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1. Introduction and summary

For a wide range of substances, techniques of radioimmuno- and
immunoradio-metric assays (RIA and IRMA respectively) have come into
use because of specificity, speed, low costs, and high precision. The
literature is extensive, especially in its accounts of different techniques
but also in proposals for statistical treatment of results. I shall not
attempt to summarize the immunological and radiochemical principles.
The statistician or biometrician who wants further information at this
level should start from a few key publications (such as Arrigucci et al.
[1]; Ekins and Newman [4]; Midgley [10]; Midgley et al. [11]; Rodbard
[14]; Rodbard and Frazier [16]).

Instead I content myself with a brief description of the data ob-
tained in the course of such a radioligand assay, in a form understand-
able by those who are not familiar with the method. These data con-
sist of counts of radioactivity (in an agreed fixed time), relating to the
“bound ” or the “free” portion of an antigen (in RIA) or antibody (in
IRMA) that was labelled with a suitable radio-isotope before the assay
began. I formulate the relation between expected count and dose of
the standard preparation, and discuss the variance of individual counts
about this expectation. I compare three principles that might be ap-
plied to estimate parameters, and apply them to estimating potencies
for test samples. Finally I comment briefly on computer programs for
the comprehensive analysis of data from radioligand assays.

2. The data

A radioligand assay involves radioactivity counts at several doses
of a standard preparation, with independent replicates (usually 3 to 8)
at each dose. The doses can include zero and also what is logically an
infinite dose giving a non-specific or background count. For RIA, the
expectations of “bound” counts decline from a maximum at zero dose
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to a limiting minimum as the dose becomes very large; for IRMA the
trend is from a minimum at zero dose to a limiting maximum. ¢Free”
counts behave in a complementary manner. Of course, replicate counts
at a dose will vary about their expectation. Individual counts will usu-
ally be fairly large, say at least 50 and possibly ranging as high as
20000; in the light of experience of an assay technique, counting time
will be chosen to avoid the very small counts at which discreteness be-
comes important and also the very large that may imply wastage of
time and resources.

An assay includes counts on test samples, the object being to use
the counts on each sample for estimating its potency in terms of the
standard. The nature of the experimental techniques makes inclusion
of several test samples convenient—perhaps 6 or 8, perhaps several
hundred. Multidose assays include two or more doses of each test sam-
ple, these having known ratios (e.g. 1:1/2:1/4) even though the true
potency is unknown. Single dose assays have only one dose of each test
sample ; this may be because no suitable diluent that would not distort
the potency is available, because in an assay for clinical diagnoses the
number of different samples must be maximized, or because of inade-
quate understanding of the advantages of having more than one dose.

3. Nature of response curve

The relation between dose, z, and expectation of count is the re-
sponse curve for the standard, usually a smooth monotonic function
ranging from, say, D at 2=0 to C at z— . Hereafter discussion is
in terms of RIA and bound counts, for which D>C; for IRMA, or for
free counts, D<C and various changes of sign and inversions of terms
are required without any essential differences.

For reasons that become apparent in connexion with multidose as-
says, a logarithmic dose metameter,

3.1) r=logy, 2 (or z=Inz),

has advantages. The response curve still approaches C as a lower as-
ymptote when x— oo, but it is now also asymptotic to D as x— —oo.
Write u for a single count, and define

(3.2) U=E (u|x) .
Then
(3.3) U=C+(D—-C)F(x),

where F(x)—1 as x——o0, F(x)—0 as x—oco. Usually F(x) will have
a smooth sigmoidal shape, possibly with symmetry about F(x)=0.5.
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The common practice in RIA is to write B (in place of ) for a bound
count, with B,, N for counts at zero and infinite dose respectively (cor-
responding with my D, C). This notation, however, does not distinguish
between observed counts and their expectations, a distinction vital to
sound estimation practice, and its users have formed values of (B,—B)/
(B—N) to play the role of F(x) without regard to the statistical errors
of all counts. The new notation adopted here is intended to emphasize
a different outlook. Estimation should be examined in relation to in-
dividual counts, the truly independent observations, rather than ratios
or other derived quantities that forfeit this independence.

Debate about the response curve is primarily debate on F(x), with
C, D playing the same role in any equation proposed. Experience in
bioassay suggests that conclusions will commonly not be very sensitive
to the particular form of F(x). At least two parameters are necessary
in F(x), one a location parameter indicating the region of the z-scale
over which F'(x) is well-removed from its asymptotes and one a scale
parameter telling something of how quickly F(x) changes over this
region. It is of course conceivable that more than two parameters are
needed, but the simplest adequate curves will be those in which F(x)
is a function of

(3.4) Y=p(x—p)

that involves no unknown parameters other than 8, p.
A candidate curve that satisfies all requirements so far stated is

(3.5) F@)=1/(14¢?),
or
(3.6) Y=§ In [(U-C)(D-U)] ,

with <0 for RIA. As is well known, the normal integral

e

3.7) F@)=|" ——exp (—Lt)dt
is qualitatively very similar to (3.5), the factor “2” in (3.5) having the
merit of making the correspondence good over a wide range of Y. The
logistic equation, (3.5), has been widely used for RIA in various alter-
native formulations, notably by Rodbard and his colleagues (Rodbard
[13], and other references; see also Burger et al. [2] and Healy [9]); it
possibly has theoretical merits as well as mathematical simplicity, but
only a very large body of data could distinguish empirically between
(3.5), (3.7), and other reasonable sigmoids (cf. Finney [6]).

These curves are symmetric about =g, F(x)=1/2, and may on
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that account be inappropriate for some assays. Asymmetry seems al-
most certain to need at least a fifth parameter. One proposal (Harding
et al. [8]) can be written

b

(3.8) U=t T niitexp )] '

where the parameters bear no simple relation to those previously dis-
cussed. Despite qualitatively satisfactory properties, (3.8) is inadequate
because its functional form is not invariant under changes of scale for
dose measurement. To satisfy this requirement, an extra parameter
must be introduced. One possibility is

b
1+cln[1+exp{(z—d)/f}] '

3.9) U=a+

but others could be tried. Though not discussed further here, these
do not introduce new statistical problems beyond the general difficulty
of estimating as many as five parameters adequately.

For any test sample, an arbitrary unit of dose can be adopted ini-
tially, for example simply a volume or weight of material. In a multi-
dose assay, the ratios between doses of any one test sample are known,
so that all are measurable in the same arbitrary units. In the usual
way of bioassay, the unknown relative potency, p, is defined as the
amount of standard equivalent to unit dose of the sample: the expected
count for a dose z units of the sample is the same as that for pz stand-
ard units. Consequently, in a valid assay the response curve for a test
sample must be obtainable by substitution of pz for z or (z+logp) for
2. A multidose assay permits test samples also to contribute to esti-
mates of parameters and enables a test of “parallelism” (as in parallel
line bioassay) to be used as a check on validity.

4. Variance function

Individual counts at a dose will vary about the corresponding U.
One would naturally hope that the distribution of counts was Poissonian.
Rodbard and Cooper [15] and Rodbard [13] presented theoretical argu-
ments for the augmentation of Poisson variance by many other compo-
nents, and empirical evidence often shows that the variance exceeds U.
Rodbard and his colleagues suggested the equivalent of

(4.1) Var (u|U)=V,U+ V,U?

as a function that makes no attempt at being exact but is in practice
an adequate representation of variance. I prefer to use
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4.2) Var (u|U)=VU’,

which can be scarcely distinguishable from (4.1) over a wide range of
U. Other functions, involving two or more additional parameters (like
V, J), could be devised. Essentially the same problems would arise
with any variance function

(4.3) Var (u|U)=¢§U) ;

it seems fairly sure that ¢'(U)>0 and ¢"(U)>0 over the useful range
of U, and (4.1), (4.2) seem adequate approximations.

Had the distribution been Poissonian, for data with U>50 one would
have had little hesitation in approximating to it by a normal. The
greater variance is likely to mean that discreteness of counts is more
important, but since most counts are large this is unlikely to interfere
seriously with normality.

5. Estimation

The parameters fall into three categories:

(i) those that define the response curve, such as C, D, 8, x in (3.3)-
3,7;

(ii) those that occur in ¢(U); ,

(iii) p, or the set of values of p for many test samples in an assay.

All could be estimated simultaneously from the data, using an accepted

principle such as least squares or maximum likelihood. In practice,

reasonably precise estimates of the variance parameters call for more

data than can be expected from one assay, yet potency estimates are

remarkably insensitive to change in these parameters.

A Dbetter policy seems to be to use evidence from many assays for
estimating parameters that define the “shape” of ¢(U), V,/V; in (4.1)
or J in (4.2), then to assume these fixed for future assays of the same
kind but still to estimate a factor of proportionality such as V, or V.
This utilizes the experience that the exact form of ¢(U) is not vital
while still allowing for a general factor to distinguish assays with in-
trinsically high or low variability. Rodbard et al. [18] have discussed
a similar suggestion. If (4.2) is used, almost certainly J will lie be-
tween 1.0 and 2.0; either of these extremes is also a special case of
(4.1). A series of related assays examined recently (Finney, [7]) sug-
gested a value of J between 1.5 and 2.0. It is sometimes useful to con-
firm the comparative unimportance of the value of J (or V,/V,) by re-
peating the potency calculations with alternative choices (see below).

As already mentioned, in a multidose assay the counts for a test
sample also contribute information on the parameters C, D, 8. Even
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in a single dose assay a test sample gives some information on C, D, as
is evident when asample of unexpectedly low or high potency happens
to give the highest or lowest counts of the whole assay. Commonly,
though, counts on the standard contribute almost all the information
on C, D. If this were sufficient to determine C, D very precisely, the
problem would reduce to estimating a series of F(x) functions, as de-
fined by (3.3), identical except for displacement of x by the log p appro-
priate to each test sample. For a single dose assay, this amounts to
estimating log p by the horizontal distance of a point for the mean
count from the estimated standard curve.

If the model expressed by (3.3)-(8.5) is appropriate, then Y as de-
fined by (3.6) is a linear function of x. Instead of (3.4), by analogy
with simple linear regression the form

(.1) Y=a+z

may lead to estimates of a, 8 that in general behave better than esti-
mates of B, 4 in respect of near-normality of distribution. (Further
investigation may be worth while.) In the (x, Y) space, the standard
preparation and all test samples are represented by parallel straight
lines, horizontal distances between the estimated lines being taken as
estimates of log p. The analysis has much in common with the logit
analysis for bioassays that use quantal responses, though there are
important differences in distributional and variance assumptions. Re-
placement of (3.5) by (3.7) brings similar connexions with probit methods
(Finney [5], [6]).

6. Alternative estimation principles

Weighted non-linear least squares is perhaps the most obvious basis
for estimation. It is deseribed here with particular reference to the
logistic response curve and the variance function (4.2), but many alter-
natives require only minor changes. Define

(6.1) S=% (u-Uy’,

where summation is over all relevant counts, J is taken as known,

(6.2) U=C+(D-0)/(1+¢e%)
and
(6.3) Y—atpe .

In a single dose assay, a test sample that has a very low or very high
mean count may invite modified estimation of C or D, but such a sam-
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ple cannot lead to any precise statement about precision and can be
neglected without loss; less extreme mean counts scarcely influence
estimation of C and D. Consequently (6.1) can then be restricted to
the standard preparation, from which C, D, «, 8 can be estimated. A
multidose assay, on the other hand, requires all test samples to be in-
cluded in S and must provide a separate a parameter for each sample
even though C, D, 8 are the same for all.

With a suitable optimization routine (Nelder and Mead [12]), mini-
mization of S in respect of C, D, 8, and the separate a in a multidose
assay is not an excessive task unless the number of test samples is
very large. Moreover, the minimal value of S can be regarded as a
sum of squares (with degrees of freedom equal to the number of ob-
servations minus the number of fitted parameters) for estimating V.
A matrix of asymptotic variances and covariances, obtained in the
standard manner, can be used in constructing probability statements
about relative potencies. The estimate of log p for a test sample is of
course the horizontal distance

(6.4) (br—és)If

where ag, a, are the a parameters for the standard and the test re-
spectively.

As an alternative to least squares, maximum likelihood can be used.
The log likelihood can be written

—_1 n_ S .
(6.5) L= > S In(VUY) i

maximization of L is evidently closely related to minimization of S.
Apart from the fact that V is also being estimated, the computations
required are much the same as before. Iterative convergence is likely
to be a little slower because of the additional parameter.

A third possibility is to seek a transformation of the counts that
will approximately stabilize the variance. This cannot be done in any
simple way for (4.1), but for (4.2) the usual first order approximation
leads to the transform

(6.6) wux=y!~7" Ux=Ut-7n;

if J=2, w*=Inwu is appropriate. The assumption of a normal distribu-
tion for u* about U* conflicts with the previous assumption of normality
for u, but can be tried. Minimization of

(6.7) S*=3] (u*—U*):

is then both the least squares and the maximum likelihood procedure.
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One might at first imagine that the computations here would be quicker
because variance functions do not have to be calculated; this is coun-
terbalanced by the need for recalculation of U* at each iteration, so
that there is practically no time advantage for one over the other.

I have applied alternative calculations to counts from an oestradiol
assay. This single dose RIA had quadruplicate counts at 6 doses of the
standard, with 4 counts under non-specific conditions (infinite dose) and
8 counts at zero dose (Table 1). As a selection from many computa-
tions, I show (Table 2) estimates of the parameters for the standard
curve using weighted least squares and three values of J, with corre-
sponding estimates by the other two procedures for J=1.5. Agreement
is excellent, and there are no obvious reasons for preferring one set of
estimates to another. Table 3 illustrates, for four typical test samples,
how this agreement is carried over to potency estimates: appreciable
differences between estimation procedures appear only for samples of
very low or very high potency, and precision is then necessarily so poor
that no trust will be placed in any estimate.

Table 1 Counts recorded for the standard curve
in a radioimmunoassay of oestradiol

(unit SD:fselo pg) Counts Means
0 {1627 1567 1720 1660} 1681
1704 1689 1759 1722

0.625 1182 1291 1294 1312 1270

1.25 1029 1112 986 1074 1050

2.5 702 784 733 777 749

5.0 486 485 501 460 483

10.0 307 277 285 275 286

20.0 196 164 193 182 184
non-specific 25 39 51 38 38

Table 2 Estimated parameters for the standard curve

ariance 4 ; ¢ b
Weighted least squares
J=1.0 0.330+0.025 —1.1754+0.030  39.8+4.3 1681.5+19.2
J=1.5 0.325+0.033 —1.1694+0.032  40.1+2.5 1683.8+-28.2
J=2.0 0.317+0.055 —1.160+0.046  40.6+2.0 1688.3+54.7
Maximum likelihood
J=1.5 0.325+0.031 —1.1694+0.030  39.7+2.3 1681.1+26.6

Transformed count
J=1.5 0.325+0.033 —1.165+0.033  37.6+2.4  1681.7+29.1
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Table 3 Estimated potencies (pg/ml plasma) for four oestradiol
test samples, with limits at probability 0.95, by method
of weighted least squares

e | Swwie?  Swpies  Sumple o Sumpeo
Potency
J=1.0 58 217 1700 13000
J=1.5 58 217 1720 13000
J=2.0 57 217 1750 14000
Lower limit
]=1 0 49 K 190 1270 3000
J=1.5 46 187 1360 5000
J=2.0 38 173 1360 6000
Upper limit
J=10 69 249 2290 52000
J=1.5 73 253 2200 33000
J=2.0 85 271 2290 32000
7. Computing

An excellent range of computer programs has been developed by
Rodbard ([14]; Rodbard and Hutt [17]), who appears to be continually
extending the facilities and introducing greater generality. Although
many special experimental complications have been taken into account,
I do not think these or any other programs (Cook [3]) yet provide for
the full estimation processes that I have outlined. For research pur-
poses, I have been able to use general least squares and maximum
likelihood programs, augmented by special calculations for potency esti-
mates.

The great number of radioligand assays now being performed, and
their importance as a routine diagnostic aid, justify considerable pro-
gramming effort for a comprehensive and flexible system. In addition
to such obvious requirements as simplicity of input, clarity and com-
prehensiveness of output, and ease of use by many who are not pro-
fessional statisticians, other features of a good program call for special
care. Versatility in adaptation to different response curves and different
variance functions is important, not least in order to permit robustness
of conclusions to be checked by modifying uncertain assumptions. The
program should handle estimation of C, D, and should draw attention
to test samples of such extreme potency that closeness to an asymptote
prohibits any precision of estimation. Single dose assays present no
major computational problems. Multidose are more demanding if proper
use is to be made of their superior information. With p test samples,
a (p+4)X(p+4) matrix must be inverted even for potency estimation
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and more than this for full exploitation of validity tests, but the pat-
tern of the matrix is such as to permit a reasonable scheme of com-
putation. A common practice in routine assays is to analyze each test
sample separately with the standard. Often this is adequate; however,
it does not make full use of the information available in a multidose
assay, and is unlikely to represent any economy of modern computa-
tional facilities. Any good program will also include various provisions
for detecting anomalous behaviour, and allowing action to be taken in
order to ensure that potency estimation for some samples is not pre-
vented or distorted because others obviously fail to conform to the
model on which the analysis is based.

When experimental data must frequently be analyzed for very
practical purposes, there is a temptation to say that in routine use a
simplified and approximate statistical analysis is adequate, any more
sophisticated analysis being reserved for research investigations in which
a professional statistician is consulted. Often exactly the opposite is
true. An experienced statistician may be able to judge from his scru-
tiny of data whether an approximate analysis is safe, for example
whether C, D are so well-estimated that they can be assumed error-
free without fear of producing a false appearance of high precision in
potency estimates. Routine radioligand assays, on the other hand, will
be interpreted and used medically without statistical expertise; such
expertise, therefore, needs to be built into the program, so that the
occasional assay in which some test samples cannot safely be estimated,

or /§ is so low in precision as to jeopardize all estimation, or the as-
sumed form of response curve fails to fit the data, declares itself un-
mistakably by messages output by the computer after internal compu-
tations and tests that often need not be reported. Only a highly devel-
oped program can be adequate.

I am greatly indebted to Dr. S. Z. Cekan for the data mentioned
in the text and used for Tables 1-3, and also to Dr. D. Rodbard for
much helpful correspondence.
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