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1. Introduction

This paper deals with multi-stage tandem queueing systems (TQ
for short) where each stage consists of a single server. An infinite
queue is allowed to form before the first stage, whereas only a finite
queue is allowed before all of the other stages. This assumption brings
to a result of the blocking of servers besides the last one. In a study
of the TQ with blocking effect it is difficult to analyze the system be-
cause it is impossible to regard its servers independent and treat them
separately. Therefore, an analytical study for this system has not been
done so extensively. Hunt [3] and others have analyzed a maximum
utilization and a queue length of two- and three-stage TQ, in which
an interarrival time and each service time distributions are Markovian
type. Suzuki [11] derived steady state distributions of a queue size
and a sojourn time in two-stage TQ with no intermediate queue, where
the input stream forms a Poisson process. Often, these assumptions are
not considered practical. Moreover, these analyses have been essentially
based on characteristics of the system and so it is difficult to extend
results to more complex systems.

Alternatively, there are some tendencies for proving general theo-
rems of a qualitative character, valid under quite general conditions,
but little study has been done under this heading in this area except
that there are important theorems of Suzuki [12] and Hildebrand [2]
on the ergodicity of the system.

In a practical viewpoint, another fruitful approach is to establish
inequalities and approximation formulae concerning such variables as a
delay time and a queue length, which are valid for a wide range of
input and service mechanisms. For a single server queueing system
(SQ for short) there exist such useful formulae including pioneering
studies by Kingman ([5], [6]).

The present paper focuses on such inequalities and approximation
formulae for a multi-stage TQ. Our approach developed in this paper
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is to reduce it to a SQ equivalent in some sense to the TQ. First,
begin with comparing the system with a certain SQ, some inequalities
are derived for a mean delay time and a mean waiting time in two-
stage TQ by using a mean waiting time in the SQ (Section 3). Second,
as an extention of a case of two-stage TQ we try to reduce a multi-
stage TQ to a certain SQ and derive an inequality for a mean waiting
time in the TQ by using a mean waiting time in the SQ. We also
derive upper and lower bounds for a capacity of the TQ (Section 4).
From these inequalities some approximation formulae are set up. The
validity of these formulae proposed in this paper is established by com-
paring with known analytical results whenever they are available and
with simulation results otherwise (Section 5).

2. Description of the system and some notations

In this section we sum up the description of the system and some
notations used in this paper. First, K-stage TQ where each stage con-
sists of a single server is considered as follows: There are K service
facilities (or servers for short, numbered 1 through K) arranged in
tandem. Customers arrive at the system independently and queue up
for a service by the first server (server 1). Each customer receives
the service by the server 1, next the service by the server 2 and so
forth until the service by the last server (server K). The service
discipline is first-come-first-service at each stage. The queue before the
first server may be allowed to grow unlimitedly, but on and after the
second server, only a fixed finite number of customers are permitted
to wait. If a queue before the kth server is full when another cus-
tomer completes his service by the (k—1)th. server, this customer stays
at the (k—1)th stage and blocks further service at the stage until the
service by the kth server is finished. There are no customer defections
at any point. ,

When we consider such TQ, we can identify it with a TQ where
none of customers are permitted to wait between servers. This fact,
which is assured by considering a suitable number of servers with a
service time identically zero, is due to Avi-Itzhak and Yadin [1]. Ac-
cordingly, from now on we assume without loss of generality that an
intermediate queue is not allowed. For such a system, a notation of
GI/G,—Gy—- - -— Gy is employed where G, is a service time distribution
function (d.f.) by the server k.

Let {A,} and {S, .} be a sequences of mutually independent identi-
cally distributed (i.i.d.) random variables (r.v.’s) defined on a probability
space (2, B, P). A, represents an interarrival time between (n—1)th
customer (C,_,) and C,, and S, , represents a service time of C, by the
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server k. By using these r.v.’s we define other r.v.’s as follows:

2.1) a,=A+A,+---+A, (time epoch of the nth arrival to the

system),
max (Typpnt1r Teo1,ntSen) for k=1,2,.--, K—1
2.2) T..=
Tk—l,n+Sk,n for k=K
(time epoch at which C, leaves the
server k),

2.3) Ty.,=max(T},,a,) (time epoch at which C, enters his first
service by the server 1),

2.4 W=T,.—a, (waiting time of C, in front of the first
server),
2.5) W,=Tx_,.—a, (sojourn time of C, until a service by

the last server begins since his arrival
to the system)

and
26) B,,=T.,—Ty1.,—S:. (blocking time of C, in the kth stage).

We often use an r.v., say X, without a subscript n, say X, (for exam-
ple, W instead of W,) which indicates an r.v. with a limiting d.f. of
X,.. Let XVvY and XA Y denote a maximum and a minimum of two
r.v.’s X and Y, respectively. Further, we write Xc Y if X is stochas-
tically smaller than Y, i.e. Pr(X>2)<Pr(Y>z) for any = and XY
if a d.f. of X is identical with that of Y, i.e. Pr(X<#)=Pr(Y<z) for
any 2.

3. Inequalities for 2-stage tandem queueing systems

Consider a 2-stage TQ with no intermediate queue in which a service
time d.f. at each stage and an interarrival time d.f. are arbitrary. In
[12], Suzuki proved that a sequence of a waiting time d.f. of nth cus-
tomer in this system converges to an ‘honest’ d.f. as n—oo iff EA>
E(S;VvS;). Namely, the TQ is identical with the SQ with a d.f. of S,V
S; as the service time d.f., at least, on the equilibrium condition of
the system. We denote such SQ by the notation GI/G/1. Though these
systems have the same equilibrium condition, it cannot truely be regard-
ed their nature as the same. However, if we can find some relation-
ship between the TQ and the SQ, GI/G/1, it would be possible to apply
precise results in the single server queueing theory to the TQ. The
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main objective of this section is to find some relations between the GI/

G,—G,; queue and the GI/G/1 queue. From now on, the GI/G/1 queue
is called as a reduced single server queueing system (RSQ for short) of

the GI/G,— G, queue. Let X, and W, be a service time and a waiting
time of the nth customer in the RSQ, respectively. We assume that
{X,} is a sequence of i.i.d. r.v.’s with a d.f. of S,VS,.

By comparing the TQ with its RSQ, we can obtain the following
inequalities in the steady state.

THEOREM 3.1.
(8.1) EW'<EW<EW<EW+EX.

PROOF. A proof of EW'<EW is given in Section 4 for more gen-

eral case (see Theorem 4.1). We prove EW<EW and EW<E W+EX
here. By using (2.1), (2.2), (2.3) and (2.5), we have a recursive rela-
tion for W, in the 2-stage TQ as follows.

(3.2) Woi1= T ni1—Cnis
=81at1V(TyntStni1— i) V(T1n+ Sy n—Cnr1)
=811V (Spnt1VSyn—Anp+ Ty n—a,)
=S,011V(Unt+W,)

where U,=S,,.,1VS;.—A,.1. If we assume that the system starts from
scratch so that W,=S,,, we have as the solution of (3.2),

(3.3) W,=8..V Ui+ S1,n-1)V(Uno1+ U+ S1a2)V - - -
VUit +U+S,) -

On the other hand, according to the famous relationship by Lindley
[8], we have for the RSQ

(3.4) W,.=0V (U, +W,)

where U,=X,—A,,,. If we assume that W,=0, we have as the solu-
tion of (3.4)

(3.5) W,=0vU,_ VO, i+ T, )V - VOoyt - +T) .

Since U, has the same distribution as U,, and S,;=0, we have from
(3.3) and (3.5)

(3.6) W.cW, .

Now, replacing S,; in each term of the right-hand side of (3.3) by
S,:VS; i, we have
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8.7 W.c(S,n VS n) V(Unoi +S1,0-1VSs i) Vo o
V(Ui - - +U 48,1V Se0)
=Sx,n\/Sz,n-1+0VUn"i1\/(Un’51+Un"iz)V ¢ V(Untl"' e +U1*)

where U*=S, VS, ;.1—A;;. Since U*2 T, and S, ,VS; ... < X,, we have
(8.8) W.cX,+W,.
From (3.6) and (3.8), (3.1) follows. Q.E.D.

From (8.1), the following inequalities can be obtained for the mean
delay time E(W°+B,) (=EW—-ES)) in the TQ.

(8.9) EW—ES,<E(W'+B)<EW+EX-ES,.
If p (=E X/E A)<1 so that ES;/EA<1 and (EX—ES))/E A<1, we have
(3.10) |L,—L,|<1

where L,=E(W'+B,))/EA and L,=EW/EA. If EA is slightly greater
than E(S,VS,), i.e. in heavy traffic situation, when I:q becomes much
larger than unity, so (3.10) implies that

(8.11) L,~L, or E(W'+B)~EW

in the sense that its relative error becomes small.
Furthermore, the following upper bound for E(W°+B;) can be ob-
tained.

THEOREM 3.2. For a GI/G,— G, queue, if E(S;VS,)? EA*<co and
EU<O, then

0 Var (U) - P
(12 BW+B)sEr ) +EX }zzsl)/\(}szs1 1_p>

where p=E X[E A.

ProOOF. First we show that

: Var (U) 0
(3.13) E(W'+B)= 2R (—0) +ES,; T—p .

Now, (3.2) implies that, if S, and U are independent of W and have
the common distribution of S;, and U,, respectively, then

(3.14) WASV{U+W).

Hence,

(3.15) EW=E(S,v({U+W)) and EW!:=E(S,V{U+W)):.

Let Z, be a r.v. defined by —{S..A(S;.VSsni1—A,+W,_,)}. Then
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the following functional relationships hold :

S\VU+W)—-Z=8+U+W
(3.16) and
S\ VU+W))Y+Z*=S}1+U+W) .

And so,

E(S,V({U+W)—EZ=ES,+EU+EW
(3.17) and
ES,VU+W)+EZ:*=ES!+E(U+W):.

By using (8.15), (8.17) can be simplified as
(8.18) —EZ=ES+EU and EZ'’=ES{+EU'+2-EW-EU.
From (3.18), we obtain

(3.19) Var (Z)=Var(S,)+Var(U)+2(EW—-ES)EU,

so that

(3.20) E(W'+B)=EW—ES,= Var (U)+Var (S,)—Var (Z) .
2E(-U)

Well, let R, be a r.v. defined as

(3.21) R,=Z,+8,,=0V(A,+0A(S;,»— Sz n-1)—W,) .

In the steady state, we have

(3.22) ER=E(-U)

and

(3.23) Var(Z)—Var(S,)=Var(R)—2 Cov (R, S)) .

On the other hand, from (3.21)

(3.24) R,cA, or S,.-R,CS,.-A,.

Since S, , is independent of A,, we have
(3.25) E(S;-R)<ES,-EA .
Using (3.22), (3.23) and (3.25), we can rewrite (3.20) as

Var (U)—Var (R)+2 Cov (R, S)
2E(-U)

_ Var(U) , E(S;-R)—ES,-ER

=2E(-U) E(-D)

(3.26) E(W'+B)=
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< Var() | ES,-EA-E(-U)-ES,

=2E(-U) E(-U)
_ Var(U) . EX
T 2E(=-D) +ES, E(-D)

which is equivalent to (3.13). On the other hand, the following in-
equality holds for the mean waiting time in the RSQ (Kingman [5]):

= _ Var(A)+Var(X) _ Var (D) _ Var(U)
EWs= 2EA-EX) 2E(-D) <_2E(—U)>°

From (8.9) and (8.27), we can obtain

(3.27)

(3.28) E(W'+B)=EW—-ES,<EW+EX-ES,
Var (U)
=7 - .
S3ECD) +EX-ES,
From (3.26) and (3.28), (3.12) follows. Q.E.D.

We can derive further inequalities than (8.1) and (3.12) for some
special cases. Now let begin with inequalities for a mean delay time
in a 1/2(=E A)-MRLB/G,—G; and DFR/G,— G, queues (that is, the class
of GI/G,— G, queues whose arrival process has 1/2-MRLB or DFR prop-
erty). Before deriving these, we mention about y-MRLB and DFR
properties (Marshall [9]). Let F(x) be a d.f. defined on a positive real
axis. We define F(x) to have -MRLB (Mean Residual Life bounded by
r from Below) property when

SM(I—F(y))dy/(l—F(x))gr for all 20 s.t. F(z)#1.

And we define F(x) to have DFR (Decreasing Failure Rate) property
when
(F(z+4)—F(x)/(1—F(x))

is decreasing in z s.t. F(x)#1 for any 4>0. Then we have the fol-
lowing

THEOREM 3.3. For a 1/-MRLB/G,— G, queue,

Var(U) _ E(=U)
(3.29) EWs_2 = s

FO’r a DFR/G;-’GZ queue,

Var(U) _EA(C:—p)
(3.30) EWs 2 =y 5
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where C, 18 a coefficient of variation (c.v.) of an interarrival time d.f.
PrOOF. Marshall [9] derived that
Var(U) _ EA(1+p)

(3.31) EW<

~2E(-0) 2
for a 1/2-MRLB/G/1 queue and
= _ Var(U) E A(C:+p)
3.32 EwW< —
(8.32) W= 2E(-U) 2
for a DFR/G/1 queue. From (3.1) and (3.31) we can obtain
= Var(U) EA(l+p)
. EW=<E =< — EX
(3.33) w< W+EX_2E(_U) S+
_ Var(U) _ E(-0)
2E(-0U) 2
for the 1/-MRLB/G,—G, queue. Similarly, from (3.1) and (3.32) we
can obtain (3.30). Q.E.D.

Because a Poisson arrival process has 1/2-MRLB property, (3.29)
holds for M/G,— G, queue, too. Especially in an M/M— M queue, we
have the following lower bound for E (W°+ B,).

ProPOSITION 3.1. For an M/M— M queue,
(3.34) E(W'+B)ZEW.

ProOF. Let F(x)=1—e* be an interarrival time d.f. and G,(x)=
1—e** be a service time d.f. by the <th server (¢=1,2). Using

Pollaczek-Khinchin’s formula, a mean queue length of the RSQ, flq,
beeomes

(3.35) f=1EWw=11C_¢
2 1-—p

where C, is a c.v. of S;VS;. Insert

s Var(S,vS, _14+2a—a+2a*+at _ 14a+d
Ci= LY — and p=p—2T%
EEVSY (Faray 0 T e
where a=g,/p, and p;=2/p, (¢=1, 2) into (3.35), we have
(3.36) f,= 0}(1+2a+a*+2a*+at)
a(l+a)D

where D=a+a—(1+a+a’)p;. On the other hand, Kishi [7] gave an
explicit formula of L, (=2 E(W°+B,)) as follows:

BT
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_ H(pi+p2)—pio3/ (01 + 02)
(3.37 L,=
) ! H(H—p,—py)

where H=1+(p,0:/(01+p;)). After tedious computations, L, is rewritten
as follows:

3.38 L,=ftd(+atd+d+(l—ata)p)
439 a(l4+a+p)D

Now, subtracting L, from L,, we obtain

3.39 L—L,= pi
©-39) f (49 (l+atp)
which is clearly positive for all positive values of p, and «a. Q.E.D.

An important point to note about the derivation of this proposition
is that the difference between L, and L, for M/M— M queue is very
small (order of p}) for all over the range 0<p<1, i.e. Lq:I:,, (or, equal-
ly, E(W*+B)~EW) for 0<p<1. For some special cases, it will be

shown below that E(W°+B,) equals to EW. These results, together
with (3.10), suggest that (3.11) holds for considerably wide subclass of
GI/G,— G, queues not only in heavy traffic situation but for all over
the range 0<p<1, which will be assured numerically in Section 5.

For the TQ where a service time of at least one server is constant,
we have the following

THEOREM 3.4. For a GI/D—G queue,

0 T Var (U)
(3.40) EW'+B)=E ng .

For a GI/G— D queue,
(8.41) E(W'+B)=EW.

ProOF. We prove (3.40) first. Let C be a constant service time
by the first server (that is, S;,=C for all n), then from (3.2)

Wn+l=Cv(Un+Wn)
where U,=CVS;,—A,,;. Using this equality
(3.42) no+1+Bl,n+1=W,H.[_C:OV(Un+Wn_C)=OV(Un+ W7?+Bl,n)

where U, is independent of W+ B,,. On the other hand, (3.4) holds
for W,,,,l in the RSQ. Since U, has the same d.f. as U,, W2+ B,
has the same d.f. as W,, i.e.
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(3.43) W+B AW, .

From (3.43) and (3.27), we can obtain (3.40).

Now, let (W)+B,,)* be a delay time of C, in a dual system of
GI/D—G queue (denoted by GI/G— D) which is obtained by interchang-
ing two service facilities. The following result has been derived by
Kawashima [4]:

(8.44) Wi +B,,.C(W.+B,.)*.

It is clear that the RSQ for the GI/D—G queue is identical with that
for the GI/G— D queue, accordingly, from (8.43) and (3.44) we can ob-
tain (3.41). Q.E.D.

If a service time by the first server is always longer than that by
the second server or vice versa, the following relations hold.

ProposITION 3.2. If Pr(S,=8S;)=1, then

0 T Var (U)
(38.45) E(W'+B,)=E W§2—E(—:ﬁ .

If Pr(S,<8;)=1, then
(3.46) E(W'+B)=EW.

Proor. Let W;+B,, be a delay time of C, in a GI/G,— G, queue
where Pr(S,=S;)=1 and (W.!+B,,)* be a delay time of C, in a dual
system of the GI/G,— G, queue. Since the first server is never blocked
in the GI/G,— G, queue, we have

(8.47) W2+B, AW,

and (3.45) follows. On the other hand, (3.44) is also true in this situa-
tion (Kawashima [4]). Using (3.44) and (3.47), we get (3.46). Q.E.D.

4. Inequdlities for K-stage tandem queueing systems (K=3)

For any K(=38)-stage TQ, it is quite difficult to treat a waiting
time, a delay time, ete., analytically, and the authors have very little
information on them. Same as the preceding section, it seems useful
to reduce the TQ to an equivalent SQ in some sense and to approxi-
mate a mean delay time in the TQ by a mean waiting time in the SQ.
An upper bound for a mean waiting time before the first server E W?°
in the TQ (i.e. the mean delay time minus the mean blocking time) is
given by the following theorem. The theorem shows that E W?° is al-

ways smaller than the mean waiting time in an. SQ (EW) if we take
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a d.f. of S;vVS;V::--VSk as a service time d.f. of the SQ.
THEOREM 4.1. For K-stage TQ and the SQ mentioned above,

4.1) WicW,  for any n.
Hence,
(4.2) EW'sSEW.

ProoOF. Using (2.3), (2.4) and (2.6), we can obtain
4.3) W=0v(W_1+8.1+Byn1—A4A,) for any n and any we Q.
We define a r.v. U, as S,,_;+B,,_,—A,. Similarly for the SQ
(4.4) Wm0V (Woost X, i —4,)

where X, is a service time of C, in the SQ. Here we also define U,

as X, ,—A,. If both systems start from scratch, i.e. W¢=W,=0, the
following two equalities are derived as the solutions of (4.3) and (4.4).

(4.5) We=0VUN(U,+U, )V -+ VUt +--+ 1)
and

- (4.6) W,=0v U,V O, +UT,_)V - -V{U+---+T) .
Now, the following inequality holds (Hildebrand [2]):
4.7 StactF Bt S81,a1VSsnsV e Vi x(EYoo)
So that
(4.8) WLROVUXNUX+UX)V - - V(UF+-- - +U¥)

for any » and any we @

where U*=Y,_,—A,. The right-hand side of (4.8) is identical with W,
in distribution because Y; has the same distribution as X;. Accordingly,
(4.1) is concluded, so that

(4.9) EW<EW,.
Since both sides of (4.9) have their limiting values EW® and EW, re-
spectively, (4.2) follows. Q.E.D.

It is still an open problem to evaluate a mean delay time in the
TQ by a closed form. Practically, however, it is necessary to estimate
the mean delay time, though the estimation is slightly rough. Now
we proceed to search more effective SQ than that used in the Theorem
4.1 in order to extend the results derived in Section 3. In 2-stage TQ,
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since EA>E(S,VS,) is an equilibrium condition, we considered as its
RSQ the SQ whose service time d.f. is that of S,VvS,. In doing so,
we derived some closed relations between the mean delay time in the
TQ and the mean waiting time in the RSQ. For any K-stage TQ also,
if there exists a d.f. whose mean is connected with an equilibrium con-
dition in the TQ, we may expect that an SQ with this d.f. as its serv-
ice time d.f. plays an important role in estimating the mean delay time
in the TQ. From now on, this SQ is called by the RSQ same as the
case of 2-stage TQ. In order to derive this d.f. we consider K-stage
TQ where an infinite customers are always queueing up in front of the
first stage, and let B, be a blocking time of the C, in the first stage
in this imaginary system. Hildebrand [2] proved that the sequence
{S,.+B{.} converges in distribution and that there exists an ‘honest’
equilibrium d.f. of a waiting time if lim E(S,,+B{,)<EA. Let F(-)

be a limiting d.f. of S,,+B/,, then this F(-) is just what we want.
and it becomes the service time d.f. of the RSQ. We note in paren-
theses that in 2-stage TQ, a d.f. of S,V S, becomes the F(.).

In order to approximate the mean delay time in K-stage TQ by the
mean waiting time in the RSQ with F(-) as the service time d.f., at
least the first few moments of F(-) are needed. Unfortunately, the
existence is the only matter which is known to us about F(-). Accord-
ingly, we require to derive approximation formulae for these param-
eters. The following theorem concerns the first moment of the F(-).

THEOREM 4.2. For K-stage TQ (K=3), the following inequalities
hold :
(4.10) E{S;VS:V(S;+0A(S;—S))}

VE {SgV8Sx_1V(Sx_:+0A(Sk_1—Sk))}
é}Eg E(S,»+Bl.)=E(S,VS;V-:-VSy)

where {S;, S{, S;.}, {S:, S{}, {Sk-1, Sk_,} and {Sg, Sk} are i.i.d. r.v.’s,
respectively.

Proor. In this proof, we treat only the imaginary system describ-
ed above. Then regarding all a, equals to zero, from (2.1), (2.2) and
(2.3) we have
(4-11) Tl,n—To,n=S1,nVSz,n-1V(Sa,n-2+ Tz,n-z—Tl,n—l)V e

V(Sxn-x+1F+ Te-tn-xs1— T n-)
=81,.V Sy n 1V (Ssn2tTons—Tiny)
for any » and any we 2.

Furthermore,
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412) Ty =T 1=Ton-2—(Tia2tSin-1)V o0 s
=0A(Tyn-2—T1n2—81,a-1) ZOA(Sg,n-2—Si,n-1) -

Hence,
(4.13) Ty n—T0n=S1,2VSs a1V (SsastOA(S:ns—Si,n 1)) -
By taking a limit of an expectation of both sides, we can obtain

(4.14) lim E (S, ,+B.)=lim E(T,.,—T,.)

n—oo n—

2E {S,VS;V(S,+O0A(S;—S))} -

By using the duality of the TQ derived by the authors [13], we can
obtain

(4.15) 1'1_12 E(Syn+B{.)ZE {SkVSk_1V(Sk_s+0A(Sk_1—Sk))} .

From (4.14) and (4.15), the first inequality in (4.10) follows. On the
other hand, by taking a limit of an expectation of both sides in (4.7)
we can obtain the second inequality in (4.10). Q.E.D.

In the following section, we will derive an approximation formula
for the mean of F(-) based on Theorem 4.2. We know, for the pre-
sent, nothing about the second moment of F(-), however, we will give
an approximation formula for it based on much numerical experiments.
Using those results, we will show that the mean delay time in the TQ
is well approximated by the mean waiting time in the RSQ in the fol-
lowing section.

5. Numerical examples

For a given tandem queueing system like as the one treated in this
paper, the only way to know such characteristics as a mean queue
length, a mean waiting time, etc., is the method of simulation experi-
ments, because of the lack of analytical results. Simulation experiments
are, however, much time-consuming and the estimated value is only
assured to be within such and such a confidence interval. Consequently,
it is very convenient if such characteristics can be estimated, though
approximately, without using simulation experiments. In this section
we propose some approximation formulae which are based on results
given in the previous sections and show with many numerical examples
that they are practically useful for a wide range of TQ’s. In the fol-
lowing, we treat a mean queue length L,=AE(W°+B) instead of
E (W°+B) because of its dimensionless property. In practical situation,
balanced-service-time systems are recognized to be most important, so
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a mean service time of each server is set to unity.

In Section 3, we showed that the mean delay time in the 2-stage
TQ is approximately the same as the mean waiting time in its RSQ .
in heavy traffic situation. Now we examine the following approxima-
tion formula for many systems not only in heavy traffic but also in
light traffic situations.

(5.1) L,=2E(W'+B)~L,=2EW.

5.1. 2-stage TQ with Poisson arrival process

For M/M— M, M/|M—D and M/D— M queueing systems, tables of
the mean queue length for various
system parameters are published
([14]). On the other hand, the mean
queue length of the RSQ for each
system can be calculated using Pol-
laczek-Khinchin’s formula, i.e.,

Lq (a ) M/M—’M
101

1+C _ ¢

5.2 L==T% _° .

(5.2) 0 2 1-p

The mean queue length of the TQ
and that of the RSQ, together with
the upper bound of the mean queue
length of the RSQ (Kingman [5]),

g3 05 05 5 (5.3 AVar@U)_p+Ci o

55 07 08 09 E(-0) 2 1

Lq (b) M/M—’D Lq (C) M/D“’M

10} 10}

5} 5f

Ot 05 06 0.7 05 0.6 0.7
5% 0.7 08 09 5 o6 07 08 09 5

Fig. 5.1. Mean queue length in M/M—M, M/M—D and M/D-M queuéing systems,
®+Lg; ——:Lg; =2 Var(U)2E(-U)
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are illustrated in Fig. 5.1. According to these figures, L,/s are well-

approximated by IZ,,’s not only in heavy traffic situation but for any
value of p<1.

When service time d.f.’s are arbitrary, the exact formula for the
mean queue length is not known, so we resort to a simulation experi-
ment to know it. In a single simulation run, we start the system from
scratch and average whole data of 5000 customers. Let s, and s,, be
a service time of C, at the first and the second stage, respectively, a,
be an interarrival time between C,_, and C, and w, be a delay time of

C.. Then, g and L, are evaluated as follows:’

where a=(1/N) 3 a, and 8=p(1/2N) 3 (8, ,+8:.,), p=E(S;VS,) and

11

Eq=—&-*—‘N—E W, -

Then a point (g, L,) is illustrated in a p-L, plane. The mean queue

length of the RSQ, L,, can be obtained from (5.2). Among many sim-
ulated systems, two of them are illustrated in Fig. 5.2(a) and (b). On
the same plane, the upper bound of the mean queue length of the RSQ
which is given by (5.3) is put together. In each figure, a denotes
(C3+CY/2 with c.v.’s C, and C, of the RSQ. According to these figures,
the approximation formula (5.1) seems to be successful for all p<1.

5.2. 2-stage TQ other than 5.1

The mean queue length for GI/G,— G, cannot be expressed in a
closed form in general, so a simulation experiment is carried out to know
it. The mean queue length for its RSQ is also unknown in general,
but there is a well-going approximation formula for the mean queue
length for a single server queueing system has been proposed by one
of the authors [10], then we use this formula (5.4).

6.4) L=GtC o

2 1—p
Several computer runs were made for typical queueing systems in which
an interarrival time and service time d.f.’s are Erlangian type. Fig.
5.2 (¢)~(f) are four examples of our simulation experiments. According
to them, our attempt to reduce the TQ to the RSQ has a good chance
of success.

In this case, most points lie beneath the dotted line, and so it seems
to be correct, though we cannot prove analytically, that Var(U)
[2E(—U) is an upper bound of E(W°'+B,).
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5.8. K-stage TQ (K=3)

A mean queue length cannot also be calculated analytically in these
cases and simulation experiments are designed for Erlangian type TQ’s.
On the other hand, a mean queue length of the RSQ is approximately
evaluated from (5.4) with a knowledge of a c.v. of a service time d.f.
of the RSQ. Following the preceding section, the service time d.f. of
the RSQ is a limiting d.f. of S,,+B,,, say F(-), but unfortunately,
this F'(-) is only known to exist. Now we here use some approxima-
tion formulae to evaluate first two moments and a c.v. of F(-).

For the first moment of F(.), say x, we showed inequalities about
¢ in the preceding section, Theorem 4.2. With our much numerical ex-
periments, the following formula is
useful to evaluate p approximately
(see Table 5.1).

Table 5.1. Test of an approximation
formula (5.3) for oo/Eg—--+—Eg,

(k1 oo, kg) u a

(5.5) p:%{Z EWS,V:--VvSx) 1,1,1,1) 1.943 1.958
(3,3,3,3) 1.549  1.565

+E(S;VS:;VS;) (1,3,6,10) 1.580 1.569

+E (ScVSx_1VSx_y)) = . 1,1,1,1,1) 2.059  2.058

3,3,3,3,3) 1.607  1.616

For the second moment of F(-), we 1,2,3,6,10) 1.678 1.659
have no analytical discussion but we (3,3,1,3,10) 1.686  1.698
conclude with our much numerical 1,1,1,1,1,1) 2.141  2.142
1,1,1,1,1,1,1) 2.208  2.213

experiments that a variance of an

Table 5.2. Comparison between Y=S;+B; and X=max(Si,:++, Sk)
for oo/Ex—Eg,—+++—Ex,

* %k
(b, -+ kx)  Var(Y)  Var(X) cv.(Y) Var,ﬁx ) z
f: Y X

1,1,1) 1.38 1.36 0.44 0.41 0.72 0.70
3,3,3) 0.30 0.34 0.14 0.15 0.57 0.57
3,1,10) 0.58 0.64 0.25 0.26 0.62 0.63
(10,1, 3) 0.64 0.64 0.27 0.26 0.64 0.63
1,1,1,1) 1.49 1.42 0.39 0.37 0.70 0.69
(3,3,3,3) 0.35 0.33 0.15 0.14 0.57 0.57
(1,3, 6,10) 0.67 0.58 0.27 0.24 0.63 0.62
(10,6,3, 1) 0.59 0.58 0.24 0.24 0.62 0.62
1,1,1,1,1) 1.50 1.46 0.35 0.35 0.68 0.68
(,3,3,3,3) 0.33 0.33 0.13 0.13 0.56 0.56
(1,2,3,6,10) 0.76 0.62 0.27 0.23 0.63 0.60
(10,6,3,2,1) 0.57 0.62 0.20 0.23 0.60 0.60

* For 3-stage TQ, g=E(S1VS:VSy).

2
** a=—c%cf in (5.4) where Ci=1 and Ci=c.v.}(Y) or E:}—g‘g—)- in this table,
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Fig. 5.3. Simulation results for 3-stage tandem queueing systems.
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r.v. S;VS;V .-V Sk approximates that of F(-) with practical accuracy -
(see Table 5.2). Finally, the c.v. of F'(-) is calculated by the above two
values. According to our simulation experiments, these formulae are
not so bad in many cases. The mean queue length for the TQ are
examined against this approximated values of the mean queue length
for the RSQ. Some parts of our simulation experiments are shown in
Fig 5.3, Fig 5.4 and Fig 5.5. Method of generation of each point in
these figures is the same as Section 5.2 above. According to these
figures the mean queue length for the TQ is well approximated by the
mean queue length for the RSQ in many cases.

Same as Fig. 5.2, a curve of AVar(U)/2E(—U) is superposed to
each figure. If C, is large ((a)~(e) in Fig 5.3, Fig 5.4 and Fig 5.5),
Var(U)/2E(—U) seems to be an upper bound of E(W°+B;) but if C,
is relatively small (Fig. 5.3 (f), Fig. 5.4 (f) and Fig. 5.5 (f)), this prop-
osition is doubtful.

Well, we examined applicability of the approximation formula (5.1)
with many queueing systems but for most of them the right-hand side
of (5.1) could not be calculated exactly but evaluated approximately by
using (5.4). So, we may propose the next approximation formula with-
out using the mean waiting time in the RSQ rather than (5.1).

2
(5.6) L=GtC o
1-p

Let us describe in detail. In our approximation formula we use
Var (S,V - - - VSk) instead of Var(S,+B,) and z instead of p. This means
that if d.f.’s of service time are not changed, arrangement of servers
is no effect on the delay time. According to our simulation experiments,
however, a mean delay time in a system, say Q,, seems to be slightly
longer than that in a service-order-reversed system, say Q., when a c.v.
of the first stage service time d.f. in @, is greater than that in @,. On
the other hand, under the assumption on @, and @, above, Var (S,+B,)
in Q, seems to be slightly greater than Var(S,+B,) in @, in our simu-
lation experiments. Hence, a c.v. of S;+B, is not the same in both
systems (see Table 5.2). So, if we can calculate a c.v. of S,+ B, exactly,
the approximation formula (5.1) or (5.6) will become more acculate using
this value.

6. Concluding remarks

We have shown that the approximation formula (5.6) is practically
useful for any tandem queueing systems. But there remain further
studies to take the place of a simulation method. They are the study
of the determination of the range of subeclass in which such and such
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a property holds, the study of the property of F'(-) appeared in Section
5.3, and so on.

In conclusion we give two conjectures, which we cannot prove an-
alytically at yet, in evidence of much simulation experiments.

CONJECTURE 1*. For 2-stage tandem queueing system,

0 Var (U)
EW<EW +B)§2E( 0y

COoNJECTURE 2. For K-stage tandem queueing system,
|L,—L,|<1

where flq is a mean queue length of the RSQ with F(-) (c.f. Section
5.8) as the service time d.f.
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