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Summary

As a criterion for the reduction to a complete class of decision rule
in case where actions, samples and states are finite in number, “regret-
relief ratio” criterion and “incremental loss-gain ratio” criterion were
introduced in 2-state of nature case [2]. In this paper, “generalized
regret-relief ratio” ecriterion in k-state of nature case is introduced as
an extension of “regret-relief ratio” criterion and its usefulness is
shown with an example.

1. Introduction

Consider a following decision problem. Let L(4, a) be a loss func-
tion incurred if an action a is taken when the state of nature is # and
let © be an information about to guess the true state of nature. In
this paper, we have assumed only the case the state space ©® contains
k points, the action space A contains 7 points and the sample space
contains m points. Hence, ©=1{4,,---, 6.}, A={a;,---, a,} and X={z,
-++,x,}. For each 4, there is a corresponding cumulative distribution
function F'(x|6), which represents the distribution of X when the true
state is 4.

A non-randomized decision rule d € D and a randomized decision
rule d € D* are defined respectively as follows,

d(x)=a and o= Zt} md,
i=1

where ;=0 for all ¢ and é m;=1. For any d and 4, the risk can be
defined by B
R, d)=F, L0, d) = | L0, da)dF(&]0)=3] L, d@)f @:]0)

and
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R, ‘”zé =R, d) .

Let w; €W be a prior probability of #,. If the prior distribution is
known, one may use the minimal risk criterion for selecting the best
decision rule requires to minimize the expected risk defined by

r(4)=E, R(0, 8)= é w,R(0,, 5) .

However, if W is not known, a reasonable way in choosing a decision
rule is to use the relation of natural ordering. A decision rule ¢ is
said to be better than a decision rule d* if R(4, 6)<R(6, 6*) for all € ®
and R(4, 6)< R(8, 6*) for at least one # € 6. (Natural ordering)

In such a case we say that 6 dominates é*. A class C of decision
rules, CcD*, is said to be complete, if given any rule d € D* not in
C, there exists a rule §,€ C that is better than 4.

For the reduction to the complete class of decision rule, we have
introduced a new criterion, that is, “regret-relief ratio criterion,” in
2-state of nature case, [2]. The basic idea of this criterion is following ;
Let (6, a;) be regret of action a, in # which is caused by failing to

take the best action in ¢ and let 1(@, a,) be relief of action a, in # which
is given by avoiding the worst action in 6. Hence,

U@, a,)=L(0, a,)—min L(, a) , and
acd
U0, a,)=max L(0, a)—L(9, ay) -
acAd

A reasonable decision maker may not take action a, if (6, a.)<l(8, a.).
In this case, regret-relief ratio (¢, a,) is greater than 1,

U8, a.)
(0, apy)==22->1.
O W)= 0ray
In 2-state of nature case, this idea is summarized as “regret-relief
ratio criterion” (Theorem 2 in [2]).
The purpose of the paper is to extend this idea from 2-state of
nature case to k-state of nature case.

2. Generalized regret-relief ratio criterion

A new notation is introduced to simplify our discussion. In case
that ©=1{6,,---,6,} and A={a;,---,a,}, let a,, be any action with
min L(4,, a). For instance, in 3-state and 5-action case like

a€d

L(6,, a,) < L(6,, a;) < L(0;, a;) < L(0;, a;) < L(6;, as)
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L(0,, a,)>L(6,, a;)> L(6,, a;) < L(6,, a,) < L(6,, as)
L6y, a,)> L(0s, a;)> L(0;, a;)> L(6;, a,)> L(6,, as)
one would know
Qjay=0y , @;y=0y and a;4=as.

Let us define generalized regret 1*(d, a), generalized relief 1*(4, a)
and generalized regret-relief ratio y*(¢, a) of action a as follows.

DEFINITION 1 (Generalized regret). The magnitude of regret caused
by failing to take an action a,, which satisfies

L(0, aj)>L(0’ aj(s))
is called generalized regret l}(f, a,) of action a; and defined by
(2.1) L0, a)=L(9, a;)—L(6, ays) -

DEFINITION 2 (Generalized relief). The magnitude of relief given
by avoiding an action a,, which satisfies

L(ﬁ, a/j)<L(0y aj(x))
is called generalized relief [*(9, a,) of action a; and defined by
(2.2) I¥0, a,)=L(6, a;,,)— L0, a,) .

DEFINITION 3 (Generalized regret-relief ratio). The generalized re-
gret-relief ratio y¥.(0, ;) of action a; is defined by

,l;k(09 aj)

2.3 *(0, a,)== .
(2.3) 780, ay) 150, a,)

Using generalized regret-relief ratio, we have obtained the following

theorem.

THEOREM. In the case that ©@=1{6,,---,6;}, X={x,---, 2.} and
A={a,,---,a,}, assume that f(x;|0)>0 (i=1,.--,m; 0€6) and that
there exist integers 1=n(1)<---<n(k)=n such that

L0,, a)>L@,, ay) h<h'<n(s) and
L0, a,)<L(b;, @) m(8)<h<h'.

(2.4)

Then, for each a; (#a,,, s=1,---, k), the following holds. If the com-
dition

(2.5) 750100y ag) 7¥01(05, @) >1
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18 satisfied, for imtegers t, a and B such that

iM<i<it+1),

(2'6) T;‘,(Hl(oar aj)=r?§itn {7:t+1(0n a'j)} y
and
(2.7 7&ee1(05, a,):lgitn {r*..1(6,, a,)} .

then any mon-randomized decision rule which takes action a, is dominated
by some randomized decision rule.

PROOF. Since any non-randomized decision rule d € D is defined by
assigning d(x)=a’ (€ A) (1=1,2,.---,m), we write a non-randomized
decision rule d in the form of an ordered m-tuple

d=(a',---,a™).

For d=(a',--:,a™), ¢ (1=<7<m) and a,¢c A, we define a new non-ran-
domized decision rule

d® xa;=(a',--+,a" Y a;, a'*,---,a™) .
1th place

That is, a non-randomized decision rule with a; in ith place and remain-
ing a',---,a', a'*',- .-, a™ unchanged from d. We have to show, for
each ¢ (1=1,---,m), that some randomized decision rule §* which is
some mixture of d“ xa,, and d* *a,.,; dominates d“*a;. Note
that a,,, and @,.;;, are the best actions when 6, and 6,,, are true re-
spectively. First, there exists a number ¢ (0<q<1) which satisfies the
following equation;

(2.8) R@,,d?”xa)=1—q)-R(0.,d? *a;,)+q R0, d° * Qypsp) -
For let ¢ be

1 B0.,0°52)—R(., &+ a,0)
R(eu d® x aj(t+l))—R(0¢9 d® x aj(t))

—_ Sf(=|0){LO., a;)—L(0., a;»)}
S(x|0.){LA0., aj(z+1))—'L(0u aj0)}

L., a'j)_L(aar aj(t)) .
L., aj(t+l))—L(0a » a,m))

Since L(0,, a;u)<IAf., a;)<IAf., @), g satisfies (2.8) and 0<g<1.
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Suppose 6% is the randomized decision rule of d® xa,, and d® xa;.,,
in the ratio of (1—q):q. Then

R(6., 6°)=(1—q)-R(f., d° * ;) +q- R(0., d° * @10)
=R(0,,d? *a;)

and, for s#a

R(ﬁc ’ 5“)) :(1 —Q) ' R(as ’ d? * aj(t))+q R(ﬂ, ’ A a'j(t+1))
_ 1
B L(6., ajrn)— L6, aj)
. [{L(oa ’ a’j(t+1))—L(0a! a'j)} R(ﬂ,, ad® aj(t))
+ {L(0,, ’ a]’)—L(oav a’j(t))}R(08 , AP % aj(t+l))] .

Hence

(2.9)  R(6,, d? * a;)—R(6;, 5°)

1
= L 0,,, a —L 0a’ a t )
L., aj(H-l))—L(0a7 aj(t)) Lt j) ( w )

- {R(8;, ¥ x a;)—R(8,, d° * @ ¢r1)} — {L(0., 415
—L(8., a,)} {R(@O,, d® x a;,,)— R(0,, d© * a,)}]

IR AT )
- L., @jeen) — L(0., @) HL(O., a)—L(E., a;w)}

- {L(6,, a;)—L(b,, a;ci»)} — {L(F., a’j(t+l))_L(0ay a))}
° {L(os’ a'j(t))_L(au a/j)}]
—_ f(xilas) J— .
= L0 ) - L0 a0 {L(8.) @jcesn)—L(B., @)}
* {L(ﬂn aj(t))_L(0u a'j)}

. { L., a;)—L(b., a;.) . L(6,, a,;)— L(8,, @ jesp) _1} .
L., aj(t+l))—L(0a7 aj) L(9;, aj(t))_L(axr aj)

i) In case s<t.
Since

L., aj)_L(oa’ a’j(t)) —min { L,, a’j)'—L(au Q) }
L(9,, a/j(H-l))_L(aa’ a'j) st L(,, aj(t+l))—L(0s’ a’j)

then for st (s#a), we have

L(ear aj)_L(0a9 aj(t)) < L(a.n aj)—L(ﬁu aj(t)) .
L(on’ a’j(t+l))_L(0a7 a’j) Lq,, aj(t+l))_L(0l7 aj)

Both sides are positive. So
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L(ea’ a’j)—L(ﬁa’ a’j(t)) L(ou aj(t+1)) L(ﬂ,, a])
L(ﬁa, aj(2+l))_L(0ar aj) L(osr aj) L(ou a'j(t))

<1

and hence

L(am aj)_L(aa) a’j(t)) R L(on aj)_L(au a'j(t+l))
L., a’j(t+1))_L(0ay a’j) L®,, a;)—L(b,, a;)

Since f(x;[60)>0, L(6., a;¢in)—L(0., i) >0, L(b., @jes1))— L., a;)>0
and L(0,, a;)—L(#,, a;)<0. In (2.9), we get for st

R(,, d® x a;)—R(0,, 6°)>0 .

—-1<0.

ii) In case s>t.
From the condition

78 041(0as @) 7¥041(05, @) >1
we get

L., aj)—L(ﬂu Q) . L(ﬂﬁ’ a’j)—'L(eﬂy aj(z+1)) —1>0.
L(0os @ji0)—L(0ay @) L(05, @jcr)— LG4, @))

Since

L(0;, a;)—L(6;, @jc41) —min L(6,, a;)— L(8,, @;¢41) }
L(0;, ajw)—L(0;, a;) 8>t L(b,, a;w)—L(0;, a;)

for s>t, we have

L@,, a;)—L(6,, a;.) . L(,, a;)—L(b,, 0;c.1)

—1>0.
L., aj(t+1))_L(0a; a'j) L(o,, a’j(t))_L(ﬁ.n a’j)

Because L(4,, a;.,)—L(8,, a;)>0, we get for s>t
R(@,, d” x a;)—R(8,, 6°)>0 .
Hence
R(@.,d® xa;)=R(@,, 6°) for some «
and
R(,, d® x a;)> R(8,, 6¥) for s#a,

which completes the proof.

3. Some example

Example. Consider a decision problem of 4-state, m-sample and
8-action. A loss function is given by Table 1 and f(x;]6,)>0 for i=
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1,--,m, s=1,---, 4.

Table 1. L(9, a)

a; as as Qs as /1] ar as
A 0 2 3 5 9 10 13 14
[ 4 3 2 0 3 4 7 10
03 8 7 6 3 1 0 3 6
04 9 8 7 5 4 3 2 0

In this problem, the number of all possible non-randomized decision
rules is 8. Since a,;,=a;, ¢;»=0a, ;=0 and a;,=0as, the assump-
tion of Theorem is satisfied. For action a,, generalized regret-relief
ratios are

T;‘f?(aa ) Qg)= 7’1;',:2(01 ) Q)= ‘g—

705, @)= I£1>11n {rfa(6,, as)}

=min {T;'f?(eh az)» sz(os; az), sz(eu az)}
. 3 4 3}
=min |2, 2, 2} =3
n { 1" 1’1
Hence,
sz(ﬂa, az)')’fz(op; az)=§'3=2>1 .

By Theorem, we know that the non-randomized decision rules which
take action a, for any z; (=1,---, m) are dominated.

Similarly as a,, for a,, a;, a, we get the following result. For a,,
we get

rfﬁ(ea ’ as) - 7‘;',‘2(01 , as) = % ,

750,, a)=min {720, ay)
=min {70z, &), 1105, @), 77:(0s, as)}
and

T;':2(0al as)']’i‘z(opy as)—_—E' =-—2—>1 .
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For a;, we get

7530, as)=min {r$4(0,, as), r¥:(02, as)}
=min {i, 3’—} =3,
11

75305, as)=min {7¥:(6s, as), 73:(0s, @s)}

and

75300, @s) - 73a(0;, as)=3'%:%>1 .

For a,, we get

7540., a7)=min {yF(0,, @), 750z, a2), 7305, A7)}
—min {é, i’ _3_}
1 3 3

1

T;’f4(0ﬂr (17)27‘;‘4(04, a)=2,
and
7:4(001! a’7)'r.';',<4(0ﬂ’ a7):1'2=2>1 .

Therefore, by Theorem, all of the non-randomized decision rules which
take action a;, a; or a, for any x;, (i=1,-.-, m) are dominated. Hence
the number of non-randomized decision rule in the complete class is
reduced from 8™ to 4™.

We conclude that for the problem of this example, generalized regret-
relief ratio criterion is very effective in the reduction to a complete
class.
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