ON A CHARACTERIZATION OF THE EXPONENTIAL DISTRIBUTION BY SPACINGS

M. AHSANULLAH*

(Received Sept. 20, 1977)

Summary

Let X be a non-negative random variable with probability distribution function F. Suppose $X_{i,n}$ $(i=1,\cdots,n)$ is the ith smallest order statistics in a random sample of size n from F. A necessary and sufficient condition for F to be exponential is given which involves the identical distribution of the random variables $(n-i)(X_{i+1,n}-X_{i,n})$ and $(n-j)(X_{j+1,n}-X_{j,n})$ for some i, j and $n, (1 \le i < j < n)$.

1. Introduction

Let X be a random variable (rv) whose probability density function f is given, for some $\theta > 0$, by

(1.1)
$$f_{\theta}(x) = \begin{cases} \theta^{-1} \exp(-x/\theta), & x > 0, \\ 0, & \text{otherwise.} \end{cases}$$

Suppose X_1, X_2, \dots, X_n is a random sample of size n from a population with density f and let $X_{1,n} < X_{2,n} < \dots < X_{n,n}$, be the associated order statistics. We shall define the standardized spacings as

$$D_{r,n} = (n-r)(X_{r+1,n} - X_{r,n})$$
, $1 \le r < n$, with $D_{0,n} = nX_{1,n}$ and $D_{n,n} = 0$.

Kotz [7] and Galambos [5] discussed various characterizations of the exponential distribution. Puri and Rubin [8] proved that if X_1 and X_2 are independent copies of an rv X with density f, then X and $D_{1,2}$ have the same distribution if and only if f is as given in (1.1). Absanullah [2], [3] gave characterization of the exponential distribution by assuming respectively the identical distributions of $D_{i,n}$, $D_{0,n}$ and $D_{i,n}$, X.

^{*} The work was partly completed when the author was at the Dept. of Statistics, University of Brasilia, Brazil.

Key Words and Phrases: Exponential distribution, Characterization, Identical distributions, Spacings, Monotone hazard rate, Order statistics, Non-negative random variable.

In this paper we will give a characterization of the exponential distribution by considering identical distributions of $D_{j,n}$ and $D_{i,n}$ with some i, j and $n, (1 \le i < j < n)$.

2. Notation and results

Let F be the distribution function of a non-negative rv X with the density f and $\bar{F}=1-F$ and with hazard rate H(x) as $H(x)=f(x)\cdot (\bar{F}(x))^{-1}$, for $x\geq 0$, and $\bar{F}(x)>0$. We will call F has increasing hazard rate (IHR) if $H(x)\leq H(x+y)$, $x,y\geq 0$ and F has decreasing hazard rate (DHR), if $H(x)\geq H(x+y)$, $x,y\geq 0$. We will say that F belongs to class C if F is either IHR or DHR.

THEOREM. Let X be a non-negative rv having an absolutely continuous (with respect to Lebesgue measure) distribution function F that is strictly increasing on $[0, \infty)$. Then the following properties are equivalent:

- (a) X has an exponential distribution with density as given in (1.1).
- (b) For some i, j and n, $1 \le i < j < n$, the statistics $D_{i,n}$ and $D_{j,n}$ are identically distributed and F belongs to class C.

PROOF. It is known (see, Galambos [5]) that (a) \Rightarrow (b), so we prove only that (b) \Rightarrow (a). From the conditional joint density of $X_{j,n}$ and $X_{j+1,n}$ given $X_{i,n}=x$, which is given e.g. by Govindarajulu [6], it follows that the conditional density of $D_{j,n}$ given $X_{i,n}=x$, is

$$(2.1) f_{D_{j,n}}(d \mid X_{i,n} = x) = K \int_{0}^{\infty} ((\bar{F}(x) - \bar{F}(x+s))(\bar{F}(x))^{-1})^{j-i-1} \\ \times ((\bar{F}(x+s+d(n-j)^{-1}))(\bar{F}(x))^{-1})^{n-j-1} \\ \times (f(x+s)(\bar{F}(x))^{-1})(f(x+s+d(n-j)^{-1}) \\ \times (\bar{F}(x))^{-1})ds ,$$

where $K=(n-i)!((j-i-1)!(n-j)!)^{-1}$, and $1 \le i < j < n$. Integrating (2.1) with respect to d from d to ∞ , we get

(2.2)
$$\bar{F}_{D_{j,n}}(d \mid X_{i,n} = x) = K \int_{0}^{\infty} ((\bar{F}(x) - \bar{F}(x+s))(\bar{F}(x))^{-1})^{j-i-1}$$

$$\times ((\bar{F}(x+s+d(n-j)^{-1}))(\bar{F}(x))^{-1})^{n-j}$$

$$\times (f(x+s)(\bar{F}(x))^{-1})ds .$$

Again we know (see, e.g. Galambos [5], p. 82) that the conditional distribution of $D_{i,n}$ satisfies the following relation

$$(2.3) \quad \bar{F}_{D_{i,n}}(d \mid X_{i,n} = x) = ((\bar{F}(x + d(n-i)^{-1}))(\bar{F}(x))^{-1})^{n-i}, \quad 1 \leq i < n.$$

Since F belongs to class C and the distributions of $D_{j,n}$ and $D_{i,n}$ are identical, so also their conditional distributions given $X_{i,n}=x$. Writing

$$\begin{split} K^{-1} &= \int_0^\infty \left((\bar{F}(x+s)) (\bar{F}(x))^{-1} \right)^{n-j} \left((\bar{F}(x) - \bar{F}(x+s)) (\bar{F}(x))^{-1} \right)^{j-i-1} \\ &\times f(x+s) (\bar{F}(x))^{-1} ds \ , \end{split}$$

we get on simplification from (2.2) and (2.3),

(2.4)
$$0 = \int_0^\infty (\bar{F}(x+s)(\bar{F}(x))^{-1})^{n-j} ((\bar{F}(x) - \bar{F}(x+s))(\bar{F}(x))^{-1})^{j-i-1} \times f(x+s)(\bar{F}(x+s))^{-1} G(x, s, d) ds,$$

for all d and any given x, and

(2.5)
$$G(x, s, d) = ((\bar{F}(x+d(n-i)^{-1}))(\bar{F}(x))^{-1})^{n-i} - ((\bar{F}(x+s+d(n-j)^{-1}))) \times (\bar{F}(x+s))^{-1})^{n-j}$$
.

Differentiating G(x, s, d) with respect to s, we obtain,

(2.6)
$$\frac{\partial}{\partial s} G(x, s, d) = ((\bar{F}(x+s+d(n-j)^{-1}))(\bar{F}(x+s))^{-1})^{n-j} \times (h(x+s+d(n-j)^{-1})-h(x+s)).$$

(i) If F is IHR, then G(x, s, d) is increasing in s for fixed x and d. Thus for (2.4) to be true, we must have $G(x, 0, d) \leq G(x, s, d) \leq 0$. If F has IHR, then we know (see, e.g. Barlow and Prochan [4]) that $\log \overline{F}(x)$ is concave, hence using Jensen's inequality, we have

$$\log \bar{F}(x+d(n-i)^{-1}) \ge ((j-i)(n-i)^{-1}) \log \bar{F}(x) + ((n-j)(n-i)^{-1}) \log \bar{F}(x+d(n-j)^{-1})$$

i.e.

$$(\bar{F}(x+d(n-i)^{-1}))^{n-i} \ge (\bar{F}(x))^{j-i}(\bar{F}(x+d(n-j)^{-1}))^{n-j}.$$

Which shows that $G(x, 0, d) \ge 0$. Hence if (2.4) is true, we must have G(x, 0, d) = 0, for all d and any given x.

- (ii) If F has DHR, similarly we get G(x, 0, d) = 0, for all d and any given x. Substituting x = 0, we have G(0, 0, d) = 0 for all d, i.e.,
- (2.7) $(\bar{F}(d(n-i)^{-1}))^{n-i} = (\bar{F}(d(n-j)^{-1}))^{n-j}$, for all $d \ge 0$, and some i, j and $n \ (1 \le i < j < n)$.

Taking $\phi(d) = -\log \bar{F}(d)$ and $z = d(n-i)^{-1}$, we get

(2.8) $\phi(z) = ((n-j)(n-i)^{-1})\phi(z((n-i)(n-j)^{-1}))$, for all $z \ge 0$ and some i, j and n with $1 \le i < j < n$.

The non null solution of (2.8), (see Aczél [1], p. 31) is

(2.9) $\phi(z) = cz$, where c is a constant, and so $F(x) = 1 - e^{cx}$.

Using the boundary conditions F(0)=0, and $F(\infty)=1$, we get

(2.10) $F(x)=1-e^{-\theta x}$, where $\theta > 0$.

HEALTH PROTECTION BRANCH, HWC, OTTAWA

REFERENCES

- [1] Aczél, J. (1966). Lectures on Functional Equations and Their Applications, Academic Press, New York.
- [2] Ahsanullah, M. (1976). On a characterization of the exponential distribution by order statistics, J. Appl. Prob., 13, 818-822.
- [3] Ahsanullah, M. (1977). A characteristic property of the exponential distribution, Ann. Statist., 5, 580-582.
- [4] Barlow, R. E. and Proschan, F. (1975). Statistical Theory of Reliability and Life Testing Probability Models, Holt, Rinehart and Winston Inc., New York.
- [5] Galambos, J. (1975). Characterization of probability distributions by properties of order statistics I, Statistical Distribution in Scientific Work, 3, 71-88 (G. P. Patil et al., eds.), Reidel, Dordrecht.
- [6] Govindarajulu, Z. (1966). Characterization of the exponential and power distributions, Skand. Aktuarietidskr., 10, 132-136.
- [7] Kotz, S. (1974). Characterizations of statistical distribution, a supplement to recent survey, Rev. Int. Statist. Inst., 42, 39-65.
- [8] Puri, P. S. and Rubin, H. (1970). A characterization based on absolute difference of two i.i.d. random variables, Ann. Math. Statist., 41, 2113-2122.