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1. Introduction

In a recent paper [3] one of the authors showed in detail how the
present notion of flanking is built up from a certain elementary notion
of betweenness for lines through the origin in a real vector space. A
concise analytical formulation of this betweenness notion was obtained,
and this formulation was carried over formally into a complex unitary
space and shown to be equally well a betweenness notion for 1-dimen-
sional linear manifolds there. The build-up procedure then went on to
translate statements about 1-dimensional linear manifolds into statements
about 1-dimensional projections, after which, with the employment of
the pairwise spectral analysis of projections, it pieced together from
the betweenness of 1-dimensional projections a “betweenness” for higher-
dimensional projections in an n-dimensional space. This “betweenness”
(not strict betweenness, according to definition) was called flanking, and
its suitable analytic characterization, of a form not tied to finite dimen-
sionality or discreteness, was derived and was seen to be exactly the
general definition of flanking that had been given in [2]. Now, that
build-up of a betweenness-like relation for projections in a general com-
plex unitary space displays in bold relief the very simple notion of be-
tweenness for real lines that it proceeds from. If one considers that
there may be many other interesting (and perhaps, also, some uninter-
esting) notions of betweenness in real space from which one might
proceed similarly (or with certain modifications), then one must suspect
that the present notion of flanking is only the first in a long line of
interesting and distinctly different flanking notions still to be brought
out. And indeed it appears that this is the situation. The general
betweenness concept has a wealth of particular realizations for vectors
and for 1-dimensional linear manifolds in a real space, and from these
it is possible to obtain, in various ways, a corresponding wealth of partic-
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ular betweenness notions for 1-dimensional linear manifolds in a complex
space; from each of those one can then go on to build another flanking
notion. It is our intention to carry out this program and ultimately
arrive at some of the possible new flanking notions. In an initial series
of three or more papers we will examine real betweenness in a fair
amount of detail and generate some particular examples that are not
commonly encountered. This present paper is the first in this initial
series, and in it we will start with a perfectly general study of be-
tweenness, subsequently specializing to a real unitary space for the
elaboration of significant examples. Continuing development of theo-
retical generalities on betweenness will proceed hand-in-hand with the
discussion of these examples. The second article in this series will con-
tinue the general study by examining the relatedness of betweenness
notions for real vectors and those for real lines. The third article will
look still further at the examples earlier discussed and at new ones.

We anticipate that our general notion of betweenness will find in-
creasing application in fields such as probability and statistics—in the
more standard lines of investigation in these fields as well as in the
study of flanking. We are seeing, in these times, a number of instances
of “enlargement” of routine older mathematical notions in the effort
to achieve better understanding of real phenomena. Some examples of
this are generalized functions, finitely additive probability measures,
and fuzzy sets. In the same way, the general betweenness notion con-
stitutes an enlargement of, for example, the constantly arising linear
point betweenness in a vector space—so that the notion of convex hull
is broadened to the general notion of span function (see Section 3). It
seems to us, indeed—in the light of such observations—that the for-
malization and purposeful study of the notion of betweenness is overdue.

We begin our study in Section 2 here with the formal definition
of a betweenness relation in a space ¥, and we then discuss the char-
acterization of such a relation by a spread function. These functions
are defined on a domain of sets each containing not more than two
points ; therefore, in Section 3 we investigate the extension of a spread
function to a span function, this latter having as domain the class of
all subsets of ¥. We are able to characterize, for a given spread
function =, both the inclusionally minimal extension of r to a span
function—which we designate by g.—and the inclusionally maximal ex-
tension of ¢ to a span function—which we label g We also give in
Section 38, in Theorem 3.3, the correspondence between span functions
and betweenness relations; this is facilitated by the notion of a self-
core span function. In Section 4 we observe that the notion of span
function has been studied in the algebraic literature under the name
of closure operator ; we briefly review the results of interest to us here.
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These results then enable us to give, in Theorem 5.1 of Section 5, an
effective representation of betweenness relations in terms of binary re-
lations. We go on in Section 5 to illustrate this mode of representa-
tion in mainly familiar examples. In Section 6 we introduce, via the
Theorem 5.1 representation mode, a new class of betweenness relations
for vectors, and we devote this section to their study.

Section 7 gives a brief survey of some of the past literature that
has gone under the name “betweenness”. We have tried to make it
clear that our definition, in Section 2, is far more specific than that
which has governed past investigations. We have accordingly applied
the new term betwixtness to the older investigations and have developed
Section 7 with the point of view of showing that certain betwixtness
relations are betweenness relations and that others are not.

It will be useful to list a few items of notation and terminology
here. We will use X generally to denote the space in which we have
a betweenness relation. 4 will denote the collection of all subsets of

¥, J the collection of all at-most-two-point sets, and i the class of
all one- and two-point sets. We will abbreviate the phrase “at-most-
two-point set” by “a.m.t.p. set”. When we specialize our discussion
to betweennesses in a (finite-dimensional) real unitary space, we shall
use the symbol K in place of X. The symbol O x will denote the unit
sphere in K. And K* will designate the space of 1-dimensional linear
manifolds in XK.

The letter B will generically denote a betweenness relation. The
Japanese hiragana hi, 0+, will be used with various affixes to label spe-
cific cases of betweenness. R will denote a binary relation, in general
between a point of the space ¥ and a point of a space 2. Other un-
usual symbols that will be used are the hiragana to, », and the Hebrew
beth, 2. We follow our customary practice of representing the null
element of a vector space by 4. The sign = will denote implication,
and & will denote equivalence.

2. Definition of betweenness, and its characterization by a spread
function

Let XX be any space, with points denoted by =z, y, 2, ete. For a
relation B on ordered point-triplets of X, we write B(z, y; z) if B holds
for the ordered triplet (xz,y,2), and otherwise we write B(x, y;z).
Then the fully general definition of betweenness is as follows:

DEFINITION 2.1. The relation B, on ordered point-triplets of the
space X, is said to be a betweenness relation if it has the following prop-
erties:
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(i) if B(x,y;2), then B(y, z;2);
(2.1) { (ii) for any x and y, B(z, ¥;x) and B(x, ¥;¥);
(i) if B(z,y;2), B, ¥;z) and B(z, z; w), then B(x, y; w) .

The statement B(x, y; z) is equivalently made by saying “z is between
x and y”. The property (i) is to the effect that B is symmetric in
the first two elements of the point-triplet. Property (ii) says that, for
any two points x and y, each of x and y is between z and y. And prop-
erty (iii) asserts this: if both 2z, and 2, are between x and y, and w is
a point that is between 2z, and z,, then w is also between « and y. This
last property we call the hereditary property of the betweenness relation.

Many obvious examples of betweenness relations spring to mind
immediately. Since our interest will be in betweenness for vectors and
for lines through the origin, we shall confine ourselves always to ex-
amples in terms of these elements. Let X be a real unitary space.
We have a betweenness relation in K if we define B(x, y; 2), for points
xz, ¥, z of K, to mean

(2.2) z=ar+by, a=0, b=0.

This elementary example serves, furthermore, to illustrate a certain
aspect of the general definition. One might have considered including
in the definition the property that for any point x, the only point be-
tween & and x is x itself. But the example of (2.2) in X, which we
do want to call a betweenness relation, does not have this property.
In this case, for any vector x+6, every vector in the non-negative ray
determined by x is between z and x. A more forceful reason for not
including the just-mentioned condition in our definition is that the gen-
eral developments we are going to elaborate in this paper would become
more cumbersome.

It may be noted that any betweenness relation can be minimally
modified precisely so as to satisfy the condition in question. Specifically,
if B is any particular betweenness relation, then the relation B/, de-
fined in the following manner, is likewise a betweenness relation :

B'(z,y;2)<B(x,y;2), if x+#y
(2.3)
B(x,x;2)ez=x.

This assertion is readily proved using Definition 2.1 directly.

If O denotes the unit sphere in X, we get a betweenness relation
in Oy by again using the defining relation (2.2). In this case we see
that it happens incidentally to be true that, for any xz € Oy, z is the
only element between z and x.



BETWEENNESS FOR REAL VECTORS AND LINES, I 129

Of particular interest also is the fact that on any subset of O 4 as
well (2.2) defines a betweenness relation; for example, on any unit
hemisphere, either open or closed, or on a unit hemisphere open except
for one point on the boundary (which is a case that will be of interest
later).

Let K? denote the set of all 1-dimensional linear manifolds in X,
that is, the set of all lines through the origin. A simple example of a
betweenness relation in this set is as follows: an element N is between
the non-orthogonal elements L and M if N is in the linear manifold
spanned by L and M and furthermore falls in the (closed) acute angle
formed by L and M; if L and M are orthogonal then every N in the
linear manifold spanned by L and M is between L and M. This be-
tweenness notion is precisely the one from which the present flanking
notion is built up (see [3]).

Returning now to the general betweenness relation, it is rather
natural to consider, for any points # and y, the set of all points each
of which is between x and y. We shall call this set the spread of the
set {z, ¥}, and denote it by z({z, ¥}). This definition applies whether
x#y or x=y. By (i) and (iii) of (2.1) we see that

(2.4) ({z})S<({z, y}) for all z, y;
and therefore we may state:

(2.5) (A)={z€ X|B(x,¥y;2), xc A, ye A}
for every one- or two-point set ACX .

Property (i) of (2.1) is, of course, already incorporated into our defini-
tion of spread in that we have asserted that the spread depends only
on the set {x, ¥}, and not on the ordered pair {z, ¥>. Property (ii) of
(2.1) translates immediately into

(2.6) x € v({x, y}) for all =, y.
And property (iii) is expressed by

(2.7) [z € 7(4), y € «(A)]=[r({x, y})S=(4)]
for every one- or two-point set A.

These two statements are next seen to be most concisely expressed as
follows :
for all one- and two-point sets A and B,

(2.8) Acz(4)

and
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(2.9) ACt(B)=(4)C(B) .

Thus, we have the result that a betweenness relation defines a
function = on the class of all one- and two-point subsets of X which
satisfies (2.8) and (2.9). It is seen without difficulty that, conversely,
any such function r defines a betweenness relation B through the iden-
tity

(2.10) B(z, y; 2)=[z € «({=, ¥})] .

This identity equally well defines the r formed from a given B, and so
we have a 1-1 correspondence between the class of betweenness rela-
tions on ¥ and the class of functions = desecribed.

For subsequent purposes it is useful to take another step at this
juncture, namely, to go over to functions r whose domain is not merely
the class of one- and two-point sets, but the class of all at-most-two-
point sets. In other words, we want to include the empty set @ in
the domain. This does not introduce any difficulties. Notice that if =
is defined on one- and two-point sets, and we formally adjoin the state-
ment 7(@)=0, then (2.8) and (2.9) continue to hold. And notice that
the same is true if, instead, we adjoin the statement

(2.11) (@)= n (4.

two-point set

The right-hand side of (2.11) may be non-empty, so that in general
there are here two possibilities for extending the domain of z to include
@ and still have (2.8) and (2.9) holding. It is interesting to observe
now that these are the only possibilities. To see this, suppose z is
defined on all a.m.t.p. (at-most-two-point) sets, and let us set
Z n 4.

A 8 one-point set
By (2.4) we see that this set C, is identical with the right-hand side
of (2.11). Suppose C, is not empty, and let x € C,. By (2.12) we have
Cic7({z}). On the other hand, again by (2.12), x € =({y}) for every ¥, and
therefore, by (2.9), =({x})Zz({y}) for every y, whence z({x})=C,. Hence,
we have

(2.12) G,

(2.13) ({z})=C, for every « ¢ C,#0.
Now, suppose 7(@)#@. From (2.9) we obtain that
(2.14) 7(D)=C, .

Equally well from (2.9) we have that

(2.15) ({x}) = 7(0) for every x € (Q) .



BETWEENNESS FOR REAL VECTORS AND LINES, I 131

From these last three statements it follows that #(@)=C;, and this
establishes our assertion.

The result of these deliberations is clearly this: a function r on
the class of one- and two-point sets, which satisfies (2.8) and (2.9), can
“be extended in one of at most two ways to include @ in its domain
and still satisfy (2.8) and (2.9) on its entire domain; and any r defined
on all a.m.t.p. sets, and satisfying (2.8) and (2.9) on this domain, has
a unique restriction to one- and two-point sets and so defines a unique
betweenness relation. We could, of course, make a conventional restric-
tion to only functions r such that «(@)=0, and then we could affirm a
1-1 correspondence between the class of such functions on all a.m.t.p.
sets and the class of betweenness relations. However, we have no
particular need to do this. We do, however, have an advantage of
simplicity in our developments in having @ in the domain of our fune-
tions z. We shall, therefore, make the following definition:

DEFINITION 2.2. A function r, with domain the class of all a.m.t.p.
subsets of ¥, and range-space the class of all subsets of X, and satis-
fying the two conditions

(2.16) Ac(4),
(2.17) Ac(B)=7r(A)<(B),

for all A and B in the said domain, will be called a spread function.
For any A in the domain, z(A) is called the spread of A.

Spread functions are, then, equivalent to betweenness relations, al-
though not in 1-1 correspondence with them; the equivalence is ex-
pressed by (2.10). A full exact statement of the correspondence will
be incorporated into Theorem 3.3 in the next section.

It is quite easy to see what the spread functions are that corre-
spond to the particular betweenness notions we have presented as ex-
amples above. In all of those examples the set C, (see (2.12)) is @, so
that the spread function in question is unique. There is a very simple
instance of a betweenness relation that has two distinct spread func-
tions associated with it; namely, the case of B(x,y;z) for all z, ¥y, 2
in ¥. In this case, r(4)=X for all one- and two-point sets A, and
therefore (@) may be either @ or X¥.

3. Extensions of a spread function: span functions

We were led in a natural way from betweenness relations to the
consideration of spread functions. Now another motivation comes to
urge us further along in the same direction. When we look at the
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defining conditions for a spread function, namely (2.16) and (2.17), we
see that they are in no way innately tied to a.m.t.p. sets; they could
very well apply to the characterization of a function on a larger do-
main. Specifically, we are driven to ask, regarding any particular
spread function, if it is not in fact just the restriction to a.m.t.p. sets
of a function defined on perhaps the domain of all subsets of X, and
satisfying relations of the form (2.16) and (2.17). An approach to this
question suggests itself immediately. A given spread function r has a
unique associated betweenness relation, say B., and this betweenness
relation in turn defines ¢ for one- and two-point sets A, by (2.5). But
the right-hand side of (2.5) is not restricted, for meaningfulness, to
just one- and two-point sets. It is therefore suggested that we ex-
amine the function z defined by

(A {ze X| B, y;2), x€A, ye A)

(3.1) for all non-empty AC X,

def.

P(Q)=7(D) .

Let us introduce the symbol 4 to denote the collection of all subsets

of ¥, and 1 to denote the collection of all a.m.t.p. subsets of .
We note then with no difficulty that (3.1) can be re-expressed as follows:

(3.2) (4= U (C), Ae .

Ced

CcA
And this form of expression of ® moreover unburdens ‘us of the de-
tour through B..

It is immediately clear from (3.2) that ACz(A) for every set A;

that is, «* fulfills our desire as regards a more general context for
(2.16). But this is not true for (2.17). The relation

(3.3) ACD(B)=rV(A) S V(B)

will hold unrestrictedly for A if B is an element of _i, or is the spread

of an element of J. We see this from the form of the right-hand
side of (3.2). But from that form we see also that (3.3) will not hold
for just any set B. What happens in general is that A, satisfying
AcC®(B), may contain a point 2’ of z(C') and a point z” of z(C"),
where C' and C” are distinct J-subsets of B; and then «({«’, #"'}) may

contain points that are not contained in any «(C) for an J-subset, C,
of B. This can occur in the case of a 3-point set B. Thus, the func-
tion «* does not fulfill all our hopes. However, what we have just
seen suggests that we may overcome the difficulty by iterating the
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function @, that is, by considering the function
(3.4) P(A)=7P(zP(4)) , Aec .

But it is soon seen that this function presents the very same kind of
difficulty. Nevertheless, since iteration persists, in this situation, as an
evident way of attempting to “catch up” with the difficulty involved,
we take the clear hint that our quest may be answered by considering
the indefinite iteration of z. We therefore define all the functions

(8.5) tP(A) =D D(A), Aed, n=2,8,---,

as well as 7@ and ®=the identity function. And noting that, since
Act®(A) for all Ae A, we have

(3.6) A=rP(A)SrP(4) S -,

we then define the function g, on A by:

(3.7) 9(A)E lim < (A)= U ™(A) .
n—0 n=1

We observe that we have the usual property :

(8.8) ™*™(A)=1t"(z"(4)), Ae, m, n non-negative integers.
From (3.6) we see immediately that

(3.9) Acg(4), Ae A,

so that the (2.16)-type relationship is preserved by g.. To see that the
same is true for the (2.17)-type relationship, let us first obtain some of
the properties of the function g.. One of these properties comes di-
rectly from (8.8) by letting m— oo while keeping = fixed: we get

(3.10) 9.((A))=g.(4) for all n=0,1,2,-.-; Ae .
From (3.2) we have
(3.11) ACB=tP(A)c(B).

Let (4,, n=1,2,---> be a monotone non-decreasing sequence of sets,
with limit A. Then <{((4,), n=1,2,---> is likewise monotone, non-
decreasing. Since every A,C A, we have

(3.12) lim ¢(4,)Sc(4) .

Conversely, consider a point z € #°(4). Then z € z(C) for some a.m.t.p.
subset C of A. This C is a subset of some A, ; and therefore z € z’(4,).
Consequently = is an element of the set on the left-hand side of (3.12).
We have thus established the reverse inclusion to (8.12), and thereby
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the equality of the two members of (8.12). It follows that we have
proved the statement

(3.13) A1 A=7P(4,) 1 7(A4) .
We may apply this result as follows:
(3.14) TP(A) =7 ((4,) 1 V(e P(A)
thus we have
(3.15) A, 1 A=1P(4,) 1 72(4) .
Repeating the argument, we get in general
(3.16) A1 A=1™(A4,) ] c™(A) for all m=0,1,2,---.
With this result we can now let n— oo in (3.8) and obtain the identity
(3.17) ™(g(A))=g.(4) for all m=0,1,2,---; Ae .
We may next let m— oo in this last relation; we get:
(3.13) 9(9(A)=g(4), Acd.

Iterating (8.11) repeatedly, we find the result that
(3.19) ACB=yg.(A)<yg(B) .

And now it is these last two results with which we can show that a
(2.17)-type implication holds for g.. Indeed, if ACg.(B), then g.(4)S
g.(g.(B)) by (8.19), and the desired result comes out by applying the
identity (3.18). We do therefore have

(3.20) Acg.(B)=g(A)Sg(B), A, Bel.

Before going on we may observe that the discussion just completed
gives us also the result

(8.21) A, 1 A=g.(4,) 19.(4) .

To see this, note first that with 4,1 4, (3.19) gives the monotone, non-
decreasing character of the g.(4,). Now apply (3.16) as follows:

(3.22) A, 1 A= U ©™(4,)=7"(4) for all m
n=1

s icg
iCs icCs

-

T ™(An)=g.(4)

-

M
N

T(4,)=g.(A)

E]
)
-
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U g4)=0(4)
©9.(4,) 1944) .

Thus, (3.21) is established.

If A is an a.m.t.p. set, we see by (3.2) that :(4)=1(A) and *°(z(4))
=7(A). (We alluded to this fact earlier, in our discussion of (3.3).)
By iteration we have, therefore,

(3.23) t™(A)=1(4) , n=1,2,---; Ae .
It follows immediately that
(3.24) 9(A)=2(4), Aed,

so that indeed—as we were expecting to be the case—g¢g. is an exten-
sion of <.

Now let us derive one more property of g. before we summarize
these present results. Suppose f is another extension of r to the do-
main 4, and that it has the two crucial properties:

(3.25) AcC f(4),
(3.26) AcC f(B)y= f(ASf(B) .

Let B be any set, and suppose A, is an a.m.t.p. subset of B. Then
A, = BC f(B). Therefore f(A)=f(B). But, f being an extension of r,
we have f(A4,)=7(4,); and therefore we have z(A4,)C f(B). This holds
for every a.m.t.p. subset of B, and it therefore follows that -’(B)C
f(B). Similar argumentation shows, as a next step, that +®(B)C f(B).
And so on. We thus get the result that ¢.(B)C f(B). We have hereby
shown that g. is, among all extensions of z to .4, the inclusionally mini-
mal one. On this account we shall call g. the core extension of = to A.

Preparatory to bringing our results together in the form of a the-
orem, we make a definition:

DEFINITION 3.1. A function f on J to .4 which has the proper-
ties (3.25) and (3.26) will be called a span function. For any A€ J,
f(A) will be called the span of A.

We may now state

THEOREM 3.1. A spread function t has an extension to a span func-
tion on A. Among all such extensions there is one, g.—mnecessarily unique
—awhich 1is inclusionally minimal ; that s, for any span function f that
extends =, g(A)S f(A) for all Ac A. The function g. is called the core
extension of t, and it is given explicitly in terms of = by (3.7), (3.5) and
(3.2).
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In the course of our deliberations we saw that g. has the property
of idempotency, that is, the property (3.18). The question arises, of
course, whether this is tied to the fact that g, is in particular a core
extension. It is not. Consider any span function f. For any Be€ 4,
if we put A=f(B) in (3.25), we get f(B)Sf(f(B)). On the other hand,
if we make the same substitution in (3.26), we get f(f(B))Sf(B). Thus,
we have equality, and so the conclusion that every span function is
idempotent.

It is also true that every span function is isotone, that is,

3.27) ACB= f(A)Cf(B) .

Indeed, if ACB, then by (3.25) AC f(B), and therefore (3.26) provides
the implication stated in (3.27).

The two properties of idempotency and isotony together conversely
imply (3.26): if ACf(B) then f(A)Cf(f(B))=f(B).

We gather these facts together into a lemma:

LEMMA 3.1. Ewery span function is both idempotent and isotone.
Conversely, if a function f on A to A has the property (3.25) and s
also idempotent and isotone, then it is a span function.

A very familiar example shows that in general there will be more
than one extension of a given spread function to a span function on
J. Take X to be an infinite-dimensional Banach space, and let 7(A)
denote the set of all linear combinations of elements in the a.m.t.p.
set A. This r clearly corresponds to the betweenness notion that de-
fines z to be between & and y if z is a linear combination of x and y.
Notice that in this case there are two distinct possibilities for z(Q);
namely, @ and the set consisting of just the zero-element of the Banach
space. The core extension, g., of - has the value, for any particular
non-empty A € 4, which is the linear manifold spanned by A. If, for
each non-empty A € 1, we define f(A) to be the closed linear manifold
spanned by A, and define f(@)=7(0), then we see that f also is an
extension of r to a span function on 4, and that f is not identical
with g..

There is no great problem about knowing whether or not a partic-
ular spread function has a unique extension to a span function. For,
in fact, it is possible to state quite explicitly the inclusionally maximal
extension of any given spread function, z, to a span function on A.
If we denote this latter by g7, then of course the comparison of g. with
g° provides the answer to the uniqueness question. The following the-
orem gives the formula for this ¢

THEOREM 3.2. Among all the extensions of a given spread function



BETWEENNESS FOR REAL VECTORS AND LINES, I 137

7 to a span function on A, there is one, g'—necessarily unique—which
18 inclusionally maximal ; that is, for any span function f that extends
7, f(A)ZSg'(A) for all Ae . The function g° 1s given explicitly by

n_ =B, if there exists some Be
(3.28)  g(d)= A such that ACt(B),

x, otherwise .

Let us first see that g* is a span function. It is clear immediately from
(3.28) that ACg'(A) for every A€ A, so that g¢ has the first of the
two defining properties of a span function. To prove that it has the
second as well, suppose ACg(C) for two particular sets, A and C, of
A. If g(C)=X then without further argument we have the desired
result that g'(A)cg(C). If, on the other hand, ¢ (C)#2, then, by
(3.28),

(3.29) 9(C)= n_ «B).
Be
Cct(B)

For each set B¢ ] that figures in the intersection on the right-hand
side of this equality, we have ACg(C)Cz(B), so that such a set B is
also among those that define g(A) according to (3.28). Thus, we have

(3.30) gA)= n_«B<c Nn_«B) =g(C).
BeJ Be
Act(B) Cct(B)

The relation ¢g'(4)Cg°(C) is therefore in all cases a consequence of the
inclusion AC g (C). This is the assertion that g° has the second defin-
ing property of a span function, and so it is established that ¢° is in-
deed a span function.

That ¢g° is an extension of z is proved as follows. For any partic-

ular A€ J we have AC(A) (see (2.8)), and if B is any other set in
such that AC(B), then 7(A)Cr(B) (see (2.9)). Therefore,

(8.31) gAd)= N oB) =t4), Ael.
Be
Act(B)
Now finally to see that ¢g° is maximal, let f be any particular ex-

tension of z. For a set A€, if there does not exist B¢ ] such that
AC7(B), then g(4)=X2f(A). If there does exist such a B then we
have, utilizing Lemma 3.1,

(3.32) S(A)Sf((B)=Ff(f(B)=f(B)=1(B) ;
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and therefore

(3.33) fAS n_ «B)=g(4).
Be
Act(B)

This shows the asserted maximality, and hence the theorem is com-
pletely proved.

Clearly, the restriction to .{ of any span function f on i is a
particular spread function; the core extension of that spread function
will be called the core (span function) of f. The core of any core span
function is obviously that function itself. A span function that is its
own core will be called a self-core span function. It is evident that
the class of spread functions is in 1-1 correspondence with the class of
self-core span functions, and that through this correspondence we get
a correspondence between self-core span functions and betweenness re-
lations. We state all of this precisely in the following theorem, which
details the findings of Section 2 as well:

THEOREM 3.3. Let ' denote the class of all one-point and two-point
subsets of X. Then, the class of all betweenness relations is in a 1-1
correspondence with the class of all restrictions of spread functions to
. The correspondence is explicitly given by (2.10).

If the values of a spread function t over the domain i have an
intersection C which is not the null set, then there are exactly two spread

functions having the same restriction to ' as v : for one of these the value
at @ is Q; for the other the value at @ is C. If C=0Q, then (Q)=0
and t 1s the unmique spread function that takes on its particular values
over .

There is a 1-1 correspondence between the class of all spread func-
tions and the class of all self-core span functions: this is the correspond-
ence which associates with each spread function t its core extension g., or,
conversely, which associtates with each self-core spanm function its restric-
tion to J. From this correspondence there derives in the obvious way
a 1-1 correspondence between the class of all restrictions of spread fumnc-

tions to A and the class of all restrictions of self-core span functions
to A —where A s the class of all mon-empty subsets of X.

It follows that there is a 1-1 correspondence between the class of all
restrictions of self-core span functions to A and the class of all between-
ness relations, this correspondence being that which associates with a
given betweenness relation, B, the restriction to A of the core extension
of a spread function t related to B through (2.10).

Consider two span functions, & and f, satisfying the following con-
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dition :
(3.34) rA)CS f(4), Ae .

It follows immediately by (3.26) that f(r(A)Sf(A). By (8.25) (as it
pertains to ) we have ACh(A), and therefore, by the isotone property
of f, f(A)=f(h(A)). Hence we have the equality: f(h(A))=f(A).

By (3.25) once again, f(A)Ch(f(A4)). Conversely, by (3.34) and the
idempotency of f, we have A(f(A))Sf(f(A)=rf(A). Thus, A(f(4))=
f(A). And so we have shown that from (3.34) it follows that

(3.35) Mf(A))=Ff(A)=F(4), Aecd.

If we suppose that (3.35) holds for two span functions kA and f,
then notice that, for any A, it follows from AC f(A) that h(A)CZh(f(A))
=f(A); that is, (3.34) is satisfied. We have thus arrived at the fol-
lowing result:

LEMMA 38.2. For two span functions, h and f, the conditions (3.34)
and (3.35) are equivalent.

This lemma enables us to state, for example, the following alter-
native characterizations of the core extension and the maximal exten-
sion of a given spread function:

LEMMA 3.3. The core extension, g., of a given spread function t is
that span function extension of t such that for any span function exten-
sion, f, of r, we have

(3.36) 9(f(A)=f(g(A)=Sf(4), Aecd.

And the maximal extension, g°, of t is that span function extension of
= such that for any span function extension, f, of =, we have

(3.37) g(f(A))=rg(A)=9(4), Aed.

4. The Birkhoff-Ore-Everett structure of span functions

Our persistence in pushing the examination of general betweenness
relations all the way to the discovery of their connection with span
functions now turns out to be far more than just an interesting alge-
braic exercise. For, the fact is that span functions are well-known in
the field of algebra, and there are general results concerning them
that are enlightening for our purposes. Garrett Birkhoff [4], Oystein
Ore [11] and C. J. Everett [6] are the principal authors associated with
these developments. Span functions, defined on partially ordered sets
in general—not only on lattices of subsets, as in our case—are studied
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by algebraists under the name closure operators. (In our geometric
context the term “span function” remains the preferable one.) The
immediately interesting facts concerning these operators are the follow-
ing. Birkhoff had considered binary relations between the elements of
a space ¥ and those of a space 2, and from such a relation had in-
duced two mappings, one from . to B and one from B to J—where
A and B are the classes of all subsets of X and of £, respectively.
Let P, and Pg denote these mappings, for a given binary relation.
Birkhoff showed that a certain triplet of conditions is satisfied by this
pair of mappings; and he showed also that Pg4P _; is a closure operator
in /4 and, similarly, that P ;Pg is a closure operator in B (see Section
5 in Chapter IV of Birkhoff [4]). Ore then fixed upon the mentioned
triplet of conditions, positing them as satisfied for mappings, P_; and
Pg, more generally between two partially ordered sets .1 and B; and
he showed that this was all that was needed for the result that PgP _;
and P ;Pg are closure operators in ./ and 9, respectively. A pair of
mappings, P_;, Pg, fulfilling the three conditions in question, Ore called
a Galois connection, or Galois correspondence, between the partially or-
dered sets ./ and $. The work of Everett followed and supplied com-
plete converses. Everett showed that every closure operator in a par-
tially ordered set . results in the above manner from a Galois con-
nection between 4 and another partially ordered set . And in the
case where .1 is the class of all subsets of a space &, he showed that
every closure operator in (/ results from a Galois connection which in
turn derives, in the manner of Birkhoff, from a binary relation between
the elements of X and those of another space 2. It is this last result
that will tell us much more about betweenness relations.

Let us now describe exactly the notions that have just been intro-
duced. And we shall, in doing so, remain within the context that is
of interest to us, namely, 4 the class of all subsets of our space X.
We shall also now leave behind the term “closure operator” and hence-
forth speak of span functions.

DEFINITION 4.1. There is said to exist a (binary) relation R between
the points of ¥ and the points of another space 2 if, for every pair
of points, {(x, @), x€ X, weR, it is specified either that 2 is in the
relation R to @ or that x is not in the relation R to w. If z is in the
relation R to o, we write R(z; w); otherwise, we write R(x; ).

DEFINITION 4.2. Let R be a relation between X and another space
2. Let 4 and B be the classes of all subsets of ¥ and of 2, respec-
tively. We define mappings P%: 41— B and P§: B— A as follows:

4.1) PH(A)={we 2|R(x; ») for all x ¢ A},
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(4.2) P&B)={x ¢ X |R(x, w) for all we B} .

P%(A) is called the polar of A under R, and Pg(B) is called the polar
of B under R.

The very apt term “polar” is suggested by Birkhoff. These two
polar mappings are the ones presented by Birkhoff, and he showed, as
mentioned above, that P3P is a span function on ./ and that P5P§
is a span function on 4.

DEFINITION 4.3. Let 4 and 9 denote, again, the classes of all
subsets of the spaces X and 2, respectively. Let P_; and Pg be map-
pings, on 4 to B and on P to A, respectively, satisfying the follow-
ing conditions:

(4.3) A2A,= P _j(A)S P (4,) ,
(4.4) B,2B;= Pg(B,)C Pg(B,) ,
(4.5) AcPgP 4(A) and BCP ,Pg (B) for all Ae 4, BeB.

Then the pair of mappings, P ;, Pg, is said to define a Galois conmnec-
tion between ] and .

For any relation R between ¥ and 2, the pair, P%, P, defines
a Galois connection between 1 and B (Birkhoff). For any Galois con-
nection, P_;, Pg, the mapping P_@PJ is a span function on .4, and the
mapping P ;Pg is a span function on 4 (Ore). The result of Everett
that is of interest to us may now be stated as follows:

THEOREM 4.1 (Everett). Let f be any particular span function on
A, the class of all subsets of the space X. Then there is a space 2, and
a relation R between X and 2, such that f=PgP%, where B is the
class of all subsets of 2 and P% and Pg are defined by (4.1) and (4.2).

The reader will find discussions of closure operators and Galois cor-
respondences also in Cohn [5] and in Gritzer [8].

5. The structure of betweenness; explicit examples

We can immediately turn the facts revealed in the preceding sec-
tion into a statement of structure for betweenness relations. We prove
the following theorem.

THEOREM 5.1. B 1is a betweenness relation in the space ¥ if and
only if vthefre 18 a space 2 and a relation R between X and 2 such that
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B(x,y; 2) if and only if R(z, o) for every o€ 2 such that R(x, w) and
R(y, o).

PrROOF. Suppose there is a space 2 and a relation R such that a
certain relation B is related to R in the manner indicated. We shall

show that B is then a betweenness relation. Let . and B denote, as
usual, the classes of all subsets of ¥ and 02, respectively. Let us set

(5.1) B.,={0 € 2|R(z, v) and R(y, 0)} .

Then notice that the relation between B and R is that B(x, y; z) if and
only if

(5.2) ze {we X|R(w, ) for all we B, ,} .

In terms of the mappings P and Pg defined by (4.1) and (4.2), we
see that

(5.3) B,,=Pj({=, 4}),

and that (5.2) is the statement

(5.4) z¢ P%B,,) .

Therefore, we have the assertion that B(zx, y; z) if and only if
(5.5) z€ PgPh({=, v}) .

By Birkhoff’s result, P4P% is a span function on .4, and if r* denotes

the restriction of this span function to i° (the class of all one- and
two-point subsets of X°) then (5.5) states that z € =*({«, y}). But, being

a restriction of a span function, z* is a spread function on I, that is,
it has the properties (2.8) and (2.9). Therefore, the equivalence of
B(z, y; z) and (5.5) is an identity of the form (2.10). And this estab-
lishes the result that B is a betweenness relation.

Now, conversely, let us suppose that B is given as a betweenness
relation in &X. Then, by Theorem 3.3, there is a span function f on
A such that

(5.6) B(x, y;2)=[z€ f({x, y})] .

By Theorem 4.1 there exist 2 and R such that f=P&P%. Thus, the
right-hand side of (5.6) is of the form

(5.7) ze PgP5({e, y}) .

The definitions of P% and Pg tell us that (5.7) is precisely the state-
ment “ R(z, o) for every we 2 such that R(z, w) and R(y, »)”. And
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therefore the equivalence (5.6) establishes exactly the R-structure as-
serted by our theorem for the betweenness relation B.
The proof of Theorem 5.1 is therefore complete.

It is, of course, true that we could have given a direct proof of
this theorem, thereby avoiding entirely all of our discussion of spread
functions, span functions, and the results in the preceding section.
That, however, would have been exceedingly undesirable. We are look-
ing forward to rather extensive studies emanating from the notion of
betweenness. Those studies may, in ways as yet unanticipated, be
benefitted by facts regarding betweenness relations that relate to such
associated notions as span functions, Galois connections, ete. It was,
therefore, very much in order for us to bring all of this material to
light.

When a space 2 and a relation R are specified, the Theorem 5.1
structure determines B completely. On the other hand, a given B may
be generated by many different pairs 2, R. (Examples of this will be
encountered in the ensuing discussions.) However, there is always a
relation R of a certain particular form that is available to provide a
representation of a given B. We shall prove this now, after first de-
fining the form in question.

DEFINITION 5.1. A relation R will be said to be of (or, to have)
membership form in X if it is a relation between X and a class, 2,
of subsets of X, and specifically

(5.8) R(x, w)=[x € 0] , xeX, we.
The theorem to be proved is thus the following:

THEOREM 5.2. FEvery betweenness relation B in a space X has a
Theorem 5.1 representation in which R is a relation of membership form

m X,

To prove this theorem let a given betweenness relation B have an
associated spread function r. We take

(5.9) 2={c(A)|Aecd},

and let R then be the relation specified by (5.8). Let us denote by B’
the betweenness relation determined by this R. We want to show that
B’ is precisely B. According to Theorem 5.1, z is B’-between x and y
if and only if 2z is an element of every we 2 to which both z and ¥
belong. Thus,

(5.10) B'(z,y;2)=[z€ N((A); Ae, {x y}<(A))].
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By (2.17), every z(A) in the intersection here has z({x, y}) as a subset.
Furthermore, by (2.16), z({z, y}) is itself one of the pertinent z(A)’s.
Therefore, the intersection is exactly z({x,»}), and so (5.10) becomes

(5.11) B'(x, y; 2)=[z € «({z, y})] .

By Theorem 3.3, the right-hand side of this equality determines uniquely

the betweenness relation that determines r on ', that is, B. Hence
B'=B, and the theorem is proved.
It will be noticed that in place of (5.9) we could have taken

(5.12) Q={f(4)|Ae ]},

where f is any particular span-function extension of r. This 2 is seen
to be just the closure system corresponding to f according to Theorem
1.1, p. 43 in Cohn [5].

Small differences among betweenness relations are often most pene-
tratingly understood or presented in terms of generating relations of
membership form. For example, in (2.3) we formed a betweenness
relation B’ from a betweenness relation B. If R gives a Theorem 5.1
representation of B, and R is of membership form in ¥ based on a
class 2 of subsets of XX (i.e., (5.8) holds), then, in fact, B’ is the be-
tweenness relation generated by the relation R’, of membership form
in 2, based on the class of subsets 2'=0QU {{z}|x € X'}; that is the
singletons in X are adjoined to 2. We shall cite other comparisons
of this kind that come to the fore in our discussions below.

It is instructive now to examine in detail certain examples of the
structure bespoken by Theorem 5.1. Let us first consider the instances
of betweenness exemplified in Section 2. For ease of reference we shall
give these definite names.

DEFINITION 5.2. In a real unitary space X the relation
(5.13) z=ax+by , a=0, b=0,

of a point z to the pair of points x and ¥, is a betweenness relation.
We call this 0 b-betweenness in K. If (5.13) holds we say that z s
Os-between x and y; and we abbreviate this statement with the sym-
bolic expression O\i(x, ¥; 2).

If C is any subset of K, (5.13) defines a betweenness relation for
triplets of elements of C; we call this {\3-betweenness in C, and again
use terminology and notation as above.

(The character 7 is the Japanese hiragana hi. The superseript v is
meant to indicate that the betweenness relation is one that is defined
for vectors—as distinguished from the 0:-betweenness that was defined
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in [3] and which pertains to lines, or more precisely, to 1-dimensional
linear manifolds. This latter notion of betweenness we present here
in our next definition (see further below).)

Let X be a real unitary space, with inner product denoted, as
usual, by (-, -). It is a matter of a few elementary calculations—which
we shall not detail here—to show that, in X, z is {\l-between x and
y if and only if

(%, 0)=0
(5.14) =(z, ©)=0 .
(¥, ©)=0

This fact is immediately seen to give us a realization of Theorem 5.1
for \-betweenness in X, in which 2 as well as X is the space X
and the relation R is given by

(5.15) ER(z, y)=[(z, y)=0] .

Under this binary relation R—a fully symmetric relation in this case—
the polar of a set AC K is

(5.16) {ye K|(x,y)=0 for all x € A} .

This particular definition of a polar set has already done much service
in the literature; for example, see Weyl [16] and Gale [7], as well as
the publication [1].

If C is any particular subset of X we get a Theorem 5.1 repre-
sentation of {)\j-betweenness in C by again taking 2= and taking
the relation R between z € C and y € KX to be once again (5.15).

Notice that the relation (5.15) can be read as follows: z lies in the
positive closed half-space determined by the (non-null) vector y. Thus,
R is equivalent to the relation of membership form, (5.8), with X=X
and 2=the collection of all closed half-spaces in K. Accordingly, we
can say further that the set of vectors which are O\i-between two given
vectors is just the intersection of all closed half-spaces each of which
contains the two given vectors. By making small modifications in the
collection 2 we obtain betweennesses that differ only slightly from ;-
betweenness. For example, if the sets of £ are taken to be not the
closed half-spaces, but the open half-spaces each augmented by the null
vector, then the resulting betweenness relation is described by (5.13)
when = and y do not fulfill the condition

(5.17) 0 (z, y)=—I|lzll-llyll ,

whereas when x and y do fulfill this condition then every point in X
is between x and y. One gets still another, slightly different between-
ness if one takes 2 to be the collection of all open half-spaces. And
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S0 on.

In Section 2 we cited also, as another example, the betweenness
for 1-dimensional linear manifolds in X that was shown in [3] to be
at the root of the present flanking notion. We have described this
notion hereabove in purely geometrical terms, as the “in-the-acute-
angle-of ” notion of betweenness. In [3] we showed, however, that there
is a very concise analytical characterization of this notion. We use
this characterization now in stating the definition of real ?»,-between-
ness.

DEFINITION 5.8. Let L, M and N denote 1-dimensional linear mani-
folds in the real unitary space K. We say that N is O -between L
and M if, for any particular unit vectors x€ L, y€ M and z¢ N, the
following four conditions are satisfied :

i) z is a linear combination of « and v,
i) |z ®) 2| ),

ii) |y, 2)12|(=, 9|,

iv) (2, 2)(@, ¥)(¥,2)20 .

(This characterization was given, in [3], the name “{\-betweenness”
explicitly only in the case of a complex unitary space. We are now
extending the use of this name to the real case as well.)

We shall now give a Theorem 5.1 representation for {),-between-
ness in K. And it will be noted that this discussion effectively gives
another proof—other than the one given in [3]—that (5.18) is the an-
alytical characterization of the geometrical notion of “in-the-acute-
angle-of ” betweenness. We begin with a definition:

(5.18)

DEFINITION 5.4. A collection, I', of 1-dimensional linear manifolds
in K will be called a bicone (of 1-dimensional linear manifolds) if the
following holds: for any L and M in I', if # and y are unit vectors in
L and M, respectively, such that (x, ¥)=0, and if z is a unit vector
which is a non-negative linear combination of # and y, then the linear
manifold spanned by {z} is in I'.

(Our use of the term “bicone” here is consistent with the defini-
tion given in [2].) Let the set of all these bicones in A be denoted
by 2. (This last character is the Hebrew letter beth.) Recalling that
we have already introduced (in Section 2) the notation K? for the set

of all 1-dimensional linear manifolds in X, we now define a relation R
between K? and 2, as follows: for L e K? and I" € 3,

(5.19) R(L, IN=[LeI,
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We now assert that this membership-form relation B gives a Theorem
5.1 structure for 0-betweenness. We proceed to prove this.

Let B denote the betweenness relation that does have the Theorem
5.1 relationship to the R defined by (5.19) (—so that our objective is
to prove that B=0). Thus, B(L, M; N) if and only if R(N, ") for
every I' such that R(L,I') and R(M,I'). Restating this, we have:
B(L, M; N) if and only if N belongs to every I' to which both L and
M belong. Now, it is readily seen, according to the Definition 5.4, that
intersections of bicones are bicones. Hence, we have a smallest bicone
containing any given set of elements of X7, designated, as usual, the
bicone generated by the given set of elements. In particular, then, in
our present case of twe elements, L and M, an element N belongs to
every I’ to which both L and M belong if and only if N belongs to
the bicone generated by L and M. Consequently: B(L, M; N) if and
only if N belongs to the bicone generated by L and M.

Consider, for a given pair L and M, the following subset of X?:

(5.20) I"={N’e¢ K?|there exist xc L, ye M, ze N'; a=0, b=0
with ||z||=|ly||=]lzll=1; (v, ¥)=0; z=ax+by} .

Two facts are easily established concerning I : first, that it is a bicone,
and second, that it is a subset of every bicone that contains L and M.
It follows that I is the bicone generated by L and M. And therefore
we may state: B(L, M; N) if and only if NeI”. Accordingly, to prove
that B={7\,, it now remains only to show that the defining conditions
for I in (5.20) are equivalent to the conditions (5.18).

Let us suppose first that (5.18) is satisfied. That is, for any partic-
ular unit vectors x € L, y€ M and z¢€ N, the conditions (5.18) hold. If
(x, ¥)=0, then, according to i), z is a linear combination of x and y—say
ar+By; rewrite it as (e)(ex)+(e:f)(e:y), where e==+1 and ¢==+1,
and e¢a=0 and ¢,8=0. Then we have that the defining conditions of
I'" are satisfied for e¢x € L, eqye M, z€ N, a=e,a, b=¢,8. Thus, Nel".

If the z, ¥ and z fulfilling (5.18) are such that (z, ¥)+#0, we first
take y'=ey, where ¢,=+1 and (x, ¥’)>0. By ii) and iii) we have (z,
2)#0 and (¥, 2)#0. We next choose z'=e3z, where ¢,=+1 and (¢, ?)
>0. It then follows from iv) that also (/, x)>0. Having done all this,
we can now drop the primes and consider that we have unit vectors
2€L, ye M and z¢ N such that 2 is a linear combination of x and y,
and such that

(5.21) (z 2)2(x, 9)>0, (¥,2)2(x,9)>0.

If (x, y)=1, then these inequalities imply that z=y ==, and we see that
the defining conditions of I are satisfied with, for example, a=1, b=
0. And so we have Nel”,
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Suppose now that (z, y)<1. We write

(5.22) z=ax+by,

and derive from this the two equalities

(5.23) (2, x)=a+b(x, y) , (v, 2)=a(z, y)+b .

Solving for a and b, we have

(5.24) o=@ YNw2 - ©)=(E2)@y)
1—(z, y)? 1—(x, y)*

Because of (5.21) we see by these expressions that ¢ and b are non-
negative. This being the case we once again find the defining condi-
tions of I" satisfied, and so again we have the conclusion that NeI".

We have now completed the demonstration that the satisfaction of
(5.18) implies that Ne I”. To prove the converse, let the unit vectors
xeL, ye M, ze¢ N fulfill the defining conditions of I”. If (x, y)=0 we
see immediately that (5.18) is fully satisfied. Let us suppose, then,
that (x, y)>0. If b=0 then a¢=1 and z==, and in this case it is again
immediate that (5.18) is satisfied. Similarly if a=0, (5.18) is an im-
mediate consequence. We may suppose, then, that both a¢ and b are
positive. We have (5.22) holding and again may derive (5.23) from it.
From (5.23) we obtain immediately the fact that (2, )>0 and (y, 2)>0.
We therefore have

(5.25) (2, %) (=, y)(y,2)>0.

It follows also from (5.23) that

(5.26) a+b(z, y)<1, a(z, y)+b=1
or

(5.27) i@y, lz@).

From the fact that ||z||=1 we have

(5.28) a(z, ) +b(y, 2)=1.

From this we deduce the two inequalities

(5.29) a+b(y, 2)=1, a(z, )+b=1,
or

(5.30) W 2)= 1;“ O Pl
a
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Combining these with (5.27), we have

(5.31) Wz y, @oz@y).

We may summarize now, pointing out that for our present unit vectors
xeL,yeM, ze N, we have (5.22), (5.25) and (5.31) holding. But under
these circumstances it is then true that (5.18) holds for any unit vec-
tors xe€ L, ye M, z¢ N. This observation completes the proof that if
NelI" then (5.18) holds.

We have hereby shown fully that B and 7\, are the same relation.
And consequently we have established our assertion that the relation
(5.19) gives a Theorem 5.1 representation of ¢\r-betweenness. It will
be noticed by (5.20) that I'” is quite evidently the collection of 1-dimen-
sional linear manifolds “in the acute angle between” L and M; and
therefore, in proving the equivalence of the defining conditions of I
and the characterization (5.18), we have, as we foretold earlier, given
a proof that (5.18) is indeed the analytical formulation of “in-the-acute-
angle-of ” betweenness.

6. Further examples

In all the examples thus far discussed we have illustrated Theorem
5.1 by taking a known betweenness relation and finding an associated
R-relation. We shall now give a class of examples in which we proceed
in the reverse direction. Let v be a fixed number in the interval (0, 1],
and define the relation R between X and K as follows:

(6.1) Rz, =[x, y=vixl-llylll , zeXH, yeK.

Our motivation is clearly to generalize (5.15) and thereby to generalize
O\i-betweenness. Let us immediately give this new betweenness rela-
tion a name:

DEFINITION 6.1. The betweenness relation in KX that derives ac-
cording to Theorem 5.1 from the relation R defined by (6.1) will be
called 0 ?-betweenness in K.

Now, we want to obtain a characterization of {\’-betweenness in
JK corresponding to the characterization of {\3-betweenness in Definition
5.2. The better way to this, however, is an indirect one, because the
relation R of (6.1) is overly cumbersome to work with, involving, as
it does, the norms of the elements x and y. To explain the procedure
we have in mind, we shall first detail certain generalities.

We have already had, in Definition 5.2, an application of the fol-
lowing general definition :
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DEFINITION 6.2. Let B be a betweenness relation in a space X.
If C is any particular subset of 2, the restricted application of B to
point triplets (x, y, 2> belonging only to C is a betweenness relation in
C; it is called the restriction of B to C, or B-betweenmess in C.

That the restricted application of B to C is, as asserted here, a
betweenness relation in C is readily verified directly by Definition 2.1.
By contrast, there is no subtlety at all to the fact that if R is a bi-
nary relation between X and 2, then its restricted application to sub-
sets CC ¥ and 2'CQ is a binary relation between C and 2'; we shall
call it the restriction of R to CX ', or the relation R in Cx2'. With
these definitions of restrictions now laid down, the following lemma
answers a natural question.

LEMMA 6.1. Let B be a betweenness relation in X ; and let R be a
relation between X and a space 2, which gives a Theorem 5.1 represen-
tation of B. If C is any particular subset of X, then the restriction
of R to Cx 2 gives a Theorem 5.1 representation of B-betweenness in C.

This result is due basically to the fact that the Theorem 5.1 rela-
tionship between B and R is a point-wise relationship. The detailed
proof of the lemma is clear and we shall omit it here.

Lemma 6.1 deals with the contraction of a betweenness relation.
We next give a result that enables us to extend, and more generally
to transfer, a betweenness relation.

LEMMA 6.2. Let t be a function on the space 4 to the space X,
and let B be a betweenness relation in X¥. Then the relation B, on tri-
plets of points <x',y', 2> in Y, defined by

(6.2) B,(«', y'; 2)=B(t(z"), t(y'); t(z')) ,
18 a betweenmness relation in 4J.

This lemma is proved immediately by appealing to Definition 2.1.
We can now go further, and again tie this procedure on B to a corre-
sponding procedure on an associated relation R.

LEMMA 6.3. Let X, 4, t and B be as in the preceding lemma. Let
R be a relation between X and 2 that gives a Theorem 5.1 representa-
tion of B. Let R, be the relation between Y and 2 defined by

(6.3) R(x', w)=R(t(x'), 0) , 2ed), we.
Then R, gives a Theorem 5.1 representation of the betweenness relation B,.

The proof of this statement is immediate from the definitions.
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Let us return now to our discussion of {\’-betweenness. Recalling
that O denotes the unit sphere in X, we note first of all the follow-
ing fact: for given elements x, y, z in K, (2, 0)=v||z||-||0] for every
0 € K such that (z, 0)zv|x|-|lo|l and (y, 0)Zv|yl-llel Wf and only if
(2, o)=v||2|| for all we O 4 such that (x, 0)=v|z| and (¥, w)=v|y|. This
statement is easily seen to hold true, and it tells us that also the re-
lation

(6.4) Rz, y)=[(x, y)zvixl]l, xeX, yeOx

gives a Theorem 5.1 representation of ©*-betweenness in K. Now,
by Lemma 6.1, the restriction of R of (6.4) to O 4 X0 will give us
a Theorem 5.1 representation of ?)\!-betweenness in . Thus, the
restriction of {\!-betweenness to O 4 can be studied through the relation

(6.5) R(z, y)=[(z, y)=v] , x € OJC’ /AS OJC .

This is markedly advantageous over the study of either the relation
(6.1) or the relation (6.4). But furthermore, the study of (6.5) will in
fact accomplish the study of ©\!-betweenness over all of KA. We see
this as follows. Let ¢ be the function on K —{#} to O defined by

(6.6) t(x)

=%
el

Then the Lemma 6.2 extension, under this ¢, of 0\}-betweenness in O 4
to K — {0} has, by Lemma 6.3, a Theorem 5.1 representation in terms
of the relation

6.7) R(z, y)= Kﬂ% y) > ,,}
=[(z, y)=vllz|l], reKX—{0}, yeOx.

Through (6.4) we see that this relation generates the restriction of {)\¢-
betweenness to K —{#}. Hence, by Lemma 6.3, the Lemma 6.2 exten-
sion, under (6.6), of O:!-betweenness in @ 4 is O\’-betweenness in K —
{6}. Finally, it is seen without too much difficulty (see the discussion
further below) by (6.4) that the 7\’-betweenness relations involving the
element ¢ are:

Oz, y; 6) for all x, ye X ;
(6.8) 00, 6; 2) only for z=4;
for x+#6, 0z, 8;2) if and only if z=ax, a=0.

And these statements can be adjoined to a characterization of 0 ’-be-
tweenness in K — {0} to give a complete characterization of 7)’-be-
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tweenness in all of A. In other words, we have shown the following:
if some analytic characterization is found for 0:!-betweenness in O g,
then the transformation (6.6) will convert that to a characterization of
Ol-betweenness in KA — {6}, and finally the explicit adjunction to this
(if necessary) of the statements (6.8) will provide a characterization of
U\>-betweenness over all of K. This is precisely the procedure we had
in mind when we spoke, following Definition 6.1, of using an indirect
way of arriving at a characterization of ¢\’-betweenness in K. Thus,
we shall undertake the inquiry into 7\’-betweenness by studying first
its restriction to O 4.

Before we do that let us say a word about (6.8). The first two
assertions there are established very easily, and we omit their deriva-
tions here. To establish the third one, however, we require a some-
what more detailed argument. We must show that (z, w)=v|z| for
every o € Oy such that (x, o)=v||z| ©f and only if z=ax for some a=0.
The sufficiency of this last condition is clear. We proceed to prove its
necessity. If z=64 then the condition is satisfied (with a=0). If z+46
let us suppose that z is not of the form ax for some a>0. We can
then present z in the form

(6.9) z=ax+y, ylw where y+#0 if a=0.

We are now to show that for this z there is an we Oy such that
(x ,0)=v]|z|| while (2, w)<v]z]]. In fact, let us take the following e,:

(6.10) wy=—14T=%

" lalz—yl
where ¢ is, in the case of y+#6, the unique positive number such that
(x, w)=v]|x||, that is,

lal Izl _
(6:11) Talz—ay]

If y=60 and (therefore necessarily) a<0, then w, is simply «/||x| and
we see immediately that (z, o) =||z||=v||2| while (2, w)=«a|z||<0<v]z|.
In the case of y#60 we proceed to examine

(Z, a)o) — (ax-%-y, |a|x—5y)
(6.12) Izl [lale—oyllva = +Iyl"
__allzll=allyll*/(al- =) by (6.9)

 elz—dyllVI+ylF( =]’

—, sgn a—(lyll/(«]|2]))
Y1+(lyl/alie]))

We see that this last expression is indeed <v, and therefore our de-

, by (6.11).



BETWEENNESS FOR REAL VECTORS AND LINES, I 153

monstration is complete; that is, the third assertion of (6.8), as well
as the first two, is established.

We can now start into our study of ¢)!-betweenness in ©y. We
want to find a direct characterization of it. To this end we state a
first theorem:

THEOREM 6.1. Let x and y be elements of Oy, and let - denote
the inmer product (x,y). As postulated above, v>0.
If the condition

(6.13) > ‘/ 1+¢&

2

holds, then every z€ Oy is O\l-between x and y.
If, on the other hand, we have the inequality

(6.14) = /”Tb

holding, then the following statements describe the 0:I-betweenness in O y :
(1) if dim K2, then z€ Oy is U\-between x and y if and only
if it is a non-negative linear combination of x and y;
(2) of dim K =3, then z€ Oy 1is D\ -between x and y if and only if

(6.15) (2 o (@+y)+w) 2>

Jor every w e K satisfying the conditions

20*

6.16 wlxz, vy, w|*=1— .
(6.16) v, lwli=1-22

(The character & that has been introduced here is the Japanese
hiragana to.) When the condition (6.13) holds, the two sets

(6.17) {0 e Oxl(x, @)2v} , {0 e Oxly, 0)2v} ,

are non-overlapping, and the assertion of the theorem is thus a logical
triviality. When (6.14) holds, the sets (6.17) do overlap, and in partic-
ular the assertion (1) of the theorem is then quite obvious geometri-
cally and we can consider it proved. Assertion (2), on the other hand,
is non-trivial and requires a detailed proof. Because of its length, we
shall put that proof over until the second article in this series.

The present theorem does not yet give us, completely, the char-
acterization of ¢\’-betweenness that we desire. For this we must trans-
form the assertion (2). Toward this objective, let us express an ele-
ment z€ Oy in the form
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(6.18) . z=ax+by+u, uilx,y.

Of course, we have

(6.19) a’*+b*+2Lab+|ul’=1.

In terms of this component form for z, (6.15) becomes
(6.20) w(a—+b)+(u, w)=v .

Finally, for brevity let us set

6.21 who P
(6.21) o itz

Now, if (6.15) holds for our present z, and if u+#6, then (6.20) will
hold with the vector

6.22 __P
(6.22) Tl

substituted for w. This gives us the inequality

(6.23) pllull=vi(a+b)—1] .
If w=@ then (6.20) tells us immediately that
(6.24) a+b=1,

and therefore (6.23) is verified also in this case. Hence, we see that
(6.23) is a necessary condition for (6.15). But it is also sufficient. To
see this, suppose w is any vector orthogonal to both x and y, and of
norm p. Then

(6.25) [(w, w)|ZSpllullSv[(@+b)—1] by (6.23).
Therefore
(6.26) a+b)+(u, wy=v(a+bd)—v[(a+b)—1]=v;

that is, (6.20) holds. Since (6.20) is equivalent to (6.15), the sufficiency
is hereby proved.

Let us observe that with (6.15) holding for our 2z, the coefficients
a and b, in the case of y=#=x, are necessarily non-negative. We see
this by noting first that (6.23) implies (6.24), and therefore we have

(6.27) ‘ at+b'+2ab=1 .
On the other hand, from (6.19) we have
(6.28) a?+b'+2Lab<l .
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For the case y#x we have & <1, and so these last two inequalities im-
ply that ab=0. This result taken tcgether with (6.24) implies, as as-
serted, that a and b are both non-negative.

In the case of y=« we have ¢ =1, so that (6.19) implies |a+b]|
<1, while (6.23) still implies a+b=1. It follows that a+b=1, and
consequently also, by (6.19), w=64. Thus, in the case of y=x, the only
z2€ Oy which is 0\l-between z and x is x. This result is no surprise.
It can be seen directly from the defining relation (6.5) through pre-
cisely the same detailed argument that was used to establish the third
assertion in (6.8).

The necessary and sufficient condition (6.23) has been derived here
for the case dim A=3. We shall now show that it is valid just as
well in the cases dim A <2. Statement (1) in the above theorem de-
sceribes explicitly {\’-betweenness in these two cases. Now, if z is a
non-negative linear combination of # and y, then w=#. Therefore, by
(6.19),

(6.29) a+b=vVal+b+2Lab=1,

and so we see that (6.23) is verified. Thus, (6.23) is a necessary con-
dition for 7)\’-betweenness in the cases dim K <2. To prove the suffi-
ciency, consider first the case of dim A =2. In this case, if y#z then
u=0. (6.23) gives (6.24), and the argument employed above applies to
show that @ and b are non-negative. If y=2z then again the reasoning
exhibited above (in the preceding paragraph) applies to show that the
only possible z is « itself, that is, a non-negative linear combination
of x and z. In the case of dim X =1, the only possible situation, by
virtue of (6.14), is y==x, and once again the argument of the preced-
ing paragraph applies to give the result. This completes the sufficiency
proof.

We are now able, with these results, to state the characterizing
theorem that we were after:

THEOREM 6.2. Let x and y be elements of Oy, and let L denote
the imner product (x,y). Let v>0 and p be defined by (6.21).
If the condition

(6.30) v> \/ “ét

holds, then every z€ O 4 is Ol-between x and y.
If, on the other hand, the inequality

(6.31) v< 1+2~’1
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holds, then a mecessary and sufficient condition that z € O 4 be U\I-between
x and y is that z be of the form

(6.32) z=ax+by+u, ulx,y
with the following condition fulfilled :
(6.33) pllull=vi(@+b)—1] .

When, under (6.31), z€ Oy is Ol-between x and y, with y+x, the co-
efficients a and b are mecessarily mon-negative. If y=x then a+b=1
and w=40; that is, x is the only element of O 4 that s V}-between x and .

We now go on to carry out the program we outlined earlier for
obtaining the characterization of ?)’-betweenness in all of X from its
characterization—in this last theorem—in © 4. For this purpose, if x
and y are any elements of X we define

st @9 if x#60 and y+#46,
(6.34) r(x, )] il
1 if either x=¢ or y=4,
and
6.35) (@, y)= l—ﬁf_%,ﬁ in the case _”_32._2(””’—”);”2.

We consider first the case of all three elements, z, ¥ and 2z, of X non-
vanishing. According to our earlier discussion, z is {-between x and
y if and only if z/||z|| is ©\i-between z/||z| and y/||ly|| in Ox. Thus, if

then z is ¢\-between = and y for every z in K —{#}. If, on the other
hand,

(6.37) < \/Ltéz(xl
then z is 7 ’-between x and y if and only if

(6.38) 2 —a- % 4b- Y tu, wulwvy,
llzll |E4 vl

with @, b and w satisfying (6.33). On making the substitutions

(6.39) a=12l p=llyll g =1,
’ Il
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we see that our statement becomes the following: 2z is ¢\-between z
and y if and only if

(6.40) r=axtBy+v, vlw,y,

with «, B and v satisfying the condition

(6.41) o(@, y)- vl Svlallzll+Bllyll— iz +By[F+]vI] -

By (6.39) we see also—according to the preceding theorem—that if z/
llz]| and y/||y] are unequal, that is, if y is not a positive multiple of =,
then « and 8 are necessarily non-negative. And if y is a positive mul-
tiple, 7, of «, then a+y5>0 and v=4§; that is, only the positive multi-
ples of # in K — {6} are ¢ !-between x and =.

What we have now obtained, up to this point, is a characterization
of {\-betweenness in K —{#}. But the fact is that the form of the
conditions just obtained provides a characterization for all of KA. In
other words, there is actually no need to adjoin explicitly to these con-
ditions the statement (6.8): that statement is already inherent in these
conditions. We shall prove this after first stating the full character-
ization theorem.

THEOREM 6.3. Let x and y be elements of K. Let v>0, and let
& (x, y) and p(x, y) be defined by (6.34) and (6.35), respectively.
If the condition

(6.42) N

holds, then every z € K 1is U\l-between x and y.
If, on the other hand, the imequality

(6.43) vs [1FE@ Y
= 2

holds, then a mecessary and sufficient condition that z € K be U-l-between
x and y is that z be of the form

(6.44) z=ar+py+v, vle,y,
with a, B and v satisfying the condition

(6.45) o, y)- vl =vlallzll+Bllyl — VIaz+ByF+v[P] -

When, under (6.43), z is 0 I-between x and y, with x and y both #6 and
one not a positive multiple of the other, then the coefficients a and B are
necessarily mon-negative. If x is #0 and y 1s a positive multiple, 7,
of x, then a+yB=0 and v=0; that is, only the non-negative multiples
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of x are O-between x and x.

To see that this theorem covers the case of one or more of =z, ¥y
and z vanishing—as well as the case of all three of these vectors in
HK —{0}—let us first consider the situation of z=# while £ and y are
non-f. If (6.42) holds, then the theorem asserts that 6 is between
and y. According to the first assertion in (6.8) this is correct. If
(6.43) holds, we see that ax+py and v in (6.44) are vanishing and that,
on that account, (6.45) is satisfied. Therefore, the theorem asserts
again in this case that # is between z and y. And again this state-
ment is correct according to (6.8). Notice that when (6.43) holds then
necessarily »(z,y)>—1. Therefore if x and y are not in the relation
of one being a positive multiple of the other, then they are linearly
independent. Hence, for z=6 both a and g vanish. Thus, the first of
the last two statements of ‘the theorem is seen to be valid in the pre-
sent case. If y is a positive multiple, 7, of z, then for z=6 we have
a+78=0 and v=40; and so also the last statement of the theorem is
valid.

We consider next the case of x=y=60. We begin by noticing that
when either x or y is # then & (z, y)=1 and therefore we have (6.43)
holding. Thus, in the present case we put x=y=4@ in (6.45), and we
find the implication that v=#. That is, according to the theorem, ¢
is the only element that is 7\’-between # and 4. By (6.8) we see that
this is the correct statement.

Finally, we look at the case of x#6 and y=4¢. Setting y=4 in
(6.45) we see that the right-hand side is negative unless v=¢ and a=
0. Thus, the theorem asserts that in the present case only the non-
negative multiples of x are {}-between z and y. Again, (6.8) shows
this to be the correct statement.

This completes the proof of Theorem 6.3.

7. Concerning the past literature on “betweenness”

The classical literature on “betweenness” uses this term more
generally than we are using it here. This came about in the follow-
ing way. Huntington and Kline [9] presented a very thorough postu-
lational analysis of the elementary case of betweenness for points on
the real line. This simple case has many formally distinct properties
of the following general type: a collection of specific instances of be-
tweenness among triplets of the points of a given set of k points im-
plies another specific instance of betweenness among some triplet of
these & points. Among the twelve postulates that Huntington and Kline
study there are eight which are precisely such properties for a 4-point



BETWEENNESS FOR REAL VECTORS AND LINES, I 159

set.

Such a property came to be called a transitivity. When sub-
sequent authors began to give attention to triplet relations in other
spaces than the real line—triplet relations that conform to the general
intent (—if not to the letter—) of the other four postulates of Hun-
tington and Kline—they employed the term “ betweenness” quite freely :
the prevailing spirit was not “ What transitivity shall be singled out
as the basis for a general definition of betweenness? ” but rather “ What
transitivities does this or this ‘betweenness’ have?”

Pitcher and Smiley [12] continued the Huntington and Kline study
on the real line by examining also transitivites on a 5-point set, of
which there are thirty-eight. Our hereditary property, condition (iii)
of Definition 2.1 above, is the transitivity T; in the Pitcher and Smiley
list of thirty-eight. This property seems to us to lay reasonably exclu-
sive claim to the privileged position as the basis of a firm general de-
finition of betweenmness.

It is instructive to examine some of the classical examples of “be-
tweenness” from the point of view of betweenness; that is, to see if
or when these general triplet relations are betweenness relations ac-
cording to our Definition 2.1. For this discussion we shall introduce
a terminological device to assure greater ease and clarity of expression:
the rather liberal classical idea of “betweenness” we shall call betwixt-
ness. Thus, we are going to scrutinize various cases of betwixtness
to see which of them are cases of betweenness.

Smiley [14] pursues his betwixtness studies by inquiring into the
relationships among three particular kinds of betwixtness. These are
the notions that we shall look at here. They are defined as follows.
If X is a real vector space, the point z is said to be algebraically be-
twixt the points x and y if

(7.1) z=ax+(1—a)y , a€[0,1].

If ¥ is a semimetric space, with semimetric 5, the point z is said to
be metrically betwixt the points x and y if

(7.2) ‘ oz, y)=0d(x, 2)+0d(z, y) .

Finally, if X is a lattice, the point z is said to be lattice betwixt the
points x and y if

(7.3) @A)V (EAY)=2=(@VIAEVY) .

It is immediately clear that algebraic betwixtness is a betweenness
relation. Theorem 1 in Smiley [14] asserts that if ¥ is a seminormed
real vector space then it is strictly convex if and only if algebraic and
metric betwixtness coincide in X. (The semimetric is understood to
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be the seminorm difference.) We can therefore state that if ¥ is a
strictly convex, seminormed real vector space then metric betwixtness
is a betweenness relation. Another case in which this is so is that of
X a metric ptolemaic space; this fact is proved in Pitcher and Smiley
[12]. (A metric space is said to be ptolemaic if, for every tetrahedron,
the three products of the lengths of opposite edges are the sides of
some euclidean triangle; that is, they satisfy the triangle inequalities.)
There are still other, distinct cases in which metric betwixtness is a
betweenness. We shall present two such examples.

Consider ¥ to be the normed real vector space of ordered pairs
of real numbers, (a,bd), with norm defined by ||<a, b>||=max [|al, |b]].
We may immediately check that this space is neither strictly convex
nor ptolemaic. The two particular points £=<2, 1> and y=<(1, 1) satisfy
le+yl=]lz||+]lyll, but they are not linearly dependent; thus, X is not
strictly convex. If we take the tetrahedral vertices x={0, 0>, y=<2,
—45, 2=(0, 4> and w=<(9, —1), then, with § denoting the norm differ-
ence metric (that is, d(z, ¥)=|<x;, 2> — Y1, ¥> || =max [|2,—yl, [2:—1[],
where x={(x,, ;> and y={y,, ¥.>), we have

(7.4) (=, y)-6(z, w)=36, d(x,2)-0(y, w)=28, o(x, w)-6(y,2)=72,
so that
(7.5) oz, w)-d(y, 2)>d(x, y)-d(z, w)+d(x, 2)-d(y, w) ;

and this shows that X is not ptolemaic. Now, to show that metric
betwixtness in this present X is a betweenness relation, we may pro-
ceed most effectively by giving a characterization of the set of points
z satisfying (7.2) for given z and y. To this end we shall employ a
rotated coordinate system in ' ; that is, a point of ¢ will be denoted
by {pi+p;, p—p,>. Notice that

(7.6) I{p1+D2:, 21— 2 |=max [|py+ 2., |2 — 2] =01+ D2] -

If we set e={(p+p, P1—P>, ¥Y=(Q+q, —q) and z={r+r, r—r),
then the equation (7.2) becomes

(7.7) D=1+ e — | = oo — 71|+ Do — 7| FH i — @[ 71— -

By virtue of the obvious inequalities that hold among the terms in
this equation, the fact of the equality gives us two equations:

(7.8) D —ai|=]p—r|+|r—al, | — | =Dy — 13|+ |1 — |

And these equations state the following: the number 7, is between the
numbers p, and ¢, and the number 7, is between the numbers p, and
q;. This, then, is the characterization of the 2’s that satisfy (7.2).
Geometrically it is seen that this set of 2’s is just the 45°-inclined
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rectangle that has the line segment from x to y as one of its diagonals.
From either this geometric statement or the analytical characterization
out of (7.8) it is now quite clear that this metric betwixtness fulfills
our Definition 2.1 and so is a betweenness relation.

Our second example comes from Schoenberg [13]. Let ¥ be the
metric space of the numbers in the closed interval [—1, 1] with metric

le—y| - if zy=0,
(7.9) o(z, y)={ )
[z|+|yl—2%*  if xy<O0.

That this space is not ptolemaic is seen by

1 1 25 _ 19
7.10 a<—1,_>5(—_,1)=_ 19
(7.10) 2/)\ "2 )16 16

{2l a1, 3).

It is not difficult to show that (7.2) is satisfied if and only if either
(i) zy=0 and the number 2 is between the numbers z and y, or (ii)
2y<0 and z is either z or y. This result makes it evident that metric
betwixtness in this space is a betweenness relation.

It is of interest to see how this betweenness may be represented
according to Theorem 5.1 with a relation R of membership form (see
(5.8)). If 2 of (5.8) is taken to be the class of all closed sub-intervals
of X=[—1,1], then the resulting betweenness relation is ordinary
linear betweenness in this interval. But if 2 is enlarged to include
also all two-point subsets of X in which the two points are numbers
of opposite sign, then the betweenness generated is precisely the pre-
sent metric betwixtness.

Metric betwixtness is not always a betweenness relation. Menger
[10] presented his example of a “railroad” space to demonstrate this
fact. This space consists of five points, %, v, %, ¥, 2z, and the metri-
zation is as follows:

o(u, x)=d(v, y)=2,
a(x, 2)=d(y, 2)=3,
(7.11) 1 o(u, 2)=6é(v, 2)=5,
o(u, y)=d(v, x)=0(x, y)=6 ,

o(u, v)=8 .

It can be verified that z is not metrically betwixt » and », while
and y are both betwixt # and v, and 2 is betwixt # and y. Thus,
the hereditary property does not hold. We may go on to observe that
this 5-point space can be isometrically imbedded in the 3-dimensional
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real vector-space with norm ||<a,d, ¢)||=max [|a|, |b], |c]]. Specifically,
the following identification can be made:

u=(0,0,0), v=<86,5), 2=<2,0,2),
y=<6y 67 5>y Z=<3, 3, 5>.

(7.12)

Obviously an isometric imbedding can be made as well in the max-
norm vector-space of any dimension greater than 3. Thus, we can state
this: in the max-norm real vector spaces ¥, metric betwixtness is a
betweenness relation for dim =1 or 2, and is not a betweenness re-
lation for dim ¥ =3.

Finally, with respect to lattice betwixtness, Lemma 8.2 and The-
orem 9.3 of Pitcher and Smiley [12] state the whole story, namely:
lattice betwixtness is a betweenness relation if and only if the lattice
is distributive. (Their Lemma 8.2 establishes their postulates « and B,
which imply that our (2.1)-(i) and (ii) are fulfilled; and their Theorem
9.3 proves the hereditary property.)
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