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1. Introduction

In many areas of statistics (e.g. discriminant analysis, hypotheses
testing, nonparametric statistic, pattern classification etc.) there is a
need for some appropriate distances of probability distributions. There
are two basic properties which an appropriate distance should satisfy:
(i) it should be non-increasing on transformed observation
(ii) be unchanged if the transformed observation (statistic) is suffi-

cient one.

For the case of two distributions such distances are widely used
and investigated. The case of more than two distributions, however,
is mainly treated by using pairwise distances. Such a concept may result
in overlooking characterizations and possible solutions for many problems.
It seems reasonable to replace pairwise distances with measures of sep-
aration among (dissimilarity, discrimination of) more than two distri-
butions. In this respect the pionir work was done by K. Matusita [8]
who introduced the notion of affinity of several distributions. Although
the affinity of distributions represents the likeness of distributions it
serves as well as a measures for discriminating among distributions [10].
The negative of Matusita’s affinity satisfies both (i) and (ii) (see [9]).
Motivated by Matusita’s works several authors proposed “affinity ” and/
or separation measures. Extracting the common feature of these meas-
ures, in [5] we had proposed a wide class of dissimilarity measures of
several distributions:

DEFINITION 1. Let f(s;,---, s, be a continuous, convex, homogene-
ous function defined on the set

(1) S,,é{(sl,---,s,.); 05800, 1=1,---,m}.

Let P,,---, P, be probability measures on the measurable space
(X, X¥) with Radon-Nikodym derivatives p,(x),- -+, p.(x) with respect to
a dominating o¢-finite measure gx. The f-dissimilarity of P,---, P, is
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defined by

(2) Dy, P)=\_Fo@): -, p(a))ude) .

We have shown in [6] that this class includes the following sepa-
ration measures: the probability of correct decision of the Bayesian
decision rule, the class of f-divergences ([1], [4]), the negative of Matu-
sita’s affinity p,, the negative of Toussaint’s affinity p} ([12]) Ito’s gen-
eralized Chernoff-bound C, ([7]), Toussaint’s dispersion R* ([11]), the
asymptotic probability of correct classification of the nearest neighbor
decision rule ([3]).

In this paper we are concerned with the basic properties of the
f-dissimilarities. In particular, we prove that the f-dissimilarity satis-
fies both (i) and (ii) for different kinds of indirect observations. A
characterization similar to that of Theorem 3 [9] is given by finite
partitions.

2. f-dissimilarity and indirect observation
For the sake of mathematical rigour we recall the following

DEFINITION 2. The function f(s) s€ S, is called homogeneous if
fts)=tf(s) for all reals t=0 and s€S,. The function f(s) is called
convex on S, if for any s, 8; €S, and real 7, 0<z<1

(3) flesi+(1—2)s) =z f(s)+(1—2)f(se)

A homogeneous convex function is said to be strictly convex if equality
holds in (8) iff (=if and only if) s, and s, are linearly dependent.

In our derivation the following lemma plays a fundamental role:

LEMMA 1. For a vector $€8S,, let S*(8) be the subspace of all vectors
s €S, such that their ith coordinate is zero whenever the ith coordinate
of § is zero. Let, in addition, f(s) be a continuous, homogeneous convex
Sunction on S,. Then for any §¢S,, §+0 there exists a vector w=w(s)
such that

(4) f(8)=(w(s), 5—8)+ f(8), s € S*(3)

where (w, $—s) denotes the inner product.
If f(s) is strictly convex, the equality holds in (4) iff s and § are
linearly dependent.

Proor. This lemma is a simple consequence of Theorem 2.2.6 in
[2]. This theorem ensures the existence of the vector w(s) for all in-
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terior points § of a closed convex set in the n-dimensional space provided
that f is a convex continuous function on it. In order to apply this
theorem we have only to note that the restriction of f(s) into the sub-
space S*() is a homogeneous, continuous convex function on S*(3).
Obviously S*(3) is a closed convex set and § is an interior point thereof.
Therefore, the first assertion of the lemma is true. The second state-
ment will be proved in an indirect way. Suppose there are independent
vectors s; and s, € S*(s;) such that

(5) F(s)=(w(s:), 8;—8:)+ f(s1) -

Letting sé(sl-{-sz)/z we have s € S*(s;). Since s and s, are linearly in-
dependent and f is strictly convex

(6) F(8)< S(s)+f(s) .
2

Substituting the right-hand side of (5) into (6) and using (s;—s,)/2=
8$;—8 we get

(7) f(8)<(w(s), s;—s)+f(s) .

That is, under the condition that f(s) is strictly convex, the strict in-
equality (4) holds when s and § are linearly independent.

The converse, namely that under the same condition the equality in
(4) holds when s and § are linearly dependent is easily shown. (Actu-
ally, the proof runs as follows. Suppose that s, and s, are linearly
dependent, say s,=a-s;, and the strict inequality (4) holds for s, and
s;. Then we have

af(s)=f(s;)>(w(s)), s1—8,)+f(s1) ,
hence
0> (w(sy), 8;—8:)+(1—a)f(8)=(1—a)[(w(s), 8)+ f(s)]=(1—0a)f(0)=0,

which is a contradiction.)
In the sequel this lemma will be used to prove that the f-dissimi-
larity has the properties (i) and (ii).

THEOREM 1. Let (X, ¥) be a subspace of (X, ¥), and P,,---, P, be
the restrictions to (X, ) of the probability measures P,,---, P, defined
on (X, X). Then for the f-dissimilarity the following inequality holds:

(8) DyP,, -+, P)=DyP,---, P, .

If f is strictly convex on S, then equality holds in (8) iff X is a suf-
ficient o-algebra of X. (For the definition of the sufficient g-algebra we
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refer to Loeve [13] Section 24.4, pp. 344-347.)

ProOF. Let us choose a probability measure p as a dominating
measure (e.g. p=(P,+---+P,)/n) and for notational brevity let

p={n(),- -, ()}

and

P={E(p(z)|X), -+, E,(p.(x)| X))

where E,(-|%¥) denotes conditional expectation. In the notations of
Lemma 1 obviously p € S*(p) with p-probability 1. Therefore, the in-
equality

f(p)z(w(p), p—p)+f(p)

holds with p-probability 1. For strictly convex f equality holds iff p
and p are linearly dependent. Taking conditional expectation of both
sides we have

E(f(p)| X)Z E,(w(B), p—p)| D)+ E(f(B)| )
=w(p), b—E/p| XN+ 1(B)=1(B)

with p-probability 1. For strictly convex f equality holds iff p and
are linearly dependent with p-probability 1. Taking expectation we
have

DI(PU'"’Pn)ng(PI"";Pn) ’

with equality iff % is sufficient, provided that f is strictly convex.
Choosing € to be the trivial s-algebra %= {¢, X} we have

COROLLARY 1.
Df(Pl!' M) P,,)gf(l,"', 1)
with equality +ff P,=--.-=P, provided that f is strictly convex.

Remark 1. If o(t) is a strictly monotone increasing function on
[f(1,1,---,1), o) then ¢(D,) also satisfies (i) and (ii).

THEOREM 2. Let T be a measurable transformation of (X, 2¥) into
the measurable space (Y, Y) and let PT,---, PT denote the measures gen-
erated by T on (Y, ). Then

(9) -Df(Pl""’Pn)ng(PIT""’PnT)

with equality iff T is a sufficient transformation provided that f s strict-
ly convex.
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PROOF. Let 9 be the s-algebra generated by the sets T-Y(B) B¢

qJ, and let B, be the restriction of P; to &. Choosing the dominating
measure g, on (Y, Q) as the measure generated by T and g we have
p(x)=p7(Tx), =1, 2,---, » which means

(10) DI(PI;"')Pn(x))_—-Df(PlT;"'; PnT)

The assertion of Theorem 2 follows from that of Theorem 1.

3. f-dissimilarity and randomization

In this section we show that the f-dissimilarity does not change
when considering randomization independent of 4, i¢ {1, 2,---, n}. If,
in addition, a transformation is applied after the randomization then,
in general, the f-dissimilarity decreases. For strictly convex f it does
not change iff the transformation is sufficient (in Halmos-Savage sense).
The kind of indirect observations we discuss in this section is some-
times referred to as observation channel, see e.g. [4].

THEOREM 3. Let P,,---, P, be probability measures on (X, X), and
for every xe€ X let R(C,x), CecZ be given probability measures on the
measurable space (Z, Z) such that
(a) there is a measure v on (Z, &) which dominates R(-|x) for every

reX
(b) R(C|xz) 1s X-measurable for every fived c e 2.

Let (Y, YY) be the Cartesian product of (X, X) and (Z, Z). Define
PX* as the extension of

(11) Pi*(A*C)=SAR(C|x)pi(x)y(dx), Aex, CcZ
to (Y, Q). Then
(12) D/PX,---, PX)=D,(P,,--, P,) .

PrROOF. Let pjf(zx, z) be the Radon-Nikodym derivative of P* with
respect to the Cartesian product px*v. Then, obviously

(13) D, 2)=pyx)r(2/7) ,

where r(z/x) is the Radon-Nikodym derivative of R(-/x) with respect
to v. Using (13), the homogeneity of f(-) and Fubini’s theorem, we
obtain the following chain of equalities which proves the theorem

D/(Pt, -+, =\ ol 2., pi(@, D)l %5) ,

={, 70@, -, @) )
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={, ro@.-- pa) | reimas)ap

- Sx F@),- - -, pux))dpe
=D/(P1s*+*, Da) -

The following corollary follows from Theorem 3 by choosing R(C/x) in-
dependently of =z.

COROLLARY 2. Let P,,---, P, resp. R be probability measures on (X,
X) resp. (Z, Z). Define P¥* as the product measure P, R on the prod-
uct space (X+Z, X xZ£). Then

Df(Ply' ) Pn)=Df(P1*" %y Pn*) .
THEOREM 4. Suppose that the conditions of Theorem 3 are fulfilled.
Define the probability measures P, on (Z, 2Z) as
PC)2| RCwp@udn, CeZ.

Then
(14) D/P,,--+, P)=D/P,,---, P,) .

If f is strictly convex then equality holds iff the randomized transformed
observation is a sufficient one 1.e.

p(x)=p(2)g(x,2), i=1,2,---,n a.e. wrt. pxy
Jor some function g(z, z).

PrROOF. Clearly P(C)=P*(XxC), where P* was given by (11)
(¢=1,---,m). Thus P, can be considered as the restriction of P* to the
sub o-algebra Q=X *%. Therefore Theorem 1 applies to this case,

and (14) follows from (12). For strictly convex f equality holds iff ¢
is sufficient s-algebra of 4J i.e. iff '

p¥(z, 2)=p(2)g*(=, 2) 1=1,2,---,m, a.e. w.r.t. p*v

for some function g*(x,2). The condition of equality in (14) follows
by (13).

4. Characterization of the f-dissimilarity

The main result of this section is the analogue of Theorem 3 in
[9]. It is shown that the f-dissimilarity can be approximated by con-
sidering the f-dissimilarity of measures generated by finite partitions.
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THEOREM 5. Let e, be the unit vector whose kth coordinate is 1 and
let

M=33 f(e) -
Then
Df(Pl,' “ Pn)éMf .

If f 1s strictly convex then the equality holds iff P, P;,---, P, are
pairwise orthogonal.

PrOOF. Because of the homogeneity of f we have

15) | f@a) - pa)du={ (2 @) 2 (n@es] 3 p/@)) )du.

The convexity of f implies that

16 £33 (p@] Dem)a)s2 ()8 p@) ) -
Since ey, e,,- - -, e, are linearly independent, equality holds in (16) for

strictly convex f iff one of the weight p,,(x)/ é p(x) is 1 and all the
other are 0. Substituting (16) into (15) we have

D(P.,-++, P)S 3 flen) | pla)du=M, .

Remark 2. For any constants a, b (a=0) 13=aD,+b is an f-dissim-
ilarity as well. Indeed, this can be seen by considering the function
Fs,- -, s,,)éaf(sl,- -+, 8,)+b((s;+s:+---+s,)/n). This means that one
may consider “normalized dissimilarities,” that is, generating functions

f yielding dissimilarities between 0 and 1.

THEOREM 6. It holds that
DAP,,- -, B)=sup 31 f(P(A),- -+, Pi(4)

where the supremum is taken over all finite measurable partitions A=
{A4;,---, A} of X.

Note that the sum on the right-hand side is the f-dissimilarity of
the restrictions of Py,---, P, to the algebra generated by A;,---, A,.

ProoOF. In this proof it will be convenient to choose p=P,+ P,+
-.++P, as a dominating measure. In this case p,(x)=1, i=1,2,---, n.
Since f(s;,---,s,) is continuous on the compact set S}={(s;, -, s,):



112 L. GYORFI AND T. NEMETZ

0=s.=1, ©=1,...,n}, it is uniformly continuous on S}. This means
that for any ¢>0 there exists a partition C,,---.Cy of S¥ into n-dimen-
sional rectangles such that the total variation of f on any of C,,---,C,
is less than e. Let B,={x: (p(%), ---, p.(x)) € C,, j=1,---N}. Since
C, is an n-dimensional rectangle we have

1 1
(B;) #(B;)

provided x(B,)>0, j=1,2,---, N. Since the contribution to the dissim-
ilarity, of sets of p-measure 0 is zero we may disregard such sets. Thus
we will suppose that u(B;)>0. Then

|, P@nda),- |, P@)uda) € C,

Fo@), -, M@)éf(%w y(f)))ﬂ . weB,.
J J

Integrating both sides on B, and summing over j=1,---, N we get

1) DR+, n)szf(ig)) ((gf)))ﬂ(g)mm
J J

=j§ f(Pl(Bj)’ tt Pn(BJ))+n€ .

Theorem 1, in turn, implies that
(18) Dy(P,,---, Pn)zg‘{ (Py(A)),- -+, Py(A)))

for all finite partitions {A4,,---, 4.} of X. (17) and (18) prove the asser-
tion of the theorem.
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