.2) and (2.3),
\[
0 = \int_0^\infty (\bar{F}(x+s)(\bar{F}(x))^{-i}((\bar{F}(x) - \bar{F}(x+s))(\bar{F}(x))^{-i})^{-1}
\times f(x+s)(\bar{F}(x+s))^{-i}G(x, s, d)ds,
\tag{2.4}
\]
for all \(d \) and any given \(x \), and
\[
G(x, s, d) = ((\bar{F}(x+d(n-i)^{-1}))(\bar{F}(x))^{-i} - ((\bar{F}(x+s+d(n-j)^{-1}))
\times (\bar{F}(x+s))^{-i}h(x+s))^{-i}j.
\tag{2.5}
\]
Differentiating \(G(x, s, d) \) with respect to \(s \), we obtain,
\[
\frac{\partial}{\partial s} G(x, s, d) = ((\bar{F}(x+s+d(n-j)^{-1}))(\bar{F}(x+s))^{-i}j
\times (h(x+s+d(n-j)^{-1}) - h(x+s)).
\tag{2.6}
\]
(i) If \(F \) is IHR, then \(G(x, s, d) \) is increasing in \(s \) for fixed \(x \) and \(d \). Thus for (2.4) to be true, we must have \(G(x, 0, d) \leq G(x, s, d) \leq 0 \). If \(F \) has IHR, then we know (see, e.g. Barlow and Prochan [4]) that log \(\bar{F}(x) \) is concave, hence using Jensen's inequality, we have
\[
\log \bar{F}(x+d(n-i)^{-1}) \geq ((j-i)(n-i)^{-1}) \log \bar{F}(x)
+ ((n-j)(n-i)^{-1}) \log \bar{F}(x+d(n-j)^{-1})
\]
i.e.
\[
(\bar{F}(x+d(n-i)^{-1}))^{n-i} \geq (\bar{F}(x))^{i-1}((\bar{F}(x+d(n-j)^{-1}))^{n-j}.
\]
Which shows that \(G(x, 0, d) \geq 0 \). Hence if (2.4) is true, we must have \(G(x, 0, d) = 0 \), for all \(d \) and any given \(x \).

(ii) If \(F \) has DHR, similarly we get \(G(x, 0, d) = 0 \), for all \(d \) and any given \(x \). Substituting \(x = 0 \), we have \(G(0, 0, d) = 0 \) for all \(d \), i.e.,
\[
(\bar{F}(d(n-i)^{-1}))^{n-i} = (\bar{F}(d(n-j)^{-1}))^{n-j}, \text{ for all } d \geq 0, \text{ and some } i, j \text{ and } \frac{n}{2} (1 \leq i < j < n).
\tag{2.7}
\]
Taking \(\phi(d) = -\log \bar{F}(d) \) and \(z = d(n-i)^{-1} \), we get
\[
\phi(z) = ((n-j)(n-i)^{-1}) \phi(z(n-i)(n-j)^{-1}), \text{ for all } z \geq 0 \text{ and some } i, j \text{ and } n \text{ with } 1 \leq i < j < n.
\tag{2.8}
\]
The non null solution of (2.8), (see Aczél [1], p. 31) is

\[\phi(x) = cx, \text{ where } c \text{ is a constant, and so } F(x) = 1 - e^{-x}. \]

Using the boundary conditions \(F(0) = 0 \), and \(F(\infty) = 1 \), we get

\[F(x) = 1 - e^{-\theta x}, \text{ where } \theta > 0. \]

Health Protection Branch, HWC, Ottawa

References

