THE SET-COMPOUND ONE-STAGE ESTIMATION IN THE NONREGULAR FAMILY OF DISTRIBUTIONS OVER THE INTERVAL $(0,\theta)$

YOSHIKO NOGAMI

(Received Mar. 22, 1977)

1. Introduction

Let f be a Lebesgue measurable function with $0 < f(\cdot) \le 1$. With ξ , Lebesgue measure we define

(1.1)
$$q(\theta) = \left(\int_{0}^{\theta} f d\xi\right)^{-1}.$$

Letting $p_{\theta} = dP_{\theta}/d\xi$ we denote by $\mathcal{L}(f)$ the family of probability measures given by

$$(1.2) \mathcal{Q}(f) = \{ P_{\theta} \text{ with } p_{\theta} = q(\theta)(0, \theta)f, \forall \theta \in \Omega = (0, \infty) \}$$

where we denote the indicator function of a set A by [A] or simply A itself. The word "nonregular" in title was quoted from Ferguson ([1], p. 130) in which he refers the exponential families of distributions to regular families.

The component problem is an estimation of θ based on X distributed according to P_{θ} , with squared-error loss. For a prior distribution G on the parameter space Ω , let R(G) denote the Bayes risk vs G in the component problem.

The set-compound decision problem consists of a set of n independent statistical decision problems each having the same structure of the component problem. The loss is taken to be the average of the component losses. Let X_1, \dots, X_n be n independent random variables with each X_j having the distribution $P_{\theta_j} \in \mathcal{P}(f)$. The jth component decision t_j for θ_j depends on all n observations $X = (X_1, \dots, X_n)$. Namely we estimate θ_j by $t_j(X)$ and thus θ by $t(X) = (t_1(X), \dots, t_n(X))$. With G_n denoting the empiric distribution of $\theta_1, \dots, \theta_n$, the modified regret of the decision procedure t is of form

(1.3)
$$D(\boldsymbol{\theta}, \boldsymbol{t}) = E \left\{ n^{-1} \sum_{j=1}^{n} (\theta_{j} - t_{j}(\boldsymbol{X}))^{2} \right\} - R(G_{n})$$

where E is the expectation with respect to X.

If $\sup \{|D(\boldsymbol{\theta}, \boldsymbol{t})| : \boldsymbol{\theta} \in \Omega^n\} = O(n^{-\delta})$ for $\delta > 0$, then we will say \boldsymbol{t} has a rate δ .

Robbins [9] gives an original and general formulation of the compound decision problem. His formulation is the set version of the compound problem rather than the sequence case (cf. Hannan [4], Gilliland [3], Singh [10] etc.). In Nogami [6] the author remarked that a bootstrap procedure based on a direct estimate of the component Bayes procedure vs G_n (or G) is called a one-stage procedure, while a procedure based on component procedures Bayes vs an estimate of G_n (or G) is called a two-stage procedure. Oaten [8] (cf. also [7]) showed in his part II the existence of set-compound two-stage procedures based on a partition of the sample space under some assumptions (among others) on P_{θ} , the loss function and infinite state space Ω . By now there has been done a few works in the set-compound problem when Ω is infinite. Fox [2] exhibited empirical Bayes risk convergenc o(1)under the uniform distributions over the interval $(0, \theta)$ and $[\theta, \theta+1)$ for $\theta \in (0, \infty)$ and $\theta \in (-\infty, \infty)$, respectively, in the squared-error loss estimation (SELE) problem. This paper is a continuation of the author's Ph. D. thesis [6] and means a generalization and an extension of Fox's work [2], respective to a family $\mathcal{P}(f)$ of distributions over the interval $(0, \theta)$ and to the set-compound SELE problem with rates. In this paper we propose two one-stage procedures.

Section 2 gives an alternative form of a Bayes estimate in the component problem which leads us to two one-stage estimates. In Section 3 we exhibit the one-stage estimate $\hat{\phi}$ with the best rate 1/3. In Section 4 we propose another one-stage estimate $\hat{\phi}$ and obtain convergence rates under the additional condition that 1/f satisfies Lipshitz condition. Under this condition for f the author developed a one-stage procedure in Chapter III of Nogami [6] in the k-extended problem for the family of distributions over the interval $[\theta, \theta+1)$ and has obtained a rate 1/4 by usage of Theorem 2 of Hoeffding [5].

We might observe that the method appeared in this paper can improve the convergence rate up to 1/3. (This is done already.)

The different device from the author's previous work [6] is taken for the parameter space Ω ; instead of assuming the boundedness of Ω we assume that for each n, all $\theta_1, \dots, \theta_n$ lie in the bounded interval $(0, \beta_n]$ where $\beta_n \to \infty$ as $n \to \infty$, and assume that $q(\theta) \leq m_n$ for all $\theta \in (0, \beta_n]$ where $m_n \to \infty$ as $n \to \infty$. This idea originally comes from Singh [10].

Notational conventions. P_j , p_j and P abbreviate P_{θ_j} , p_{θ_j} and $\sum_{j=1}^n P_j$, respectively. A distribution function also represents the corresponding measure. We often let P(h) or P(h(z)) denote $\int h(z)dP(z)$. G abbre-

viates the empiric distribution G_n of $\theta_1, \dots, \theta_n$. For any function h, $h]_a^b$ means h(b)-h(a). \vee and \wedge denote the supremum and the infimum, respectively. \doteq denote the defining property. When we refer to (a.b) in Section a, we simply write (b). P_x means the conditional expectation of $X_1, \dots, X_{j-1}, X_{j+1}, \dots, X_n$ given $X_j \doteq x$. As usual, let $\bar{z} = n^{-1} \sum_{i=1}^n z_i$.

2. The Bayes estimate in the component problem

We observe a sample of size n, X_1, \dots, X_n with each X_j taken from $P_j \in \mathcal{Q}(f)$. Let $0 < \bigvee_{i=1}^n \theta_i \leq \beta < +\infty$ where $\beta \doteq \beta_n \to +\infty$ as $n \to \infty$. Assume

(2.1)
$$q(\theta) \leq m$$
 for all $\theta \in (0, \beta]$

where (0<) $m = m_n \to +\infty$ as $n \to \infty$ and $1 \le m\beta$. Then, by this and the definition (1.1) of q,

(2.2)
$$f(y) \ge 1/(\beta m) \quad \text{for all } y \in (0, \beta].$$

We also note that (2.1) implies

$$(0<)m^{-1} \leq \bigwedge_{i=1}^n \theta_i$$
.

As the Bayes response vs G in the component problem we have the version of the conditional expectation:

(2.3)
$$\phi(y) = G(\theta p_{\theta}(y))/G(p_{\theta}(y)) = \int_{y+}^{\infty} \theta q(\theta) dG(\theta) / \int_{y+}^{\infty} q(\theta) dG(\theta)$$

where the affix + is taken to represent the right limit of the integration. The following lemma is the analogue of Lemma 7 in Section 1.1 of Nogami [6].

LEMMA 2.1. Let τ be a signed measure and g a measurable function. Let $I=(y,\infty)$ be an interval such that $\int Ig d\tau \neq 0$. Define by τ_y the signed measure with density $Ig/\int Ig d\tau$ wrt τ . Then,

$$\int s \, d\tau_{\nu}(s) = y + \int_{0}^{\infty} \tau_{\nu}(t+y, \, \infty) dt \, .$$

PROOF. By Fubini's theorem applied to the lhs of the second equality below,

$$\int (s-y)d\tau_y(s) = \int \int_0^{s-y} dt d\tau_y(s) = \int_0^\infty \tau_y(t+y, \infty)dt.$$

Let Q be the measure with the density q wrt G, then by above Lemma 2.1 applied to rhs (3),

$$\phi(y) = y + \phi(y)$$

where

$$\phi(y) = \int_0^\infty Q(t+y, \infty) dt/Q(y, \infty) .$$

In Sections 3 and 4 we shall obtain two estimates of θ through estimating ϕ .

3. The estimate $\hat{\phi}$

In this section we shall propose the estimate $\hat{\phi}$ with a rate 1/3 whose component at y is of form (2.4) with Q there replaced by its estimates.

For simplicity we let $\bar{u}(y) = Q(y, \infty)$. We first estimate $\bar{u}(y)$ by

(3.1)
$$\bar{\hat{u}}(y) = (nh)^{-1} \sum_{j=1}^{n} [y - h < X_j \le y] / f(X_j)$$

where $h = h_n \to 0$ as $n \to \infty$. Then, in view of (2.4), estimate $\phi(y)$ by

$$\hat{\phi}(y) = (y + \hat{\psi}(y)) \wedge \beta$$

where

(3.3)
$$\hat{\phi}(y) = \int_0^\infty \bar{u}(y+t)dt/\bar{u}(y) .$$

Note that the jth component $\hat{\phi}_j(X)$ of $\hat{\phi}$ at X equals $\hat{\phi}(X_j)$. From (1.3)

(3.4)
$$nD(\boldsymbol{\theta}, \, \hat{\boldsymbol{\phi}}) = \sum_{j=1}^{n} \boldsymbol{P} \{ (\theta_{j} - \hat{\phi}(X_{j}))^{2} - (\theta_{j} - \phi(X_{j}))^{2} \} .$$

Since $a^2-b^2=(a-b)(a+b)$ and all of the θ_j , $\phi(X_j)$ and $\hat{\phi}(X_j)$ are in the interval $(0, \beta]$,

(3.5)
$$(2\beta)^{-1} n |D(\boldsymbol{\theta}, \hat{\boldsymbol{\phi}})| \leq \sum_{j=1}^{n} P |\hat{\phi}(X_j) - \phi(X_j)| .$$

To get a bound of $n^{-1}(4)$ we shall obtain a bound of rhs (5).

Fix j and let $x=X_j$. Applying Lemma A.2 of Singh [10] and weakening the resulted bound leads to

(3.6)
$$P_x|\hat{\phi}(x) - \phi(x)| \leq 2(\bar{u}(x))^{-1} \left\{ \int_0^{\beta+1} P_x |\bar{u}(x+t) - \bar{u}(x+t)| dt \right\}$$

$$+2\beta P_x |\bar{u}(x) - \bar{\hat{u}}(x)|$$
.

But, with $\bar{u}_j = (n-1)^{-1} \sum_{j \neq i=1}^n u_i$,

(3.7)
$$P_{x}|\bar{u}(x+t) - \bar{\hat{u}}(x+t)| - P_{x}|\bar{u}_{j}(x+t) - \bar{\hat{u}}_{j}(x+t)|$$

$$\leq n^{-1}\{u_{j}(x+t) + (hf(x+t))^{-1}\} \leq m(1+\beta h^{-1})n^{-1}$$

where the last inequality follows by (1.1) and $(m\beta)^{-1} \leq f(x)$.

Before obtaining the bound for rhs (5) we introduce the following lemma:

LEMMA 3.1.

$$(3.8) \qquad \qquad \sum_{i=1}^{n} P_{i}(\overline{u}(X_{i}))^{-1} \leq n\beta.$$

PROOF. Since $f \leq 1$ applied to the lhs of the inequality,

lhs (8) =
$$\int_{\{\overline{u}(y)>0\}} nf(y)dy \leq n\beta$$
.

By two applications of (7) and an application of Lemma 3.1 and weakening the resulted bound we obtain

(3.9)
$$\{2(3\beta+1)\}^{-1}(\text{rhs }(5))$$

$$\leq \bigvee_{t\geq 0} \sum_{j=1}^{n} P_{j}\{(\bar{u}(X_{j}))^{-1}\boldsymbol{P}_{x} | \bar{u}_{j}(X_{j}+t) - \bar{\hat{u}}_{j}(X_{j}+t)|\} + m(1+\beta h^{-1})\beta.$$

Applying a triangular inequality and then Hölder's inequality results in the inequality

$$(3.10) \boldsymbol{P}_{x}|\bar{u}_{j}(y) - \bar{\dot{u}}_{j}(y)| \leq |\bar{u}_{j}(y) - \boldsymbol{P}_{x}\bar{\dot{u}}_{j}(y)| + \sigma_{n}(y)$$

where $\sigma_n^2(y) = \text{variance of } \widehat{u}_j(y)$. To get an upper bound of the first term of rhs (9) we shall obtain bounds for $\bigvee_y \sigma_n(y)$ and $\bigvee_{t \ge 0} \sum_{j=1}^n \{(\text{first term of rhs } (10) \text{ at } X_j + t) / \overline{u}(X_j)\}$ and utilize Lemma 3.1.

LEMMA 3.2. For every y,

$$\sigma_n(y) \leq m\sqrt{\beta} ((n-1)h)^{-1/2}$$
.

PROOF. By the definition of $\sigma_n^2(y)$,

(3.11)
$$((n-1)h)^{2}\sigma_{n}^{2}(y) \leq \sum_{j \neq i=1}^{n} \mathbf{P}_{x}(\hat{u}_{i}(y))^{2} \leq (n-1) \int_{y-h}^{y} \bar{u}(z)/f(z)dz$$
$$\leq m^{2}\beta(n-1)h$$

where the last inequality follows by $\bar{u}_j(z) \leq m$ and $1/f(z) \leq \beta m$.

LEMMA 3.3. For all $t \ge 0$,

$$(3.12) \qquad \sum_{j=1}^{n} P_{j}\{|\bar{u}_{j}(X_{j}+t) - P_{x}\bar{\hat{u}}_{j}(X_{j}+t)|/\bar{u}(X_{j})\} \leq (1/2)mhn.$$

PROOF. Since $P_x\bar{u}_j(y) = h^{-1} \int_{y-h}^y \bar{u}_j(z) dz = \int_0^1 \bar{u}_j(y-hs) ds$, for every $t \ge 0$ lhs (12) equals to

(3.13)
$$\sum_{j=1}^{n} \int_{0}^{\infty} \left| \int_{0}^{1} \bar{u}_{j} \right|_{x+t-hs}^{x+t} ds \left| p_{j}(x) / \bar{u}(x) dx \right|$$

or equivalently,

$$\sum\limits_{j=1}^{n}\int_{0}^{\infty}\int_{0}^{1}(n-1)^{-1}\sum\limits_{j\neq i=1}^{n}q(\theta_{i})[x+t-hs<\theta_{i}\leq\!x+t]ds\;p_{j}(x)/\overline{u}(x)dx$$
 .

Thus, interchanging integrations and also average operations over respective i and j gives

(3.14)
$$lhs (12) = \sum_{i=1}^{n} q(\theta_i) \int_{0}^{1} \int_{0}^{\infty} [\theta_i - t \leq x < \theta_i - t + hs] (n-1)^{-1}$$
$$\cdot \sum_{i \neq j=1}^{n} p_j(x) / \overline{u}(x) \, dx ds .$$

Since $(n-1)^{-1} \sum_{i\neq j=1}^{n} p_j(x)/\bar{u}(x) \leq f(x) \leq 1$, by as imple computation and (1.1), $(14) \leq (1/2)mhn$.

We go back to the inequality (9). In view of (10) and from Lemmas 3.2 and 3.3 together with an application of Lemma 3.1 we get

$$(3.15) \qquad (\text{first term of rhs}\,(9)) \leq m \beta^{3/2} ((n-1)h)^{-1/2} n + (1/2)mhn \ .$$

Therefore, in view of (5), we finally obtain

THEOREM 3.1. If $0 < \bigvee_{i=1}^n \theta_i \leq \beta$ and q satisfies (2.1), then for all $\boldsymbol{\theta} \in [m^{-1}, \beta]^n$,

$$|D(\boldsymbol{\theta}, \hat{\boldsymbol{\phi}})| \leq 4\beta(3\beta+1)\{2m\beta^{3/2}(nh)^{-1/2} + (1/2)mh + m(1+\beta h^{-1})\beta n^{-1}\}.$$

Two corollaries below are presented to show that by certain choices of m and $\beta \hat{\phi}$ in Theorem 3.1 can have a rate 1/3— (in Corollary 3.1) and a rate 1/3 (in Corollary 3.2) which is the best rate obtained from the bound in Theorem 3.1.

COROLLARY 3.1. When $m = \beta = (\log n)^{2/27}$ under the same assumption of Theorem 3.1, it follows that with a choice of $h = n^{-1/3}$

$$|D(\boldsymbol{\theta}, \hat{\boldsymbol{\phi}})| = O((n^{-1} \log n)^{1/3}), \quad uniformly \ in \ \boldsymbol{\theta} \in [m^{-1}, \beta]^n.$$

COROLLARY 3.2. Let m, β and q be as in Theorem 3.1. When m and β are positive constants such that $1 \le m\beta$, by a choice of $h = n^{-1/3}$

$$|D(\boldsymbol{\theta}, \hat{\boldsymbol{\phi}})| = O(n^{-1/3})$$
, uniformly in $\boldsymbol{\theta} \in [m^{-1}, \beta]^n$.

In the next section we shall exhibit another one-stage procedure with a rate 1/3.

4. The estimate $\hat{\phi}$

Let us set the additional condition on f such that for a given finite positive constant M,

$$(4.1) \qquad \qquad \vee \{(y-z)^{-1} | (f(y))^{-1} - (f(z))^{-1} | : \ y < z\} \leq M.$$

This condition will be used to attain a convergence rate for the modified regret $D(\theta, \hat{\phi})$.

The structure of $\hat{\phi}$ is similar to $\hat{\phi}$ in Section 3. We first estimate $\bar{u}(y)$ by

(4.2)
$$\overline{\hat{v}}(y) = (nh)^{-1} \sum_{j=1}^{n} [y - h < X_j \le y]/f(y)$$

where h is as in (3.1). In view of (2.4), estimate $\phi(y)$ by

$$\hat{\phi}(y) = (y + \hat{\psi}(y)) \wedge \beta$$

where

(4.4)
$$\hat{\phi}(y) = \int_0^\infty \bar{\hat{v}}(y+t)dt/\bar{\hat{v}}(y) .$$

Note that the jth component $\hat{\phi}_j(X)$ of $\hat{\phi}(X)$ is $\hat{\phi}(X_j)$.

To get an upper bound of $|D(\boldsymbol{\theta}, \hat{\boldsymbol{\phi}})|$ we proceed in the same way as in Section 3. We use inequalities (3.5) through (3.10) by replacing $\hat{\phi}$ and \hat{u} by $\hat{\phi}$ and \hat{v} , respectively. Let $\sigma^2(y)$ be variance of $\bar{v}_j(y)$. What we need is to obtain bounds for $\bigvee_{y} \sigma(y)$ and $\bigvee_{t \geq 0} \sum_{j=1}^{n} P_j \{ |\bar{u}_j(X_j + t) - P_x \bar{v}_j(X_j + t)|/\bar{u}(X_j) \}$.

LEMMA 4.1. For every y,

$$\sigma(y) \leq m^{3/2} \beta ((n-1)h)^{-1/2}$$
.

PROOF. As in the proof of Lemma 3.2,

$$((n-1)h)^2\sigma^2(y) \leq ((n-1)/f^2(y)) \int_{y-h}^y \bar{u}_j(z)f(z)dz \leq (n-1)m^3\beta^2h$$

where the last inequality follows by $f \leq 1$, (2.1) and two usages of (2.2).

LEMMA 4.2. For all $t \ge 0$,

$$(4.5) \qquad \sum_{j=1}^{n} P_{j}\{|\bar{u}_{j}(X_{j}+t) - P_{x}\bar{\hat{v}}_{j}(X_{j}+t)|/\bar{u}(X_{j})\} \leq (1/2)mhn\{1 + M(\beta+1)\}.$$

PROOF. Before proving the lemma, note that Lipshitz condition (1) for 1/f implies that

$$(4.6) |1-(f(y)/f(z))| \le M|y-z| \text{for real } y \text{ and } z.$$

Since $P_x \overline{\hat{v}}_j(y) = h^{-1} \int_{y-h}^y \overline{u}_j(z) (f(z)/f(y)) dz = \int_0^1 \overline{u}_j(y-sh) (f(y-sh)/f(y)) ds$, it follows that for every $t \ge 0$,

$$(4.7) \qquad \qquad \text{lhs } (5) \leq \sum_{j=1}^{n} \int_{0}^{\infty} \int_{0}^{1} \{ |\bar{u}_{j}|_{x+t-sh}^{x+t} | + \bar{u}_{j}(x+t-sh) \\ \cdot |1 - (f(x+t-sh)/f(x+t))| \} ds dx \\ \leq \sum_{j=1}^{n} \int_{0}^{\infty} \int_{0}^{1} |\bar{u}_{j}|_{x+t-sh}^{x+t} |ds| p_{j}(x)/\bar{u}(x) dx \\ + (1/2) Mmhn \int_{\{\bar{u}(x) > 0\}} f(x) dx$$

where the last inequality follows from (6), $\bar{u}_j(\cdot) \leq m$ and $\sum_{j=1}^n p_j(x)/\bar{u}(x) = nf(x)$ applied to double integrations of the second term in the curly bracket. Therefore, the bound in the lemma follows from the bound in Lemma 3.3 (notice lhs (3.12)=(3.13)) and $f \leq 1$.

As in (3.15),

$$\bigvee_{t\geq 0} \sum_{j=1}^{n} P_{j} \{ (\bar{u}(X_{j}))^{-1} \mathbf{P}_{x} | \bar{u}_{j}(X_{j}+t) - \bar{\hat{v}}(X_{j}+t) | \}$$

$$\leq m^{3/2} \beta^{2} ((n-1)h)^{-1/2} n + (1/2)mhn(1+M(\beta+1)).$$

Thus, we get the following theorem:

THEOREM 4.1. Under the same assumption as Theorem 3.1 plus (4.1),

$$|D(\boldsymbol{\theta}, \hat{\boldsymbol{\phi}})| \leq 4\beta(3\beta+1)\{2m^{3/2}\beta^2(nh)^{-1/2} + (1/2)mh(1+M(\beta+1)) + m(1+\beta h^{-1})\beta n^{-1}\}$$

for all $\boldsymbol{\theta} \in [m^{-1}, \beta]^n$.

Remark. From the bound in Theorem 4.1 we can see that by a choice of $h=(m\beta^2n^{-1})^{1/3}$,

$$|D(\boldsymbol{\theta}, \hat{\boldsymbol{\phi}})| = O((m^4 \beta^{11} n^{-1})^{1/3})$$
, uniformly in $\boldsymbol{\theta} \in [m^{-1}, \beta]^n$.

Thus, if m and β are constants such that $1 \le m\beta$, then we get $\hat{\phi}$ with a rate 1/3 which is the best rate attained from the bound in Theorem 4.1.

Acknowledgement

The author wishes to thank Professor J. F. Hannan for introducing me the Compound Problem and excellent guidance throughout author's Ph. D. thesis [6].

DAITO BUNKA UNIVESITY, TOKYO

REFERENCES

- [1] Ferguson, T. S. (1967). Mathematical Statistics a Decision Theoretic Approach, Academic Press.
- [2] Fox, R. (1968). Contribution to compound decision theory and empirical Bayes squared error loss estimation, RM-214, Department of Statistics and Probability, Michigan State University.
- [3] Gilliland, D. C. (1968). Sequential compound estimation, Ann. Math. Statist., 39, 1890-1905.
- [4] Hannan, J. F. (1957). Approximation to Bayes risk in repeated play, Contributions to the Theory of Games, 3, Princeton University Press, 97-139.
- [5] Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables,J. Amer. Statist. Ass., 58, 13-30.
- [6] Nogami, Y. (1975). A non-regular squared-error loss set-compound estimation problem, RM-345, Department of Statistics and Probability, Michigan State University.
- [7] Oaten, A. (1969). Approximation to Bayes risk in compound decision problems, RM-233, Department of Statistics and Probability, Michigan State University.
- [8] Oaten, A. (1972). Approximation to Bayes risk in compound decision problems, Ann. Math. Statist., 43, 1164-1184.
- [9] Robbins, H. (1951). Asymptotically sub-minimax solutions of compound decision problems, Proc. Second Berkeley Symp. Math. Statist. Prob., Univ. of California Press, 131-148.
- [10] Singh, R. S. (1974). Estimation of derivatives of averages of μ-densities and sequencecompound estimation in exponential families, RM-318, Department of Statistics and Probability, Michigan State University.