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Summary

A statistical method for detecting the optimum time of control for
a linear system with quadratic loss, is discussed. When the initial state
is unknown and only one control action is available, both the optimum
time of control and the amount of control are determined from the
current observations at that time. Some simulated results are pre-
sented and our heuristic method is shown to be fairly satisfactory for
practical use. An idea of reducing the bias of our estimate for the
optimum time, is also proposed.

1. Statement of the problem

The optimal solutions of linear (discrete or continuous) control sys-
tems, subject to quadratic loss in both state and control, have been
investigated by many authors, see for example, Adorno [1], Kreindler
and Jameson [2] and Kushner [4]. But all articles treated the class of
successive control based on all observations at that time. There are
also the cases where the observations have a considerable cost and it
is desired to observe as less as possible. Kushner [3] considered the
optimum timing problem of driving a linear system to some terminal
position using a selected number of noise perturbed observations. We
shall consider another type of the optimum timing problem. The results
are the new look from the point that the estimation of optimum con-
trol times is adopted.

Suppose we are confronted with the problem of manufacturing N
articles such that the quality characteristic X of each article is nor-
mally distributed with known variance ¢*. Initially, the expected value
of X may be different from the desirable quality level g, e.g.

E{X}=m+p, say.
As the risk incurred in production under the above level, we consider

15



16 GIITIRO SUZUKI

the mean quadratic loss E(X—g)®. Then our task is to revise the level
E(X) by the amount g, which is unknown to us but is estimable from
the current information of successively produced articles. Now sup-
pose we are allowed only one control action. Hasty control makes use
of rough estimation of initial level but hesitation causes the production
of many article of poor quality.

In this note, we shall put forward a statistical method for obtain-
ing the optimum time at which the control action should be taken, as
well as the estimated value of y adopted. Without loss of generality
we can assume g=0. Then our problem is the following.

Find n and p=p(X,, X, -+, X,) for which

R=R(n, ji; p, & N, ¢)=E {2 X+ 3 (Xi——-;})2+c;‘ﬁ}
i=1 i=n+1

18 minimized. Here ¢(=0) 1is the cost which is assumed to be pro-
portional to the square of amount of the control.
In the sequel one heuristic method is presented and it will be shown
with computer simulation that our appproach is fairly satisfactory for
practical use. Furthermore when two control actions are available the
similar problem is discussed.

2. Some analytical results

First we consider the problem for fixed n. With a slight loss of
efficiency we restrict the following type estimator of p

=, X(n) =223 X, .
n i=t
To find the best a, we write

R=E {i X —20,X(n) 3 Xi+(N—n+c)ai)_((n)2}
= N(+0%) — 2 N—m)pie, + (N—n-+¢) [+ o)t

VR A S |

=(N. n+0)<ﬂ+n>[“" (N_n+c)(1+oz/n;z2)]
(N—n)'p .

(N—n+c)(1+a*/ngd)

+ N+ —

Then we may put

N—n 1
N—n+c¢ 1+dYn

a¥=

where d=o/|p|. In this case we incur the risk
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R=N(+d")—¢(n, p)
where

(N—n)’p

(D A = N nt oL+ dm)

Next we shall find » for which ¢(n, ) is maximized. Put

(N—t)%

M= Nre—peid) -
Then
(N+c—t)!(t+d?) ¢/ (t)=(N—1t)h(t)

where

h(t)=(N—3t)(N+c—1t) (t+d?) + (N—t)t[(2t+d?) — (N+¢)]

=h(t)+2¢%d?

h(t)=(t— o) (t—at) (t—as)

(2)
a,=N+2¢

ay=—d*+dvd*+ N—c
ay=—d*—dvVd*+N—c .

For 0<t<N, ¢/'(t) and h(t) have the same sign and h(t) changes
sign from + to — at t=a;, which is slightly larger than zero point a,

of h(t) (see Fig.1). Thus #(t) has the maximum value at t=q}. Then
we shall define n* is the smallest integer exceeding a,. Thus we can

N(N+¢)d?
N(N+c)d*—2c%d*

Fig. 1
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consider that ¢(n) has the nearly maximum ¢(n*, p*) at n=n*, where
¢ is defined by (1) and

N—n* o
N—n*+c¢ 1+d¥Yn*

pr=
Next we consider the estimation problem of n*. Rewriting the
relation (2) we have
(a/d)+2a,=N—¢
i.e.
(adp+ o) + o = (N —) .

Since X;, X;,--- are independently distributed N(g, ¢°), as an estimator
of n* we can take # which is defined by the first exceeding time over
the line ¢*(N—c) of the random sequence

{(é Xi>2+02n: n=1, 2,---} .
i=1

Consequently, we first define # using the sequentially observed random
variables X, X;,:--, and immediately control

p=u(f, X(#), ¢) ,
where

(3) un, g, )y=—N""___I

N—n+c 1+d¥n

Secondary we consider the case where two control actions are al-
lowed. For simplicity we put ¢=0 (¢ is the cost for the amount of

control). Let m, n, be the first, the second control time and u=aX,,

v=pBX, be the amounts of control respectively. In such case our global
risk becomes

R= E{z X2+ (n—m)ut-+ (N—n)vt—2u z X,— >”3 X,}
=N+ o)+ (n—m) ||+ |t 2]
+(N-m){[#+2 |6'—248]

=N(p2+o’)+(n—m)<ﬂz+i> [“—W]z

] _(n—m) (N—m)’
1+d¥n 1+d*m 1+din

+ -+ ) [ p—
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Then we may take

am 1 a1
1+d¥m ’ 1+d¥n -~
Next we shall find m, n for which

(n—m)gt | (N—m)p?
1+d*m 1+d¥n

is maximized. Putting

(t—s)s | (N—1)t
#s, )= st T ira
then
9 _ dit—sls+2d7 _
% #(s, t) G1d) 0

s dN—tlt+2d] _
¢( V=@t ey

Equating these we have

213 2
<sji_2d ) = N;—zd =)' (say),

(e

Namely ¢(s, t) is maximized at

(4) s=d*(v—1)
(5) t=d*—1),
where

N+d?
y=§‘/%.
To estimate such s, ¢ we rewrite the relations (4) and (5) as
St + 368’y +3a's=d' N, tut+d*(3t*— N¥) i+ 30*t=24'N .

For any constant ¢ we define

,,(c)-—[(E X> -3 X] —(@n—)o* 32 Xi+(n+3—cmat

Since
E{Z X2} =n(+d),
E{Z X))—>2 X/}=E {#Ej XX} =n(n—1) (¢ +0%),
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then it is easily seen that
E {T.(c)} = "’ +cenple®+3nat .

Define the two sequences of random variables by

Y,=_™ [(i X3>2—§j X] —(2m—3)ma* 31 X?
m—1 L\i=1 i=1 i=1

+(m*—3m+3)md*

= " s x\V x| (op_ &)2" s
o= 2(n—1) [@X) EX] 2<2"’ Sy LgpD¢

+%(n3—3n2+3n+N2)o‘ .

Then let 7 and # be the first exceeding times over the line ‘N of
the sequences {Y,} and {Z,} respectively. Furthermore the amounts
of control are given by

a=u(m, X(m),0),  d=u(n, X(n), 0)—% ,

where the function u is defined by (3).

3. Some simulated results

We now show some empirical results with computer simulation.
We first treat the case ¢=0 and ¢*=1. For given N and p, we first
determine the optimum time n* of control in the case of only one con-
trol action (case I) and the couple (n}, ny) of times of the first and the
second control in the case where two control actions are available (case
II). Minimum attainable risk is given by

% __mX¥), 4
R1=N([12+1) -—M (Case 1)
n*pt+1
*(m* __m* *( N —
Ry=N(+1)— LA (17"2 n) _m (j\/’z ) (Case II)
ny p +1 ne p +1
Table 1
N ¢ n* n¥ n¥ R, Ry
100 0.5 17 8 32 108.2 105.9
100 1.0 10 4 21 118.2 111.0
100 2.0 5 2 14 138.1 119.4
200 1.0 14 5 34 226.4 214.6
500 1.0 22 7 63 542.8 520.8

1000 1.0 31 10 100 1061.3 1027.1
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For N=100 and x=0.5, p=1, z=2 and for (N, £)=(200,1) and (N, z)
=(1000, 1), the values of n*, n}, n¥, R; and R, are given in Table 1.
Next, for any sequence {X;, X, -, Xy}, define

Lu(n)= ﬁ X2—24i(n) §+ Xt (N—m)j(n)

N

N Ny

Ly(n,, n2)=§ Xf—Zﬁ(nl) i—2+1 Xv‘.—2i‘(n2) ;
= —nl =n2
+(my— ) () +(N—my)fi(my)?

X,
+1

where
m=-22C

Then, the optimum loss with optimum control action(s) can be expressed
by

L(n*) (Case I)

Ly(nf, nf) (Case II)
and the loss with estimated control action(s) by

L(n) (Case I)

Ly (0, 1) (Case II)

For each case, the results of averages of 1000 times of experiments
are presented in Table 2. Note that for (I, ¢)=(100, 0.5) L(#) is
smaller than Ly(#,, #i;), on an average. This seems to be cursed by
instability of estimated times.

We also simulated the case of one control action with non-zero
constant ¢ for N=100, =1 and ¢’=1. The results of averages of
1000 times of experiments are shown in Table 3.

Table 2

N B Ly(n*)  Ly(nf, n}) 7t iy iz L(#) Lyy(#1, #i2)

100 0.5 105.91 103.82 19.48 20.45 41.14 111.38 114.18
100 1.0 111.55 105.59 10.40 7.83 24.23 121.20 116.20
100 2.0 121.46 109.48 5.54 2.93 14.43 140.20 121.74
200 1.0 216.01 206.96 14.50 9.15 36.93  230.19 220.36
1000 1.0 1033.88 1012.68  31.92 13.25 102.60 1058.70 1034.95
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Table 3
c n*(c) #(c) L(n*) L(n)
0.2 10.0 10.46 119.18 117.71
0.4 9.0 10.45 119.35 117.91
0.6 9.0 10.44 119.53 118.09
0.8 9.0 10.44 119.70 118.25
1.0 9.0 10.43 119.88 118.43
2.0 8.0 10.37 120.73 119.28
3.0 8.0 10.32 121.56 120.12
4.0 8.0 10.27 122.37 120.92
5.0 8.0 10.23 123.17 121.68

4. Further consideration

In the later section, we have seen that our heuristic method is
fairly satisfactory for practical use. But we note that there is further
problem of estimating the time of control action. For, we found from
the results of computer simulation that our estimate is slightly later,
in the sense of average, than the optimum time of control action.
Especially, this type of bias is more serious in the case where two con-
trol actions are available.

We shall state the problem of this type, in the general form:

Given the sequence

{Z;]| i=1,2,.-.}

of random variables whose means and variances, say p,=E{Z}, oi=
V {Z,} are monotone increasing with respect to :. Of course, they are
not independent. Define

(6) n*=n*(L, {})=min {i: g =L} .

Find some unbiased estimator of n*.
Since

E{Z}=uw, 1=1,2,-.-
the estimator defined by
fi=min {1: Z,=L}
may be reasonable. But this will be positively biased. For, put
t*=min {t: pt)=L},
ty=min {¢: p(t)+e(t)=L},
t,=min {t: p(t)—e(t)=L}.
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Then
Pr (A<t} =Pr {Xuy2 L} = Pr {Xpy 2 pt) +o(t)) ,
Pr{fzt} =Pr{X__ =L} =Pr{X__, = p(t)) —o(ty)}
and these two expressions would be nearly equal. On the other hand
t*—t, <t —t*

because the functional defined by (6) is convex from the following
Lemma.

LEMMA. For any non-decreasing function p, define
L(p=inf {t| pt)2L} .

Then the functional L is convex in the following sense: For every pair
o, v such that

W) —ult) 5 ) —plt) (¢ oty

L—t  — h—t
put
O =apt)+1—apt) (0<a<l).
Then
Ln)zaL(p)+(1—a)L(v) .
Proor. We write
t,=L(z), t=L@), t:=at,+1—a)t,.
Then
7(t*) =ap(t*) +(1 —a)u(t*)
=aL—alp(t,)—p(t*)]+ (1 —a) L+ (1 —a) [o(t*) —v(t.)]
=L+a(l—a)(t,+1,) { ”(t:l:’;ft’) - ”(t,';i:ff*) } -
Since
t,>t*>t,,
then we have
(=L .

This means that
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L(n)zt*=al(p)+(1—a)L(v) .

We now propose some modified estimator. Given two increasing
functions p(¢), o(t) for which

(7) w(ts) — p(ts) _ p(ts) — puty) < o(ts) —a(ts) + o(t;) —a(t)
ts—1t, ta—t,  ti—t, to—1,
(0<t: <t <ty)
and

E{Z}=p(), V{Z}=0().
Define

By — f(t*+h)—p(t*—h)
Eh)= o(t*+h)+o(t*—h) ’

where t* is the solution of
ut)=L.

Noting that R(0)=0 and R(k) is the increasing function of %, we can
find A* for which

(8) R(h*)=1.
Then we have

p(t* —B¥)+o(t* —I¥) = p(t* +h¥) —o(t* -+ h¥) .
Putting

. L
Tt — ) Fo(t* —h%)

then
7lu@®)+o(t)=L  for t=t*—h*
7let)—a(t)]=L  for t=t*+h*.
Consequently, we can expect that the random sequence
{rXxi| +=1,2,---}
crosses the line L at near point of ¢t*. Then we define
fi=min{¢: 7X,=L}.

This modified estimator would be almost unbiased for n*.
We further note that the procedure of finding 2* by (8) is more
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complicated. Therefore replacing B by

()

’

20(t*)
we equate
R(h**)=1
i.e.
U B
#(t*)
Then using
L

= p(tF —h**) £ g(t* —h**)

we can construct the following estimator
'fzzmiin {i: y1X,=L}.
Now we are the case
pt)=p 2 +26% ,  o(t)=20tV/2p%+ o ,
which satisfy the condition (7). Then
tx=d¥(t—1)

mrx=dn/2t—1 (F—1)fF

= N—c¢
(6+2+2v25+1)od?
where
~ t* N—c¢
5=_t*_;§1."i=(£—\/2£—1 YE=1)fF .

25

For N=100 and g¢=0.5, pg=1, g=2 and for (N, p)=(200,1) and
(N, p)=(1000, 1), the values of t*,  and y are given in Table 4. For
each case, the results of averages of 1000 times of experiments for
our modified estimator #, are presented in Table 5. We can recognize
that the bias of the estimator # is fairly removed by our modified

estimator #%.
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Table 4 Table 5
N u 1* é 7 N P 7
100 0.5 16.396 1.661 1.925 100 0.5 13.67
100 1.0 9.050 5.114 1.415 100 1.0 8.69
100 2.0 4.756 13.088 1.198 100 2.0 5.06
200 1.0 13.177 8.316 1.285 200 1.0 12.83
1000 1.0 30.639 22.996 1.123 1000 1.0 30.16

Remark. It is easily seen that the modified estimator # can not

be constructed without the information of unknown parameter d. Then
there are further problem for actual adoption of the control time #.

THE INSTITUTE OF STATISTICAL MATHEMATICS

[1]
2]
[3]
[4]

REFERENCES

Adorno, D. S. (1962). Optimal control of certain linear systems with quadratic loss,
1, Information and Control, 5, 1-12.

Kreindler, E. and Jameson, A. (1972). Optimality of linear control systems, IEEE
Trans. Automat. Contr., AC-17, 349-351.

Kushner, H. J. (1964). On the optimum timing of observations for linear control sys-
tems with unknown initial state, JEEE Trans. Automat. Contr., AC-9, 144-150.
Kushner, H. J. (1971). Introduction to Stochastic Control, Holt, Rinehart and Winston,
Inc.



