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Summary

This paper is concerned with probabilities (error probabilities), caused
by misclassification, of linear classification procedures (linear procedures)
between two categories, whose mean vectors and covariance matrices
are assumed to be known, while the distribution of each category may
well be continuous or discrete. The tightest upper bounds on the largest
of two kinds of error probability of each linear procedure and on the
expected error probability for any apriori probabilities are obtained.
Moreover in some cases of interest, the optimal linear procedure (in the
sense of attaining the infimum out of all the upper bounds) is given.

1. Introduction

Suppose there are several categories, characterized by their prob-
ability distributions, from which every observation comes. In the gen-
eral statistical classification problem, we must assign one of the cate-
gories to the observation according to some predetermined procedure.
We want to seek the procedure, in a class of procedures such as a class
of linear ones or a class of all ones (admitting randomized ones), that
makes the probability of misclassification as small as possible.

We treat, throughout this paper, the case of two categories, whose
mean vectors y, g, (not the same) and covariance matrices J,, 3, (non-
degenerate) are assumed to be known. We define linear procedures as
follows. Let d (#0) be a vector and ¢ a scalar. An observation z is
classified into the first category C, if d’x<# and into the second one
C, if d'x>60. The function d'z—@ is called the disecriminant function
with respect to this classification procedure.

When the distribution of each category is multivariate normal,
Anderson and Bahadur [2] have studied the linear procedures in detail.
The error probability of the minimax procedure is
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1.1) O*(4)2) = S; 1/1?; e*ndy

where £=4 max {d'(ey—ms)/(vd' 2 d +vd'2d)}? is the generalized Maha-
#*

lanobis distance. In the case of X,=23, (=2) the minimax procedure
among all possible procedures (admitting randomized ones) is given by
well known linear discriminant function '3~(u,— ) —(1/2) (et + 241)2 (122
—p). Furthermore in this case the procedure is Bayes one with re-
spect to equal apriori probabilities, and 4 becomes usual (u;—p)' 3 (i
—n).

Our main concern is not with the case where we know the form
(suitably parametrized) of the distribution for each category but with
the case where we are given only first and second moments of the dis-
tribution. Let F=(F), F;), where F; is the distribution function of the
category C; (1=1, 2), F=(¥,, &F,), where F,=F (¢, X,) is a class of all
distribution functions with specified mean vector g, and covariance
matrix 2,, and II=(II,, Il,) (I1,=0, II,+11,=1), where II, is the apriori
probability of C;,. Let ¢(x)=(¢i(x), ¢:(x)) (Lebesgue measurable, ¢,(x)=0,
é1(2)+¢:(x)=1) be a (randomized) procedure such that an observation z
is classified into C; with probability ¢,(x), &= {¢(x)} be the collection of
all such ¢’s. And define by &%= {¢%(x)} be the collection of all linear
procedures, where ¢ (x)=¢7’(x) is equal to the indicator function I4.<s(x)
of the half space {x|d'x<6}, and similarly for ¢f(x). When the true
distribution of the category C; is F,, the (conditional) error probability
of classifying an observation, which is actually taken from C;, into C,_;
(=1, 2) becomes

1.2) e, F)=§ (1—¢(@)dF,, i=1,2

and the expected error probability with respect to the apriori prob-
abilities I becomes

1.3) en(p, F)=11e(p, F)+T:e(9, F) .

In the case of the univariate and equal apriori probabilities (put
I1’=(1/2, 1/2)), Chernoff [3] showed that sup mf en(p, F')= sup mf eno(p*,

F)=(1/2)[1+ £#/4]7!, where 4=2|y,— y,l/(o‘l+ag), by two exce]lent methods
which, however, seem difficult to be extended to the multivariate case.
On the other hand, Isii and Taga [6], from the point of view of mathe-
matical programming, treated the multivariate case in full generality.
Lachenbruch et al. [7] studied robustness of the linear and quadratic
classification procedures.

Restricting the procedures to the linear ones, Yau and Lin [8] ob-
tained an upper bound for i*an sgp ex(¢®, F'), where st;p en(p*, F') seems
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to represent the deficiency of ¢ with respect to /7. Therefore, if ¢**
attains the infimum, it is considered optimal with respect to 77. In the
particular case of II°, their upper bound is

(1.4) i:ILf Sup eno(9”, F)=2[(n— ) (214 2) 7 (e — )]

Under the further assumption of equal covariance matrices, this bound
becomes

(1.5) iBLf sup en(p*, F)Z[4/4]".

"~ We shall give, applying Isii’s theorem [56] on Chebyshev-type in-
equalities, the tightest upper bound of ian sup e;(¢*, F') (Theorem 2.3,
¢ F

though it has a rather complicated form. From Theorems 3.2 and 3.1
that will be given in Section 3, we obtain corresponding to (1.4), (1.5),
respectively,

(1.6) inf sup exo(¢”, F)<[1+4£/4]"
sL F
and
1.7 inf sup epo(¢*, F)=min {% [1+42/4]—1} :
L F

when 3,=23;. We can easily show that (1.6) strictly improves (1.4) by
using the following facts (i) (ii),

(i) sup( da
d#0

2
——— |} =a'A"'a for any positive definite symmetric matrix
x/d’Ad) yp | y

A and any constant vector a,

(ii) (Wa ++B8)/¥2 <va+p for any scalar =0, $=0. In fact,

(1.8)  2[(—p) (21 +2) (e — )™

=2[sup (At 2 [sup (o=t )"

=(4/4)7' > [1+444]7 .

2. Chebyshev-type inequalities

It may be easily examined that Isii’s theorem ([5], Th. 3.1., pp.
285-286) can be used for calculating

@1)  supe(g, F)=sup || (1—g{@)F.| Fic Fu, 2] -

Thus we have
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(2.2) supey(g”, F)=inf {S g(x)dFilg(‘”)gl"?‘iL(x). for all.a: } ’
F g(x): quadratic function
1=1,2.

We easily see from the right side of the above equality that we need
not pay attention to g(x) if there exists a quadratic function h(x) satis-
fying 1—¢f(x)<h(x)=<g(x) for all xz. Since g(x) is quadratic and always
non-negative, we can write in the form g(x)=(x—a) A(x—a)+y, where
A is a non-negative definite symmetric matrix, a is a vector, and 7y is
a non-negative scalar.

LEMMA 2.1, If g(x)=(@x—a)A@—a)+7=14z5e(x) for all x, then we
have the following.
(i) There exists a parabolic cylinder fumction h(x),

9(x) Z (%) Z L1325 5() Sfor all =,

provided that d is contained in the subspace spanned by all eigen-
vectors for positive eigenvalues of A,
(ii) 7=1, provided that d is not contained in the above subspace.

ProoF. (i) Normalizing the vector d (d’d=1) only for convenience,
there exists by the assumption an appropriate orthogonal matrix S,
whose first column vector coincides with d, satisfying

B 07
1 —_—
SAS_[O 0],
u

where r=rank A. Now let us put =Sy, a=Sp, y:[*] , and p=
%

q r
[*] , then we have g(x)=(x—a)A(x—a)+r=(u—q)Bu—q)+y. Put
k

1 r—1
1 1 bll bl
further as u:[u ]l q:{q :ll Bz[ :|l and seek the maxi-

uz r—1 Q2 r—1 b 322 r—1
mum of g(x) under the constraint u'=y (constant scalar), then we have
(2.3) 9(%)= (4 — ¢, — (7—¢') B5'0) B(s — ¢;— (7 —q') Bi'b)

+@" =¥ Bz'b) (—a')'+7 .
Since B,, is positive difinite, g(x) is minimized when u,=g¢,+(y—¢")Bx'b
under the constraint u'=», and we have
2.49)  g=x)z=®"—V'Byb)(n—¢')+r
=(d'Ad—b'B3'b) (d'x—d'a)+1 = Li4z50 (%) for all = .
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- Note b"—b'By'b>0, because B and B, are positive definite and |B|=
| By | (b —b'B3'b). Hence

(2.5) h(x)=(d'Ad—b'B;'b) (d'(x—a))*+7

is a desired parabolic cylinder function.

(ii) This is readily seen to hold by a geometric consideration.
q.e.d.

We shall calculate only sup e,(¢*, F'), since sup e(¢p”, F') can be ob-

tained in the same way. Now let us put ¢’=¢%’, then 1—g¢>'(x)=
Iiyzse(x). We omit the subscript 1 in g and X, for simplicity. By an
orthogonal transformation y=S'z, the family of distribution functions
S (p, 2) is mapped onto the family F(S'y, S'3S). Thus (2.2), after some
calculations, becomes

(2.6) Sup e(¢"’, F)=inf {tr (BS'ZS)+(S'u—p)B(S'e—p)+7|"
¥—p)B(y—p)+r=lwsy>a(y) for all y},

where tr M denotes the trace of the matrix M. Considering Lemma
2 0

0 .
2.1, we may assume that B has a form B= .. (A is a positive
0 0
scalar) and that the first column vector of S coincides with d. Thus
(2.6) becomes

@7 sup e,(¢"’, F)=inf {ad'3d+A(d'n—p') +71 2" —p'V +7
2Iip50(y) for all 3},

where ¥vy=u\9,---), =, v, ). The infimum of

(2.8) ¢, p', EAZd+ A p— ') +7

will now be obtained under the constraint A(y'—p')’+7=1I,1.,(y) for all
y. From Fig. 2.1 it is enough to restrict the functions dominating
I,q to the functions satisfying (i) p'<6, (i) 0=r<1, (iii) A(8—p')*+7
=1. Then ¢*’ reduces to

Aly'—p' ) +7y

Ix,vl yi>e1
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@9 ¢ =@ Zd+E-dw)| VT + %ﬁ;@“_}djﬂry]’

4 &' Zd+(du—0)y
dZd+@—dp)t

Thus we easily have the infimum of ¢*° as

(2.10) inf {¢*°Q, P, DAY =PV +r2Lysa(y') for all y'}
d'2d ) when d'u<8 .
=] d'Zd+(0—d'p)?
1, when d'p=>0 .

Summing up those that precede, we obtain the following theorem.

THEOREM 2.1.

d'zd ,
) when d'u, <6
@2.11) (i) supe(¢*’, F)={ Zd+(0—d'm)’ #
F
1 , w}ben d’y,g(?
d'Zd
) when d'p,>0
(2.12) (i) supe(s®’, F)={ &'Zd+(d';—0) #
F
1 , when d,ﬂzéo .

By the expression for supe(¢*’, F') in the above theorem, it is
enough to restrict d to the vectors satisfying d'y,<d'p, for computing
max e,(¢*, F'), though this might be expected by our definition of ¢*°.
i=1,2

THEOREM 2.2.
(2.13) inf sup max e(¢*, F)= (1+AZ>_l )
¢L F i=1,3 4
where

y _ dim—p) )
max Al ]

Furthermore in the case of 2,=3 and 3,=a’Y (a i3 a positive scalar),
we have

-1
(2.14) i*an S;lp rtnax e(pr, F)= [1 + (n—p)' 2 -1(#1“112)] s
=1,2

_1

(1+a)

and the ian on the left side of (2.14) is attained only by the limear pro-
é

cedure that classifies an observation x into C, if
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1
14+«

(2.15) O T (ap+0) 27 (e — 1) 20

and into C, otherwise.

PrOOF. Setting sup e(¢*’, F)=sup e(¢*’, F') in Theorem 2.1 and
F

solving for ¢ restricting d to the vectors satisfying d’p<d'y;, we have

(2.16) 0=(d'pVTZE8 +d NV TZA)(VTZ A+ VI ZA) .

Since sup max e,(¢*’, F)=max sup e,(¢*°, F'), we have
F =12 i=1,2 F

: 4,0 _ a'(p—pts) )2:, -
2.17) n}f sup 1?3.)5 e, F)= [1+ <—~/m—+ Vi3 .

Therefore (2.13) follows from the next equality.

(2.18)  inf sup max e(4*, F)=inf [1+<_&&)-—>T.
oL F amna 0 VAT d+Vd'Zd

If 3,=% and X,=a’3, (2.18) becomes

: L —_ 1 a'(p— ) 2]—1
@19)  infsupmax (s, F)=int |1+ (1+a)2( i)
Obviously the right side of (2.19) is minimized when {d'(y—p,)}*/d'Zd
is maximized. Since max [{d'(x—m)}*/d'Zd]=(1y— 1)’ I (i, — ) and the
a+#0

maximum is attained only by the vectors proportional to the vector

27y —py), we have (2.14). Using the fact that x'I 'z +y' I 'y>a'3I ly

for «'2+9'y>0, we see that the ian on the left side of (2.14) is attained
4

by d=p2'(g,—pu), where B is a positive scalar chosen so that d'd=1.
Hence we have, from (2.16), 6=(8/(1+a))(ap;+ )2 (;— ). Since an
observation z is classified into C, if and only if d'x—6<0, we have thus
obtained the linear procedure based on the linear discriminant function
(2.15). q.e.d.

Remark. When the distributions of both of the two categories are
multivariate normal, the linear procedure determined by some vector

d*, which seems difficult to represent concretely, that attains the inf
d+0

of the right side of (2.18), and the corresponding
(2.20) O*=(Ad¥pVd¥' I d* +d¥ v/ d¥ 2, d*)/(Vd¥' 3, d* +Vd¥ T, d¥)

is the minimax procedure in ®* (Anderson and Bahadur [2], pp. 427-
428).
In the case of ;=23 and J,=a’Y, the above procedure becomes the
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linear procedure based on the linear discriminant function (2.15), because
we obtain 6=(ad'py+d'w,)/(1+a) by solving for & the equation

\. v o ()

_( 1  (e—d'm)
S-m avdSdv 2z exp( 22d'Sd )d"

with d fixed arbitrarily satisfying d'y;<d'y;. Hence the common value,
the common conditional error probability, of (2.21) becomes

|, Vamam o ()=l

whose right side attains its minimum @*[(1/(1+a))v(zn—p)' 2 (s — 113)]
when d=83"Y(x—) (B is any positive scalar). Furthermore if a=1,
then the above procedure reduces to the well known linear procedure
that is also Bayes procedure (out of all procedures @) with respect to
equal apriori probabilities (Anderson [1], Chap. 6).

(2.21)

(2.22)

This theorem seems to justify that we may adopt 4 as the dis-
tance between two distributions without any parametrized form and,
with not necessarily the same covariance matrices.

Concerning with the expected error probability with respect to the
given apriori probabilities 77, we have the following theorem.

THEOREM 2.3.
(2.23) inf sup ex(¢*, F)
L F

d'zd
YdZd+0O0—dp)

—min [min (I, II,), inf inf {11
d d'p<0<d'py
d'3.d ”
1 .
+ VA3 d+(d p—0)

Proor. Since F; and F, may vary independently in the families
of distributions F(y, %) and F(w, 2;), respectively, we have

(2.24) sup ex(¢”, F)=II, sup e(¢", F)+II, sup e(¢*, F) .
Hence the result follows immediately from Theorem 2.1. q.e.d.

3. Miscellanea

We consider in this section some special cases of interest. In the
case of the same apriori probabilities /7°, (2.23) of Theorem 2.3 reduces to
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3.1) inf sup ezo(¢*, F)
oL F
1 d2d
2 d'Zd+(0—d'w)

1 &3
3 d’22d+(d’,uz—0)’” '

=min [-—1—, inf inf {
2 ¢ au<ocan,

The above expression, however, seems difficult to be calculated in gen-
eral. So we will calculate it under the additional assumption that 3,=
2; (=2) in the next theorem.

THEOREM 3.1. In the case of 3,=3, (=2), we have

[14—%}_!, when 4>2
(3.2) inf sup epo(¢Z, F)=
L F 1
'é‘ ’ when 42,

where &=, — 1) > (1, —p) (Mahalamobis distance). Furthermore if 4
>2, the ir}‘f on the left side of (3.2) is attained only by well known linear
[

procedure that classifies an observation x into C, if '3 '(p—p)—(1/2)
(et 1) 2 (e — ) =0 and into C, otherwise.

PrOOF. Let us put

=1 d'3d 1 d'3d
3.3 U] “— - ’
B3 VO3 Tsaro—dm 2 T3dt@mt)

d,[ll <0< d’[lz .

By differentiation we have, putting ¢*=1/d’3d for simplicity,

A wep— _os ( _dm+d'py ( _dpm+dp
(3.4) Ly0) 25{0 ! ) 9 ! -I—s)

L T

{1466 —d'p)'}* {1+ 0%(d' 11— 0)}*,
where ¢ is some constant satisfying 0<e<(d'g;—d’z4)/2. Thus we have

(3.5) min  ¥¢(6)

&pSOSdpy
s ) |:1+_}(d_’x(/ll_¢—il%7i@>z]-1’ when wf/_/:i;ﬁﬂi)_|>ﬁ
%{1+[1+<d—,«(/%)—>’]-.}, when |_d_:(/f_f% VT,

furthermore in the former case in (3.5) 4#) has its minimum only at
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60=(d'iy,+d'1;)/2, and in the latter case at §=d'y, or 6=d'p.
Obviously both of the right sides of (8.5) are minimized when
{d'(s—)}?/d’'2d is maximized. Since n‘}aox[{d’(;zl—yz)}’]/d'Z’d:(,ul—pg)"
#
3 Ypy—m)=4, and the maximum is attained only by the vectors pro-
portional to the vector X~'(g;—ys), we have

[1—}—%]_1 , when 4>+ 2
(3.6) infd inf TYH)= A’
¢ encsen L2408 Gpen 45y
R when 4<v2 .
Hence (3.2) follows from (3.1), (3.3) and (3.6). The proof of the latter
assertion of the theorem is similar to that of Theorem 2.2. q.e.d.

COROLLARY 3.1. In the case 3,=2%, (=2), if n observations x, Z,,
.., x, are taken independently from ome of the two categories, we have

£ 2
[1+n7] , when 4>

3.7 inf sup ejo(¢p*, F')=
oor hen 4= 2
P w =7
Furthermore if 4>2[4n, the ian on the left side of (8.7) 18 attained only
¢
by the linear procedure that classifies n observations x, x;,: - -, «, into C
if 37— ) — (1/2) (et ) 27 (s — )20 and into C, otherwise, where
% denotes the mean of the observations x,, Zs,**+, Z,.

n
P —

2 z 0

PROOF. If we regard | % |» (i=1,2) and z .
P 0
and Y in Theorem 3.1, respectively, the proof is the same as that of
Theorem 3.1. q.e.d.

nas  (i=1,2)

Remark. The condition 4>2 in Theorem 8.1 may be understood
geometrically as follows. Let k be the dimentionality of the observa-
tion, then the condition 4>2 is equivalent to

‘/ '/ ’

m)>k+2 .

Thus the condition 4>2 means that the ellipsoid of concentration
(Cramér [4], p. 300) of F((vk+2/2)y,2) does not contain the vector
(VE+2/2)ps_. (1=1,2). The case of k=2 is of interest, because the
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vector (vk+2/2)y, reduces to the mean vector of C;.

THEOREM 3.2. With respect to any apriori probabilities I, we have
8.9 ‘ inf sup ex(¢*, F)< l:l+—42—] -,

L F 4
where £=4-max (d'(u—m)/(VITA+VTZTAY. In the case of 3=d'3,
*

(a 18 a positive scalar) and II°, the inequality (3.9) becomes equality if
and only if a=1 (t.e., 2,=23,) and 4>2.

ProOF. For any ¢* € & and any F ¢ ¥, we obviously have

(3.10) en($”, F)=max e(¢", F)

for any apriori probabilities 77. Hence (3.9) follows immediately from
(3.10) and (2.13) of Theorem 2.2. In the case of 3,=d&’3, (put 2,=23),
we know, from Theorem 2.2, that the mf on the left side of (2.19) is

attained when d*=3""(y,—p) and 0*—(ad*';z1+d*’pz)/(1 +a). Let us put
similarly to (3.3)

d'zd L1 ad'zd
2 d'Zd+0—d'p) 2 @d'Zd+(d'm—0)’
d'[l1<0<d,[lz .

(3.11) TYO)=

Now for any d+#0 we easily obtain by differentiation

d _ . . _
EB_W ) o=(.¢'p1+d'p,)/(1+.)—0 if and only if a=1.

Applying this fact to the case of d*=2""(y;—,), we have the “only
if part” of the latter asstertion of the theorem because of ¥ (6*)=[1+
£/4]7'. The “if part” is merely a part of Theorem 3.1. q.e.d.

Remarks. (i) From the theorem of Isii and Taga ([6], Th. 1), we
know that '
. _1 £

(3.12) inf sup s, F)__2_[1+T] .

Thus we have the following inequality from (3.9) and (3.12)
(8.13) inf sup eqo(¢*, F)<2 inf sup eqo(¢, F) ,
L F ¢ F

where the equality holds when X,=J3, and 4>2. Moreover since inf
é

sup enl(d, F)gir:f sup max e, F'), and considering (2.13) we have
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(3.14) inf sup max e, (¢, F)<inf sup max e,(¢*, F)

¢ F  i=1,2 ¢L F  i=1,2

<2inf sup max e (g, F) .
¢ F i=1,2
(i) Considering (2.13) and (8.9) in the case of II', it follows that

(3.15) inf sup ezo(¢*, F')<inf sup max e,(¢*, F') ,

L F ¢L F  i=12

where the equality holds when =23, and 4>2.
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