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1. Introduction

Let f be a Lebesgue measurable function with 0<f(-)<1. With
&, Lebesgue measure we define

(1.1) a0)=({ rae)".

Letting p,=dP,/d¢ we denote by P(f) the family of probability meas-
ures given by

1.2) P(f)={P, with p,=q(6)(0, )f, v € 2=(0, )}

where we denote the indicator function of a set A by [A] or simply
A itself. The word “nonregular” in title was quoted from Ferguson
({11, p. 130) in which he refers the exponential families of distributions
to regular families.

The component problem is an estimation of ¢ based on X distrib-
uted according to P,, with squared-error loss. For a prior distribu-
tion G on the parameter space 2, let R(G) denote the Bayes risk vs
G in the component problem.

The set-compound decision problem consists of a set of » independ-
ent statistical decision problems each having the same structure of the
component problem. The loss is taken to be the average of the com-
ponent losses. Let X,,--., X, be n independent random variables with
each X; having the distribution P, € P(f). The jth component decision
t; for 6; depends on all n observations X=(X;,.---, X,). Namely we
estimate 6, by ¢,(X) and thus 8 by #{X)=(>(X),- -, t.(X)). With G,
denoting the empiric distribution of 6,,:--, 6,, the modified regret of
the decision procedure # is of form

(1.3) DO, )=E{n 3 (0,~t(X)¥} ~R(@)

where E is the expectation with respect to X.
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If sup{|D(@, t)|: 6 € 2"} =0(n"?) for 6>0, then we will say ¢ has
a rate 4.

Robbins [9] gives an original and general formulation of the com-
pound decision problem. His formulation is the set version of the
compound problem rather than the sequence case (cf. Hannan [4],
Gilliland [3], Singh [10] etc.). In Nogami [6] the author remarked that
a bootstrap procedure based on a direct estimate of the component
Bayes procedure vs G, (or G) is called a one-stage procedure, while a
procedure based on component procedures Bayes vs an estimate of G,
(or G) is called a two-stage procedure. Oaten [8] (cf. also [7]) showed in
his part II the existence of set-compound two-stage procedures based
on a partition of the sample space under some assumptions (among
others) on P,, the loss function and infinite state space 2. By now
there has been done a few works in the set-compound problem when
2 is infinite. Fox [2] exhibited empirical Bayes risk convergenc o(1)
under the uniform distributions over the interval (0, ) and [6, 8+1) for
0 € (0, o) and 6 € (—oo, ), respectively, in the squared-error loss esti-
mation (SELE) problem. This paper is a continuation of the author’s
Ph. D. thesis [6] and means a generalization and an extension of Fox’s
work [2], respective to a family P(f) of distributions over the interval
(0, ) and to the set-compound SELE problem with rates. In this paper
we propose two one-stage procedures.

Section 2 gives an alternative form of a Bayes estimate in the
component problem which leads us to two one-stage estimates. In Sec-

tion 3 we exhibit the one-stage estimate ¢ with the best rate 1/3. In

Section 4 we propose another one-stage estimate ¢7 and obtain conver-
gence rates under the additional condition that 1/f satisfies Lipshitz
condition. Under this condition for f the author developed a one-stage
procedure in Chapter III of Nogami [6] in the k-extended problem for
the family of distributions over the interval [, #+1) and has obtained
a rate 1/4 by usage of Theorem 2 of Hoeffding [5].

We might observe that the method appeared in this paper can
improve the convergence rate up to 1/3. (This is done already.)

The different device from the author’s previous work [6] is taken
for the parameter space 2; instead of assuming the boundedness of £
we assume that for each n, all 4,,---, @, lie in the bounded interval (0,
B.] where B,— o0 as n— oo, and assume that g(f)=m, for all ¢ € (0, 5,]
where m,— o as n—oco. This idea originally comes from Singh [10].

Notational conventions. P;, p; and P abbreviate P,, p, and X P,,

j=1
respectively. A distribution function also represents the corresponding
measure. We often let P(h) or P(h(z)) denote Sh(z)dP(z). G abbre-
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viates the empiric distribution G, of 6,,---,6,. For any function &, k]’
means hA(b)—h(a). V and A denote the supremum and the infimum,
respectively. = denote the defining property. When we refer to (a.b)

in Section a, we simply write (b). P, means the conditional expecta-

tion of X, -+, X; 4, X411, -+, X, given X;=2. As usual, let z=n"! é Z;.

i=1

2. The Bayes estimate in the component problem

We observe a sample of size n, Xj,---, X, with each X, taken
from P, e P(f). Let 0<_\7 6, <B< +oo where B=p,—+co as n— oo.
Assume -
2.1) q)=m for all ¢ (0, 8]

where (0<) m=m,— +o0 as n— oo and 1=<mp. Then, by this and the
definition (1.1) of gq,

(2.2) S)=1/(pm)  for all ye (0, f].
We also note that (2.1) implies
(0<)m“§2\ 0, .

As the Bayes response vs G in the component problem we have
the version of the conditional expectation:

@3 H=COopwICEw)=| 0a0ic0)[|  a0)dce)

where the affix + is taken to represent the right limit of the inte-
gration. The following lemma is the analogue of Lemma 7 in Section
1.1 of Nogami [6].

LEMMA 2.1. Let = be a signed measure and g a measurable func-
tion. Let I=(y, co) be an interval such that SIg de#0. Define by <, the

signed measure with density Ig/ S Igdr wrt =. Then,
S sdr,,(s)=y+S: o, (t+, 00)dt .

ProOOF. By Fubini’s theorem applied to the lhs of the second
equality below,

S (s—y)de,(s)= S S:_” dtde,(s)= S: 7, (t+y, co)dt .
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Let Q be the measure with the density ¢ wrt G, then by above
Lemma 2.1 applied to rhs(3),

2.4) ) =y+¢(y)

where

o) =, Qt+v, w)tiQ, <)

In Sections 3 and 4 we shall obtain two estimates of @ through
estimating ¢@.

3. The estimate ¢

In this section we shall propose the estimate ;3 with a rate 1/3
whose component at y is of form (2.4) with Q there replaced by its
estimates.

For simplicity we let u(y)=Q(y, ). We first estimate u(y) by

(3.1) ()= (nh)" 33 [y—h <X, <9l [£(X)

where h=h,—0 as n—co. Then, in view of (2.4), estimate ¢(y) by
(3.2) $U)=(y+HW)AB

where

(3.:5) $w) =\ Ay-+dt/aly) -

Note that the jth component qf,(X ) of ¢ at X equals q;(X,).
From (1.3)

(3.4) nD(@, $)= ; P{(0,— $(X,)—(0,— #(X,))} .

Since a*—b*=(a—b)(a+b) and all of the 4;, ¢(X;) and gZ(X,) are in the
interval (0, 8],

(3.5) (26)"'n| DO, $)|<3] PI9(X)—4(X))|
To get a bound of n~'(4) we shall obtain a bound of rhs (5).

Fix 7 and let =X,. Applying Lemma A.2 of Singh [10] and weak-
ening the resulted bound leads to

(38  Plde)— g s2@@) | P+t~ Fa+o)dt
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+28P, | i)~ T} -
But, with #,=(n—1)""_ 2 g,
3.7 P |t(@+8)— @ -+1) | — Pu |2+ t) — i (@ +1)]

=n"Hu(@+1)+(Rf(@+1) "'} Sm(1+ph )™

where the last inequality follows by (1.1) and (mp)'< f(x).
Before obtaining the bound for rhs(5) we introduce the following
lemma :

LEmMA 3.1.
(3.8) E{ Pyu(X,)'=np .
PrOOF. Since f<1 applied to the lhs of the inequality,

s @=|  nr@dysns.

(a(y)

By two applications of (7) and an application of Lemma 3.1 and
weakening the resulted bound we obtain

(3.9) {2(3+1))"'(rhs (5))
=V 3 PAX)) Pl (X, +0)—5,(X, + D1} +m(L+6h7)5

Applying a triangular inequality and then Hélder’s inequality results
in the inequality

(3.10) P, (y)—%,(y) || %,(y) — Puiy(y) |+ 0.(y)

where o}(y)=variance of 4,y). To get an upper bound of the first
term of rhs(9) we shall obtain bounds for Ve,(y) and Vv Ej] {(first term
of Ths (10) at X,+8)/#(X,)} and utilize Lemma 3.1.

LEMMA 3.2. For every v,
o (y)Smy B (n—1)h)™".
PrOOF. By the definition of o(y),
B1) (DAY= 3 P@rse-1) | @@/ @
=m'f(n—1)h

where the last inequality follows by %;(2)<m and 1/f(z)<pm.
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LEMMA 8.8. For all t=0,

(12 3 PR, +0—Pa(X,+ 0| (X)) < U/2)mhn

PROOF. Since P (y)=h"" Sy h'a,(z)dz=S:ﬁj(y—hs)ds, for every t=
v
0 lhs(12) equals to

i=n

n L 1
(3.13) I 124 s | (@) (o)
or equivalently,
n o 1 n
12=1 So go (n—1)"" j;ﬂ q(0,) [x+t—hs< 0, <x+tlds p,(x)/u(x)dz .

Thus, interchanging integrations and also average operations over re-
spective 7 and j gives

(3.14) ths (12)=3: 400, S: S:’ [0, —t <@ < 0,—t+hs](n—1)""

- 53 py(@)/a() duds .
Since (n—1)"" %1 p;(x)/u(x)< f(x)<1, by as imple computation and (1.1),
(14) < (1/2)mhn.

We go back to the inequality (9). In view of (10) and from Lemmas
3.2 and 3.3 together with an application of Lemma 3.1 we get

(3.15) (first term of rhs (9))=mp¥*(n—1)h) " *n+1/2)mhn .

Therefore, in view of (5), we finally obtain

THEOREM 3.1. If 0<_f\_/1 0.<8 and q satisfies (2.1), then for all 6 €
[m"l, ﬁ]n7
| D(8, $)|<4B(38+1) {2m B (nh) ™ +(1/2)mh-+m(1+ph~)Bn""} .

Two corollaries below are presented to show that by certain choices

of m and B ¢ in Theorem 3.1 can have a rate 1/3— (in Corollary 3.1)
and a rate 1/3 (in Corollary 3.2) which is the best rate obtained
from the bound in Theorem 3.1.

COROLLARY 3.1. When m=g=(log n)¥* under the same assumption
of Theorem 3.1, it follows that with a choice of h=n""*

| D@, $)|=0((n"'log n)?),  uniformly in 6 €[m™, gI*.
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COROLLARY 3.2. Let m, B and q be as in Theorem 3.1. When m
and B are positive constants such that 1<mp, by a choice of h=n""?
| D6, $)|=0(n""),  uniformly in 6 € [m™, pJ.

In the next section we shall exhibit another one-stage procedure
with a rate 1/3.

4. The estimate ¢

Let us set the additional condition on f such that for a given finite
positive constant M,

(4.1) V=2 1(f@) " = (f)7']: y<z}=M.
This condition will be used to attain a convergence rate for the
modified regret D(@, ;5).

The structure of @ is similar to ¢ in Section 3. We first estimate
u(y) by

(4.2) 5(w)=(nh)™ 33—k < X, S0/ W)
where k is as in (3.1). In view of (2.4), estimate ¢(y) by
(4.3) $W)=(W+PW)AB

where

(.4) )=\ Sy+t)dtfoty) .

Note that the jth component g?&,(X ) of ;S(X ) is JS(X,).
To get an upper bound of |D(4, qg)l we proceed in the same way
as in Section 3. We use inequalities (8.5) through (3.10) by replacing

gf: and % by ;3 and 9, respectively. Let ¢%(y) be variance of ¥,(y). What
we need is to obtain bounds for V ¢(y) and t;/o é P {lu (X;+t)— P,d,(X,
Ol y ]
LEMMA 4.1. For every v,
a(y)=m**f(n—1)k)™".

PrROOF. As in the proof of Lemma 3.2,

(=D —1)1Fw) ||| 8@ @z (0 —1ymiph
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where the last inequality follows by f<1, (2.1) and two usages of (2.2).
LEMMA 4.2. For all t=0,

(4.5) ;;P,{lu,(Xﬁt)—Pj,-(Xj—kt) (X))} =(1/2ymhn{1+M(8+1)} .
PrOOF. Before proving the lemma, note that Lipshitz condition

(1) for 1/f implies that

(4.6) 1—(f(®)/f()|=M|y—z|  for real y and 2.

Since P =1 || @@ @IFW)dz =\ T —sh)(Fy—sh)
[f(y))ds, it follows that for every t=0,

47) hs G35 || (21280l +3, (0 +t—sh)

=(f@+t—sh)/f(a-+t)}dsds
=3 [, 1wttt ds p @) do

+(1/2) Mmhn S | @)

{u(z)>

where the last inequality follows from (6), u,(-)<m and _Zn‘,p,(a:)/'ﬁ(w)
Jj=1

=nf(x) applied to double integrations of the second term in the curly
bracket. Therefore, the bound in the lemma follows from the bound
in Lemma 3.3 (notice lhs (3.12)=(3.13)) and f=1.

As in (3.15),

V. 33 P@X)) P w(X, 40— HX,+ D))
=m* B ((n—1)h) *n+(1/2)mhn(l+M(B+1)) .
Thus, we get the following theorem:

THEOREM 4.1. Under the same assumption as Theorem 3.1 plus
(4.1),

| DO, $)|<4B(35+1){2m* g (nh) ™ +(1/2)mh(1+ M(5+1))
+m(1+ph™")pn'}

for all 8 ¢[m™, 8.

Remark. From the bound in Theorem 4.1 we can see that by a
choice of h=(mgn™")",

| D(8, $)|=0((m''n"1)"),  uniformly in @ € [m™, g]".
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Thus, if m and g are constants such that 1<mp, then we get ¢ with
a rate 1/3 which is the best rate attained from the bound in Theorem
4.1.
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