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Summary

By using a simple example a minimax type optimality of the mini-
mum AIC procedure for the selection of models is demonstrated.

1. Introduction

Akaike [1] introduced an information criterion which is by defi-
nition
1.1) AIC=(—2) log (maximum likelihood)
+2(number of parameters)

as an estimate of minus twice the expected log likelihood of the model
whose parameters are determined by the method of maximum likeli-
hood. Here log denotes the natural logarithm. The simple procedure
which selects a model with the minimum AIC among a set of models
defines the minimum AIC estimate (MAICE) (Akaike [2]). The intro-
duction of AIC helped the recognition of the importance of modeling
in statistics and many practically useful statistical procedures have been
developed as minimum AIC procedures; see, for example, Akaike [2],
[3].

In spite of the accumulation of successful results in practical ap-
plications the logical foundation of MAICE has been continuously ques-
tioned by theoretically minded statisticians. The purpose of the present
paper is to provide a Bayesian interpretation of the MAICE procedure
and show that the procedure provides a minimax type solution to the
problem of model selection under the assumption of equal prior prob-
ability of the models.

Our analysis starts with a brief review of the statistic of the form

1.2) (—2) log (maximum likelihood)
+(log N)(number of parameters)+C,

where N is the sample size used for the computation of the maximum
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likelihood estimates. We will call this type of statistic by the generic
name BIC. Two types of BIC have been introduced by Akaike [3] and
Schwarz [4].

2. A review of BIC

Both Akaike and Schwarz based the introduction of BIC on some
Bayesian arguments. Schwarz derived the statistic for models from
a Koopman-Darmois family. Akaike introduced the statistic for the
problem of selection of variables in linear regression. Here we will
restrict our attention to the problem of selection of a multivariate
Gaussian distribution. This is a special case of the model treated by
Schwarz but may serve as a simplified model of the general situation
where the use of the maximum likelihood estimates is contemplated.

Consider the situation where a set of observations Y={y(n); n=
1,2,---, N} of L-dimensional vector random variables y(n)=(y(n), y(n),
<+, y(n)) is given. It is assumed that y(n)’s are independently iden-
tically distributed as Gaussian N(4, I), where 8=(6,,6,,---,0,) is the
vector of the unknown means and I is an L XL identity matrix. We
consider the set of models N(4, I) (k=0,1,---, L) specified by assum-
ing 0y, 1=04:=-+-=0,=0, i.e., 0=00:, b, *, I, 0,--+,0) and ,6,, .0,
-++, 0, are unknown. Following Schwarz, we assume a prior distri-
bution (k) over k, or the set of models N( 4, I), (k=0,1,---, L). Fur-
ther we assume a prior distribution N0,, ¢*I;) for (.0,, «0:,- -+, %), Where
0, denotes a k-dimensional zero-vector and I, a kXxk identity matrix.
Now the marginal posterior distribution of k is given by Cr(k)p(k|Y)
(k=0,1,-.-, L) with p(k|Y) defined by

n=1 n=1i=1

p(k|Y)=exp {——% é t_éﬂ y%(n)} S exp I——%— ST (yi(n)—kﬁi)2}

1 k/2 1 & k
) e (g2 e

2ng? i=1

By choosing the k that maximizes the posterior probability one can
maximize the probability of correct decision on k. Consider the situa-
tion where ¢* is sufficiently large so that we get an approximate equality

p(k|Y)=exp {——;—ﬁ 5 yi(n)} Sexp {—%ﬁ‘. ﬁ‘.(yi(n)—kﬂi)z}

n=1i=k+1 i=1n=1

/
.<—]—.—~>k2 k 4.8, .
i=1

2ma?

For this case we have
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k/2
p(k| Y)=exp {—%S(k)} (ﬁ) ,
where
SU)=33 3 (w(m) G+ 3 Nt

and y; denotes the sample mean 3} y,(n)/N. The BIC statistic (1.2) of
the kth model is obtained as minus twice the log posterior probability
(—2) log {Cr(k)p(k|Y)} and is given by

@.1) BIC (k)=S(k)+k log N+R(k) ,

where R(k)=Fklogs*—2log {Cr(k)}. The corresponding AIC statistic
(1.1) of the model is given by

(2.2) AIC (k)=S(k)+2k+R ,

where R is independent of k& and may be ignored in the following dis-
cussion.
Taking into account the relation

(23) S=SI)+ 3 Nz,

it is easy to see that the MBICE, the k that minimizes BIC (k), provides
a consistent estimate of the correct model. In contrast to this the
MAICE, the k that minimizes AIC (k), does not have this consistency
property. This is obvious, because when the kith model is correct the
distribution of the differences of AIC (k)’s with k=k,, ky+1,---, L tends
to a non-degenerate stationary distribution as N tends to infinity.
Schwarz argues in Section 4 of his paper that this is a shortcoming of
MAICE. Does this mean that MAICE is generally inferior to MBICE ?
Schwarz carefully qualifies his statement by saying that if the assump-
tions made in Section 2 of his paper, which are essentially equivalent
to the assumptions of our present Bayesian model, are accepted MAICE
cannot be optimal. In the next section it will be shown that MAICE
is optimal under some assumptions which are quite different from and
often more natural than those of MBICE.

3. Minimax property of MAICE

In this section we assume that the prior distribution »(,6|k) of
G=00y, s, +, ) of the kth model is given by

p(ﬁlk)=< 1 >meXp {-—_]'_é 0‘%}( 1 )(L—k)/z
K 2”02 202 &= kY 27:52
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1 & 8
exp (=g 3,
It is assumed that N¢® is greater than 1 and N&® is smaller than 1. The
logarithm of the posterior distribution »{(;4, k)|Y} of (i8, k) is then
given by
1 (& A= 1& 1 Z
log p((, B)| Y} =~ {$ NG~ )+ L S+ 2 31 2

% iZk+1

+Elog (%2)} +log x(k)+ R ,

where zn(k) is the prior probability of the kth model and R denotes a
quantity which is independent of k. Here we assume equal probability
for =(k) and the term log n(k) will be ignored. The mode of the pos-

terior distribution is then given by (ké, k) with k& that maximizes p{(,ﬁ,
k)|Y}, where .0,= {N/(N+1/a*)}¥, for i=1,2,---, k, {N/(N+1/8%}y, for
1=k+1, k+2,-.--, L. Now, minus twice logp{p(ké, k)|Y} is given by

1 LA—

L
WEN%'F >} Nyi+klog

N (5)
(3.1) N T s %)

where a common additive constant is ignored. This formula tells that
if we allow ¢* diminish to zero the mode of the posterior distribution
can only be attained at k=0, which is a nonsensical result and suggests
the necessity of marginalization, or the integration of the posterior
distribution with respect to d.6.

By integrating »{(:0, k)| Y} with respect to d.# the posterior prob-
ability p(k|Y) of the kth model is obtained and minus twice its loga-
rithm is given by

(3.2) LOG(k):N; SNG4+ —L 5 Ngi+klog

< Naz+1>
@+1 = N®+1 iZkn !

No*+1
where a common additive constant is ignored. For the purpose of com-
parison of models we use CIC (k)=LOG (k)—LOG (L) which is given by

_ 1 1 e — No*+1
CIC (k)"(N51+1 - Naz—i—l) 2, Nyitklog < N52+1> ’
where again a common additive constant is ignored. If Nis large com-
pared with ¢* and N¢® is large but N¢o* is small compared with 1, CIC (k)
will be approximated by BIC (k) of (2.1). These conditions can be satis-
fied by increasing the sample size N when ¢* is sufficiently close or
exactly equal to zero and represents the situation where the difference
between the magnitudes of the elements in the set (6, 0, -+, :f:) and
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those in (0.1, «0iss,- -+, 0z) is clearly visible through the observations
¥: (1=1,2,---, L). This is the situation which we cannot expect to hold
very often in ordinary exploratory data analyses. Thus it must be
concluded that MBICE will find rather limited applications.

The decision on the choice of k will be difficult when the difference
between (.0, 0z, -+, 8) and (Bei1, bessr -+ 0.) cannot be clearly rec-
ognized through the observations 7; (¢=1,2,---, L). The most critical
will then be the situation where No® (>1) and Né&* (<1) are both very
close to 1. For this critical situation we get

. 1 1 -1 L _
3.3 1 ( _ ) CIC (k)= 31 N7 +2 .
(8-3) i VN T Notr 1 (k)= 23 Nyt

Ne?t1

Taking into account (2.2) and (2.3) one can see that the right-hand side
of the above equation can be used as the definition of the statistic
AIC (k) to be used in the definition of the minimum AIC procedure for
the decision on k. Thus we get a proof of optimality of MAICE under
this limiting condition. For the case with ¢*=¢’N~' and *=e¢ >N~ we
get a statistic with 2.63% in place of 2k of AIC (k). This result shows
that for a fairly wide range of values of ¢* and & the minimum AIC
procedure will provide a reasonable approximation to the Bayes solution
of the decision problem of k under the assumption of equal probability
m(k). Thus we have obtained a surprisingly simple proof of the mini-
max type optimality of MAICE and its robustness.

4. Discussion

In the discussion of Section 3, N was retained only to clarify the
relation between AIC and BIC. TFor the discussion of MAICE N could
have been put equal to 1. If we consider 7;,’s as the maximum likeli-
hood estimates of the parameters of a distribution after a proper change
of coordinate we can see that the result of the preceding section holds
generally for MAICE and characterizes the procedure as optimal for
the detection of k& where the ratio of the signal, the bias squared, to
the noise, the variance, crosses the critical value 1. This justifies the
original intension of introduction of MAICE by Akaike [1], [2].

The formulas (3.1) and (3.2) demonstrate the close relation between
the maximum and marginal, or integrated, likelihoods of each model.
It is only when Ng* and No* are both significantly greater than 1 that
these two formulas become approximately equal, which is not a very
interesting situation.

The optimality of MAICE discussed in the preceding section is only
concerned with the probability of coincidence of the MAICE with the
correct k. If an estimate of the correct value of % is required the
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mean of the approximate posterior distribution p(k|Y)=Cexp {(—1/2)
-AIC (k)} would be useful.

Obviously the minimum AIC procedure discussed in the preceding
section is a direct extension of the classical method of maximum likeli-
hood to the multi-model situation and is not free from the defect of
ordinary point estimate. Although the AIC (k)’s are defined in terms
of the maximum likelihood estimates y; (=1, 2,---, L) the discussion
in the preceding section does not tell which estimate of .6 should even-
tually be used. The use of the maximum likelihood estimates of .8
under the assumption of ¢’=occ and #*=0 has been customary but a
further analysis in necessary when there is no such clear separation
of 6’s. If the choice of one single model is not the sole purpose of
the analysis of the data the average of the models with respect to the
approximate posterior probability Cexp {(—1/2) AIC (k)} will provide a
better estimate of the true distribution of Y. In this type of applica-
tion the 2k in the definition of AIC (k) may be adaptively modified by
using the model of the prior distribution defined by =(k)=C#* and ad-
justing the parameter i by the data. The feasibility of this type of
procedure has been confirmed by numerical experiments and the results
will be discussed in a separate paper.
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