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1. Introduction

In a previous paper ([1]), the authors have considered the following
problem: If the random variables X,,---, X, are known to be inde-
pendent and normally distributed with unknown means and variances,
does the distribution of max {X,,---, X,} uniquely determine the pa-
rameters? A partial extension to the bivariate normal case was also
considered, with the restriction that all covariances be nonnegative.
It was shown that there is essentially unique identification of param-
eters in all these cases.

In the present paper, we treat the bivariate normal case with n=2
but without any restriction on the covariance matrices. If X, X, are
independent, normally distributed 2-dimensional random vectors with
cumulative distribution functions (cdf’s) @, and @,, respectively, the cdf
of max {X, X;} is 9,0,; max {X;, X;} is defined as the vector whose first
component is the maximum of the first components of X; and X, and
whose second component is the maximum of the second components of
X; and X,. Hence, the question is:

If ¢, @,, F,, F, are bivariate normal cdf’s, such that ¢,0,=F.F,,
does it follow that either (@,, @,)=(F}, F3) or (@, @,)=(F,, F})? We
prove that this is so, except in the trivial case of zero covariances.

Our proof consists of detailed treatment of several different cases
and, hence, is long and involved. We encourage the reader to look for
a simpler unified proof.

2. Bivariate normal distributions with zero means

We treat here the case of normal distributions with zero means,
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because the univariate results of the previous paper mentioned above
lead to the identification of means and variances; the intrinsically new
aspect of the bivariate problem is that of the identification of the co-
variances and the correspondence of the covariances with the parame-
ters of the marginal distributions. The correspondence can be done
in terms of the variances.

THEOREM 2.1. If ®,, @,, F,, F, are bivariate normal cdf’s with
zero means, such that

(2.1) (%, Y)Ou(x, y)=Fi(x, Y Fix, y) ,

then ome of the following relations holds:

(i) (9, D)=(F}, Fy), (ii) (@, D)=(Fy, Fy), or

(ili) @z, y)=A«x)By(y), 1=1,2 and Fi(z,y)=A(x)B{(v), 1,7=1,2, i+#],
(iv) @z, y)=A(x)B(y), 1=1,2 and Fi(z,y)=A,(2)B(y), 1,5=1,2, 1+#7].

ProOF. Let the variances and correlation in @; be (4}, p;, 73), 1=1,
2. The variances of the z-components on the r.h.s. of (2.1) are o}
and ¢, and those of the y-components are 7z? and . Therefore we may
assume, without loss of generality, that the parameters of F; are (47,
ri, t3), 1=1, 2, where (t,, t;)=(z1, 7s) or (5, 7,). Let

@2 9= jay [0z, 10z, V)]

0 0 0 b}
=¢,0y+—0,— Dy +—&, — D,+D
39D, on 1 y 2 oy 1ax 2 1Ps

=¢i(x, Y)Py(, ¥)
oSN (2 -22) V=]

N|(E -t V] T (2 2)

Ty Oy }
N (-0 V=] (2 -22) [vi-a]
+ 04, ¥)$(@, ¥) »

where n(-) and N(-) are univariate standard normal pdf and cdf, re-
spectively. Also,

2.3) o, y)=%;y [Fi(x, 9)Fy(z, 9)] .

I. First consider the simple case ¢,=0,, 7,=7,. Then 7,=1,=t,=t,,
so that the problem can be reduced to standard form by scale trans-
formations on 2 and y. In this case, (2.2) and (2.3) give us
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(2.4) __“it_zﬂﬁyi?i>@z(x, Y)

r(z, 9) 2—2_7;7%5 exp < o
+n(m>n<y)N[ (@—p) ] N[ (y—pi) ]

V1—pi Vi—pi
+n@m@N | (zl—f;) Iy [ (31__"23;) ]

2 2
10,2, y) _Mﬁﬂ>

g(:r) y) 4

On putting y=2, we have

@p @& _ 1 o (ﬁ.ﬁ)dﬁz(w, x)+2N<\/5x>

n}(x) B V1—p} o1 1+p
1— 1
N<\/ sz)—i— ex < £ x2>(1) z, x) .
140, TV P\, ) D)
We shall consider separately the cases max (o, ps, 71, 75)>, = and
<0.
(i) Suppose max (o, pz, 71, 7:)=p, >0 and let »,=7,. Then as x—co
L if p>p,
( ) 1/1—p1
(2.6) e, %) /exp <—_‘0‘ x2>—>
n*(x) 1+p 2 it o
Vicg tese.
On the other hand
0 if p>r=r,
. e 2 x - —
@) | \T+p, o
2

4/1—_——:,0_? if py=r,=7,.
Hence, if p;=p,, then r=7r,=p,=p, and ,=0,=F,=F,. If p;>p,, then
ri=p, and r,=p;; thus &,=F, and @,=F}.

(ii) Now suppose max (o, pz, 71, 7:)=p1=0. If p,=0, (2.5)—4; then
g(z, x)/n*(x)—4, which implies r,=7r,=0. If p,<0, (2.5)—3; then g(z,
x)[n*(x)— 3, which implies r,=0>7r,=p,.

(ili) Finally, suppose max (o;, ps, 71, 79)=0<0. Then (2.5)—>2.
Consider

T(x! 03)___ — 1 O1 2
(2.8) 2= exp (le 2 >q>z(x, )
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e (2 4)
+ ex 2 D(x, x

1+Pl 1+P2
+28( [2=b) N [3=2a),
1+P1 : 1+.02
where N(z)=1—N(x). Using the one-dimensional Mills’ ratio, we have
o[ [1— 1+p, 1 1 1—p,
2.9 N( 38 0)~ [itp. 1 1 (—impe ).
(2.9) 1o ) N1=0 @ ¥27 P\ 2140y

Then, as x— oo,

_ 1 if p>p,,
(2.10) [7’(—{5’——@—2]1/1—,;1 exp <1—_&x2>_ﬂl ‘ 1> P
n(x) to 2 if py=p,.

Similarly, as x— oo,
0 if Px >'rl ’

@.11) [%?—2]xfl—_-p-f exp <1—:_‘%x2>—> 1 if rn=p>p,
1
2 if ’r1=’rg=p2 .

We obtain identification.

II. Having disposed of the case ¢,=¢,, 7,=7,, We now consider the
situation where there is at least one inequality. Without loss of gen-
erality, we may suppose ¢,>¢,. Then in Equation (2.2), if we keep ¥
fixed and let x— o0, we have

O if Pl>0 ’
(x, y) —1—n<—y->N<—y—> +ln<l>N<1> if p,=0,
(2 . 12) —T—M—ol g T T Ty Ty Ty Ty
n(x/ay)
ln<l> if 0,<0.
Ty Ty

In the same way, from (2.3) we get

0 if "'1>0,
1 _?/_)N<_"J_> 1 (l N(l if 7,.=0
@2.13) 9@ Yo _, tln(t1 )T t2> t,) B =0
n(x/ey)
1. /y .
t—zn<—t;) if »,<0.
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Consequently, from (2.1) we see that
(A) p,>0=r>0,
(B) P1=0=>7'1=0y
C) m<0=r<0 and t,=7, (so that t,=z,).
In Case (A), let y=ax, where a=pr,/s;, and £— oo ; then, noting
that 1/6*—2pa/(s7)+a*/*=(1—pY)/d*+(ple—a/r)}, from (2.2) we obtain

r(®,az) 1
@19 n@la) | cVZrd—pl)

On the other hand, looking at the expression for (2.3) similar to that
for (2.2), we observe that

— 1 x _ (afti—rifo)’a?
2.15)  fi=, ax)—mn(a—) exp [ W] ,

O if a/tﬁ&’rl/al y

rz,az)
(2.16) w@le) | — L
tV2r(l—17)

Hence, on account of (2.1), recalling that a=p,z,/s,, we conclude that

if a/t1=’rl/01 .

2.17) on T and tA—r)=7(1—p)) .
0'1t1 g
This implies t,=z, and r,=p,. So, in Case (A), &,=F) and hence @,=F}.
Next, in Case (B), the original equation (2.1) becomes

2.18) N<£>N<l>q)z(x, y)=N<£)N<l>Fz(x, v) .

gy T (41 tl
If we now remove the common factor N(x/s,) from both sides, differ-
entiate with respect to x and remove the common factor (1/s)n(x/s,)
from both sides, we are left with

e O -

If p,=0, the lhs of (2.19) is independent of z, and hence 7,=0; in this
case, both sides of (2.1) are products of univariate cdfs, and there is
no unique matching of (z, %) pairs. On the other hand, if p,#0 then
r,#0, and setting y=0 yields p,=7,. If we now let x=ay/(0t,), We
obtain t,=7,. Hence, @,=F, and @,=F}.

Finally, in Case (C), 0,<0, <0, t;=7;, 1=1,2. If we let

(2.20) B(@, y)= S $(u, v)dudv ,

v>Y



68 T. W. ANDERSON AND S. G. GHURYE

and note that &(—=z, —y)=%(x, y), (2.1) becomes
2 2 —
(2.21) J;[ D (x, y)=;[;[l Fyx,9), x, y>0.

We can now use the bivariate Mills’ ratio (Savage [3], Ruben [2]) for
asymptotic expressions for the quantities in (2.21) as 2 and y—>oo: If
z,Yy—oo in such a manner that (x/s,—p(y/z.)) and (y/r.—pi(x/s;)) are
both positive, then

@2) 0@ u(L-oL)(L—pL)/la vor—pyI-1.

0; Ti/ \Ty

If we now set y=cx and let x— oo, then (2.22) holds for @, and F,

for all ¢>0, and also holds for @, and F, at least for all ¢ in an inter-
val of positive length containing the point 7,/s,. Hence, we have

: pi(, cx)(1—pi)? : Sz, cx)(L—r))
2.23
( ) ;Ul x* (1o, —cpift.) (c[ti— pilo) /¢=1 @* (1o, —crift:)(c[r;—7:/as)

as x—oo, for all ¢ in an interval of positive length containing the point
T2/0'2. But

2 g, ex) 1 _ A A=r)"? _1 2
(2.24) i) [ (@, cx) ]"E (1—g)" exp[ 2 Q(C)x] ’

where Q(c) is a quadratic polynomial, and (2.23) implies that the rhs
of (2.24) has a finite positive limit for all ¢ in an interval of positive
length. This can happen only if Q(c)=0; the limit is then ﬁ V1—13)

i=1
[¥(1—p?). Thus we have

@) 2[i-2¢4Cla—pr=x |12y Ca_n,
=tle} o; T o o7 T

and

(2.26) ﬁ(l—pz)-m(l—%)( ) =Tl (L)L 7o),
i=1 g; T; 0 = 0y Ty /\Ty Oy

both relations holding for all ¢ in an interval of positive length. Con-
sequently, from (2.25) we obtain

1/ 1 1 1/ 1 1
(2.27) a\1—pt 1—13 +,,; 1—p; 1-73

1( 1 1 ) 1( 1 1 >
2.28 A2 2 (2 1 Y=o,
(2.25) ti\l—pi 1—1i +r§ 1-pp 1-7;
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(2.29) 1 ( o1 >+ 1 ( pr T >=0

gt \1—p} 1—1} oty \1—p3  1—71}

If r,=p,, then @,=F;, and hence &,=F,. So, it remains only to in-
vestigate the possibility 7,#p,; in this case, (2.27)=7,#p,, and from
(2.27) and (2.28) we have

(2.30) Si="1—7,  say.
g, Oy

But from (2.26) we know that the polynomials in ¢ on the two sides

of the equation have the same zeros. The zeros of the lhs are {z/p,

7oy, 0} if p,=0, and {zpy, /o, 70z, 7/p:} if p,#0; and those of the rhs

are {c/ry, try, 0} if r,=0, and {7y, z/ry, ory, /73} if 7,#0. Hence, the

assumption that 7,5 p,<0 leads to the conclusion ,=p, and r,=p,. This,

together with (2.27), contradicts the assumption that ¢,>¢.. Thus in

Case (C) also, we must have r,=p,, 7,=p;, so that &,=F,, @,=F).
Q.E.D.
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