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1. Introduction

Let X{(t) be a real-valued stationary normal process with a discrete
time parameter t. For simplicity, we shall assume E X(t)=0 and denote
R(h)=E X(t+h)X(t) and p,=R(k)/R(0). Let us assume X{(t) is observed
at t=1,2,.-.., N and has a spectral density f(2), where 2 is a frequency
parameter and —1/2<21<1/2.

In this paper, we shall discuss efficient estimation of f(2). If we
can assume X(¢) is an autoregressive process of order K, K being a
known positive integer, we can obtain, easily, the maximum likelihood
estimate of f(1) when N is sufficiently large. But for an actual pro-
cess, we usually do not know the value of K. Recently, the estimates
obtained by fitting an autoregressive model have been developed and
discussed by many authors, i.e., Akaike [1], Parzen [8], Gersch and
Sharpe [5] and Jones [7].

In this paper, we treat a process expressed as an autoregressive
process of infinite order satisfying some conditions. We construct an
estimate by fitting an autoregressive model of finite order K. In Sec-
tion 2 we discuss the asymptotic bias of this estimate for a fixed K when
N tends to infinity. In Section 3 we consider K as a function of N,
tending to infinity as N tends to infinity. Berk [8] has discussed a
similar situation. He has shown the consistency and the asymptotic
normality of the estimate when N tends to infinity. Although we shall
discuss the statistical properties of the same estimate, the process un-
der consideration here satisfies stronger conditions than his, and under
our conditions we show that this estimate has a property of efficiency
as N tends to infinity.

2. An autoregressive approximation and bias

In the following we shall assume, furthermore, X(t) satisfies the
following assumption :

415



416 MITUAKI HUZII

AssuMPTION 1. X(¢) satisfies the relation
(1) SaXt-k=6), @=1,

where {&(t)} are mutually independent random variables each of which
has the distribution N(0, ¢}) and {a,} are constants such that

lakléaky O<a<1/2’
for every k=1.

In this case, X(t) has a backward moving average representation
X()=3 Gist—k) ,

where {G.} are constants.
As is shown in Huzii [6], we have the following result under the
above assumptions.

LEMMA 1. We have
lon|=C2a)*  and  |Gh|=(2a)"/2
for any h, h=1, where C=1/2'(1—(2a)%).

Now we shall discuss the estimation of the spectral density f(2).
We shall regard X(t) as an autoregressive process of order K, K being
a positive integer, and obtain {a{®; 1<k<K} which minimize

N K 2
Q=3 (X(t)+ 3 aﬁ”X(t—k)) :

Let us denote a{®,which minimizes Q, as a{® for 1<k<K. If X(¢) is
an autoregressive process of order K, the a{*’s are asymptotically max-
imum likelihood estimates of autoregressive coefficients. But here X{(t)
is not an autoregressive process of finite order. So this argument does
not hold. The a{’s are the solutions of the simultaneous equation

K

(2) > aORE, )=—R(0,1), 1<I<K,
where
Rk, )=—21 ) X(t—k)X(t—1
ks )= 33, Xt—H)X(t—D) .

Using these 4¢’s, we shall construct the estimate f (2) of f(2) as follows
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f(K)(l) — oK)
X 2 K 2
(kEo a® cos 2:rk2) + < 236 sin 271']61)
= =1

b

where a{¥=1 and

G(K)=

1 N K A (KD . )
L 5 <X(t)+ > O X(t—k)

Now let us evaluate the bias of the estimate F©() for a sufficiently
large and fixed K. We shall denote @(K)=(4{®, 4®,- - -, 4%) and Re=
(R(0, 1), R(0, 2),---, R(0, K)Y. And let R be the KxK matrix whose

(k,1) element is R(k,l). Then the simultaneous equation (2) can be
written

(3) Ra(K)=—Ry .

Now let @, be the JXxJ matrix whose (k,l) element is p,_,. Using
the result of Lemma 1, we can show R(k, l) converges in probability
to R(k—!) as N tends to infinity. Let us denote the K XK matrix,
whose (k, !) element is R(k—1), as R. Then for a sufficiently large and
fixed K, every element of R converges in probability to the correspond-
ing element of R. Let us put Rx=(R(®1), R(2),---, R(K)). Then every
element of Ry converges in probability to the corresponding element of
R,;. We can consider |R|+#0 for any K, K=1. Using the relation (38),
we can show the distribution of +/N (@&(K)+R'Rx) converges to the
normal distribution with mean vector 0 and a finite covariance matrix.
This can be shown by the same method as in Anderson [2], Chap. 5.
Using this result, we shall evaluate the asymptotic bias of the estimate
F®(2) as N—>oo. In the first place, we shall evaluate the value a(K)
=—R'Rg. Let us put a(K)=(a{®, ai®,---, ai)’. Then we have the
following lemma.

LEMMA 2. We have, for 1<k<K,
la{® —a,[<Cia™,
where C, 18 a constant being independent of K.

ProOF. Let us put px=(oy, 0z, -, px)’ for simplicity. Then we have
a(K)=—Qxz'px. We can express, by using the result of Wise [9], the
(k, 1) element g;} of Qz' as §;i+e; (K), where
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l 3
Ea,;_,a,,_, , if E>1

= 145e, it k=
Tk » if k<l

and ¢, (K) is uniformly bounded for either k< K—K, or I<K—K,, K,
being a fixed positive integer, when K is sufficiently large. So taking
into account of Assumption 1, we have

leil=q,
where ¢ is a constant and independent of K (see Huzii [6]). Now we
have the relation

kgﬂakpk_j=0, j=19 2’ 3]"' ’

by (1). This can be written as

oo

- E a’kpk—jy j=112"'
k=K+1

K
(4) k_% APy = — Py

Putting a=(a,, @z, -+, ax), §,= i a,0r-; and A4=(d,, b, -, 0x), we
k=K+1
have

(5) a=—Qx'px—Qx'4
by using (4). From this relation, we obtain

a(K)—a=Q%'4 .
Let us evaluate ¢, for 1<j<K.

o0 o - aK+1(2a)K+l—j
I 6j l él«:=¥+l |ak | | pk—j | ék:;—{-l akC(za o —C——l——_za;_ ’

So we have

K K+1 K+1-4 K+
©_q,|<Cq> L QO o qCa"N2a) _ ok
o a0 s~ S T iz

for 1<k<K, where C;=2qCa*/(1—2a*)(1—2a). We can easily find that,
when N tends to infinity, the mean value of the limiting distribution

of VN (f®()—f®(2)) is zero, where

f®Q)= oK)
K 2 K 2
( g‘,} a® cos 2nkl) + ( kZ_} a® sin 2n:k2>
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and
oi(K)=R(0)+ 3] af°R(k)
Now we have
A=i(K)= 3 @R 3 @O ~a)R(E)

and

(,i}, a, cos 21rk2> < S‘_, a, sin 2:rk1)

K

< Z ai® cos erkl) ( > af® sin anz)

k=1

oo

=( > a, cos 2xkz>2+( > a;sin 27:102)2
k= 1

+ k=K+1

:g

+2< l‘é a, cos 2n-k,2> ( =: a, cos 27rk1>
+2< ké a, sin 2zka ( é} a, sin 21rk2)
—2( é_“,’ a, COoS 21rk2> ( é af®—a,) cos 2nk1)
—2( é a, sin 27rk2> < é (a®—a,) sin 2nk2>

K
—_ ( E{, (e —a,) cos 27rk2>
K 2
— ( (e —a,) sin 21rk1> .

k=1

And also we have, for example,

oo

< ax+1/(1 __a)

k=K+1

and

f‘, (af®—a,) cos anll <C/,Ka*X.
k=0
Therefore, we have

| {( 3 af® cos 21rk2> (;:‘,) a{® sin 21rk2>2}

— (2 o cos 20k2) + ( £ @y sin 20k2) | | < Cika®,

where C, is a constant being independent of K. So we can show
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| f*Q)—f(2)|=CKa",

where C; is a constent being independent of K. We obtain the follow-
ing theorem.

THEOREM 1. Let X(t) be a stationary mormal process satisfying the
Assumption 1. Then

| f @) — )| =CKa"
Sfor sufficiently large K, where C; is a constant, independent of K.

3. Asymptotic efficiency of F®@) in a sense

In this section, we shall consider K to be a function of N. Recent-
ly, Berk [3] has shown that f (2) is consistent and asymptotically nor-
mal when N tends to infinity under the condition that K tends to in-
finity and K?/N tends to 0 and some other conditions. Here we make
the following assumption.

AssuMPTION 2. K is a function of N such that K tends to infinity
and K*‘/N and N°K’a* tend to zero when N tends to infinity.

This assumption is stronger than Berk’s condition. We shall define

fx(2) as

2
fK(z) = X 2(,6 K 2
(,,2 a, CoS 2n-lc1> + ( ,,Z a, sin 21rk2>
=0 =1

Now we have

700120 =22D. G310~ + 33 L) 40—
+ol[GE)-ar+3 @o—ay] "

where the last term converges in probability to zero more rapidly than
the first two terms (see Berk [3]). So we can consider

o) —fe~ 220 Gyx) oy + 33 LD 40—

Let us put £ =(3fg(2)/d0%, 0fx(2)[3as, - - -, 3fx(2)/0ax) .
For an autoregressive process of order K, an efficiency of the esti-
mate f‘x’(l) will be defined as

_E(®Q-f@y
f(K)I W(K)(X)f(x)

€x



ON A SPECTRAL ESTIMATE 421

where W®(X) is the information matrix being defined later. In this
section, we shall show

limegz=1

N—ooo

under the Assumptions 1 and 2.
For this purpose, we shall consider an autoregressive process Xg(t)
of order K, which approximates X(¢). In the following, Lemmata 3 and

4 will be used to show limegz=1 for X,(f). Lemma 5 will be used to
N—-oo

show the information matrix for Xg(t) is asymptotically equal to that
of X(t). Combining these facts, we shall show the result.

At the beginning, let us evaluate asymptotic variances of the esti-
mates. We have

Ifx(l)_f(l) I =Ca*,

where C, is a constant being independent of K. In the following we
shall consider the estimation of fx() instead of f(2). We have

| fE(2)—fe(2) | =CiKa™ ,
where C} is a constant, independent of K. Now we have
E (f®(2)— QY =E (f©@)— @)
+(f )~ fx(2)*+ (fzf(l) —f())?
+2(f () — fx(2) E (f (2 — f*(2))

T2~ F2) ()~ f(2)
+2(f=()—f(2) E(fQ)—f*Q) .

But when we consider the case in which N is sufficiently large, we can
ignore the terms

2(f® () — fx(2)) E (F (1) — F(2))
and
2(f)— F (D) E (F22)— fE(2)

by comparing with the other terms. And we know

[ (fE(R)— fe(D) 2+ (feR)— Q)+ 2(f ®(2) — f(D) (F=(2) — F(A)) |
=Cy(Ka"),

where C; is a constant, independent of K. When we consider

tim g (fo— 0y,
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we have

lim %—Cs(Ka“)z =0

N—roo

by Assumption 2. Using the result of Berk [3], we can see that the

distribution function of v N/K (f‘“’(l)—f“’(l)) or VNJK (f®(2)— f(2)
tends to the normal distribution function with mean 0 and variance
2f(A) or 4f(2)} corresponding to when 0<1<1/2 or when 2=0 or 1/2,
respectively.

Now let us define an autoregressive process of order K. Let Xi(t)
be a stationary normal process with mean 0 and satisfy the relation

S aXalt—R)=¢)

where {a,} and &(t) are the same as those in (1) and a,=1. We shall
put Rx(h)=E Xi(t+h)Xx(t) and pf*>=Rx(h)/Rx(0). Then we can show
the following results (see Huzii [6]):

|of01<CRaP, 330 —pal SCK(2a)*,

where C and C, are constants, independent of K.

Let samples be Xx(1), Xx(2),:--, Xx(N). We shall construct {a{*},
6X(K) and f®(3) by using Xx(t) instead of X(f). We shall denote such
F®Q) by f,‘;")(x). Using Xi(t) instead of X(t), we can show the same
results as Theorems 5 and 6 in Berk’s paper [3]. So we can obtain
that the distribution function of ¥ N/K (f,&”(l) —fx(2)) tends to the nor-
mal distribution function with mean 0 and variance 2f(1) when 0<i<
1/2 or 4f(2)* when 2=0 or 1/2, if ¥ NK o* tends to 0 when N tends to
infinity.

Now, for Xx(t), we have the following lemma.

LEMMA 3. There exists a solution fO(R) for f«(2), obtained by solv-
ing the likelthood equatioms, such that

(O(3) = FE(3) — FEO(3)
converges in probability to zero as N tends to infinity.
PROOF. Let us consider the joint estimation of (¢, a,, a,:: -, ax).
Let ¢p(X$) and ¢x(X&°) be the density functions of X =(Xg(1),

Xx(2), -+, Xg(N)) and X =(Xx(1), Xx(2),:--, Xx(K))', respectively.
Then we have

In(XE) = g XE) L

(zn)(zv—x)/z(a.?)m—x)/z
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N
xexp[—ol 3} (Xel)+aXalt—1)+ - +axXalt—K)] .
20% t=K+1

To prove the assertion of this lemma, it is enough to show that

d log ¢ (XF)
F
and

M)_ for k=1,2,---, K,
0a,

do not affect the solution of the likelihood equations.
Let Q¥ be the K x K matrix whose (k, [) element is p{¥) and ¢{®*
be the (k,1) element of @ ~!. Then we have

(K) & ‘ x
% a_k;_g_?a‘;(@X_K): _’;‘ —p;z —% 2 3¢V X(t) Xu(s)
& ¢ =1 3=
K

(K

1 < g Q0% ) 1 & E gt

T NAA a0

(K)
+% ——Kp“—_%% az log | Q|
(K .
(E) @05 )

But we can show

1 kX K o1y x K?
V(5 212 6 X0 Xle) ) =0( K5 )
Now we have, for 1<j<K-1,
dgio- 905
ap(K’ CSK ’ I‘ﬁ“ écﬁ ’

where C; and C; are constants, independent of K. So we can obtain

‘&Iﬁ’i"\_

oa,

K-1 aq(K)—l apgK)

2
1=1 a (K) aak §C7K ’

where C; is a constant, independent of ¢, s and K. Therefore we can
get

V(55U 0o xw0)=0(K).

We know
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2 logl@p|-L o7
( 2 a’JP.(IK)>
P

5137 69 Xe(t) Xelo))

-1
Xe(t) Xx(s)) -
So we obtain
a
long‘K’I\— (——)

Combining the above results, we can get

¥ enga) o).

And we also have

¥ 2t} o).

Let Ié”f’ (or R®) be the matrix which is constructed by Xx(f) in-
stead of X(t) in R (or R), and let us denote

;MK
%o

ACK) A
HE= 7)2: =R®-1 |

5
where
l:(lh lz;' %y lK)'
:( 1 dloggu(X”) 1 dlogge(XE) .. 1 dlog ¢K(X,@K>)>
N oa, "N oa, ' N o0k )

Then we have
VE |7 <VK [|R©—R||[|UI+VE |IRI1L

where
“I’”2 Zyk, Y=(y1,y2!""yk)’:

and, for a K XK matrix B, ||B|=sup ||BY| for |Y||<1. We can show
in the same way as that of Berk [3] that ||[R™!| is bounded and vK
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X IIR‘K’"—R"H converges in probability to zero as N tends to infinity
(see Berk [3]). Also we can show K ||l|| converges in probability to
zero if K*/N tends to zero when N tends to infinity. Therefore, under
Assumption 2, vK |§™®|| converges in probability to zero. As we have

K

31 cos 2rrk1| <vE|I5®|,

k=1

K

5 sin 2:rk,2| <VE|5®|,
k=1

S‘_. 70 cos 27k and 2 7¢0 sin 2zk2 converge in probability to zero under

Assumptlon 2. Furthermore

é (K)R(O k)'

K

} #2(R(O, k)~ Rx(k))l +| SR

<9l 3 pH (1‘3(0, k)—Rx(k))* +11%*|| CR(0)/(1—2a) .

Under Assumption 2, we can show [%®| and kf‘. (I%(O, k)— Rx(k))* con-
=1

K

verge in probability to zero.

converges in probability to zero.
From 4 log ¢y(X§®)/0a,=0 for k=1, 2,---, K, we have

é a,R(0, 5)=—R(0, k)—241,

for k=1,2,---, K, and from 0 log ¢(X§)/ds=0, we have

(K)
a=R(0, 0)+z‘, a.R(0, k) + 6K 3loggg:%(Xx

Using the above results, we can obtain the assertion of this lemma.

In the following, let us put 6,=d?, 6,=a,, ;=a,, ---, 0x=ax and
OO =6YK), B0 =450, =, ..., 6P =a, for simplicity. We shall
denote

0(K)=(00v 017' t 0K)' ’
and
é(x)=(égx)r égx)i crry é({)), .

Let U™(X) and U®(Xg) be the (K+1)x(K+1) matrices whose (3, )
elements are E; (égfz—ot_l)(éyfz—o,_l) and Exx(ég‘;‘{—oi_,)(é‘,‘fl—ﬁ,_l), re-
spectively, where, for example, E; () means the mean of the statistic
7 for the process X(t). Let W™(X)™! and W®(Xk)™ be the (K+1)
X (K+1) matrices whose (¢, ) elements are
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E, <alog ou(Xy) dlog ¢N(XN)>
301_ 30_,_.

and

dlog ¢x(X5®) 8 log Pu( X5
E“'K( 96;_, 90, )

_ respectively. Let us denote the (3, j) element of W®(X) (or W™(Xy))
as w{P(X) (or w{(Xx)).
Then we have the following lemma.

LEMMA 4. It holds

lim YeUPXyx _q

Noo Y WO Xe)Yx

for any sequence {yx} of real vectors yx=y"™, ¥i©, -, y&) such that
y=+#(0,0,---,0).

PrOOF. This result can be shown by the same method as the case
when K is fixed.

9 log gn(XF©) ' ~0
a0, o

means
1 dlog gu( X 1 &G {3 log pn(X¥ )
‘N a6, ot N &0 a0, 6,

AT

A =0 ’

where 0<p<1. Let B® be the (K+1)x(K+1) matrix whose (i+1,
j+1) element i)ﬁﬁ 41 18

B =L M)\
N 9,00,

1 X A 9 log ¢ ( XF©
_— 0 R e A
Ty v =Gt 36,00,00, |6+u6-6)

and B® be the (K+1)x(K+1) matrix whose (1+1, j+1) element b,,;, ;1
is
1/2(a2)? 1=0, j=0
bi+l,j+l= 0 'i=07 jgl or 121’ j=0’
R(z-j) iz2l, j=1,
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Then we can show, by the same method as that of Berk [3], that

VK | B®-1—_ B®-1|| converges in probability to zero under Assumption
2. Let us put

1 — < 1 dloggu(X¥) 1 alogg(:N(X(K)) 1 dlog ¢l ngx)))'
! N 96, "N 96, "N 00 ’

Then we have
0(K)__0(K)= __B(K)—llSVK) .

And we can show

N N
B(K) ll(K) J- KB(K) 1l(K)
\/; ToaT V" (~VE )

converges in probability to zero when N tends to infinity. So we can
obtain

i N 1 (K)
o K Tl YU e

=)im 4V N —= Yk B®\E [PIF) By

v K |y ll’

Therefore, we can get

N
BB IPIF)B©-y
lim YU PEyx _ 0 K ””“”2 T ! "1
oo (K) —00
e
K

by using Assumption 2.

In the following, we shall consider the difference between W®(X)
and W®(X,). This means we have to evaluate

VWS X)yx—yc WE(Xx)yx

for any sequence {y.} of real vectors yr=(¥", ¥, -, ¥¥). But for
this purpose, we shall compare W®(X)! with W“’(XK)“. In the first
place, we shall compare E;(dlog ¢x(Xy)/6,_,)(3 log on(Xy)[96,_) with
Ey, (0 log ¢x(X5%)[06,_,) (3 log $x(X5*)[00,_,). Let us put 8=(6,,6,,6,,---)
=(o}, a1, 3,-+-) and F(0) = E; (3log ¢x(Xy)/30:_,) (3 log ¢x(Xy)/[36,_,).
Then we have

Fiy0)ls= 6x=Ex, (0 log ¢px(X§)[06,_,) (3 log pu(X§ v)[06,_1) s

where 0x=(d}, ay, a3, -+, ag, 0,0, --), and
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_ 5 0, 20|
— 1
Fi](o) F’il(a) | 0=0K +k=§+1 ak aok 0x+1,'(0—0x) ’

where 0<7r<1. By differentiating both sides of the equations
N 1 =7

2 qi_jlpi'—j:{ L.
i=t 0 e

with respect to p,, we can obtain

g}

<CN, Kl
apy,

< CiN?, 1=<h, W=<N-1
001,00

where C; and C} are constants, independent of 4, 7, h, b’ and N. And
we have

on

> | don _ O
2 00k, ,0a;

=G,
r=1 | 0a,

<Ci,

h=1

where C, and C} are constants, independent of [, k, k¥ and K. So we
can get

"S 0gi7 Do
n=1 0p, O0gy

0qi; | _

= <C,N*, for 1<l,
00k

where C,, is a constant, independent of 4, 5, K and I. And we also
have

le ( azq;jl apn n 3(1&1 azph )I

2=t \ 0Qg,100n 0Om Opn 0Qg,,00,,

' {(N—l ¢ Opw > dpn + 0qiy' o }
V=1 0py0p, 0,/ 0y, Opn 00x..00,

‘ 00 x4 100,

N—

h=1

SCIIN2 ’

where C,, is a constant independent of m, [, 7, 7 and N.
Using the above results, we can get

o

oF,(8) l | .
B AN
E ay 60,5 Ox+7(6—0x) éClzNaxr

k=K+1

where C,;, is a constant, independent of ¢, 5 and N.
So we can obtain

” W(K)(X)—l_ W(K)(XK)-l” é ‘/CIZNOKZ‘IK ,

the right-hand side of which tends to zero as N tends to infinity. Now
welhave
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|WR(X)— WO (X | = || WOX)(WO(Xe)™ = WE(X) )W (Xy) |
SIWRX)NWE(Xe)™ = WEX)| '

X || WR(Xg)| -
We know
252 0---0))
W(K)(X )23 02 0
K} = N—K]| : R®-1
0
So we can get
CsK?
(X) X S 13 ,
IS [ S

where C; is a constant, independent of N. Using the above facts, we
can obtain

" W(K)(XK)IIZH W(K)(XK)—!.__ W(K)(X)—l "
— W Xg) " — WRX) " [[[WO X’

[WE(X)— WX | =

the right-hand side of which converges to zero as N tends to infinity.
Therefore we have

Hm | e/ Y =ll) (W (X)) — W(Xx) Wl 1Yl |
slim | WO(X) — W(Xg)[|=0 .

Consequently, we can obtain

lim W P X _ i @yl W(Xe) e el
v WP Xy 3= @ellyxlY W) xllyxl)
—lim ZEWP(X) Zy
Now ZEWE(X)Zg
i ZEW X Z e+ ZUW (X ) — WS(X)) 2
N ZiWE(X)Zx
=1,

where Ze=yx/|lyx|-
Summarizing the above results, we have the following lemma.

LEMMA 5. Let {yx} be any sequence of real wectors yr=y™, y®,
] y(lér))l 3uCh that yK#:(Ov 0)"', 0)’- Then

i Pe WP EKdx _y
N!_I:g y;ZW(K)(X)yK
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We shall take f® as y, in Lemma 5 Then the above discussion means,
for sufficiently large N,

%Ex Fo@)—fRy~ = B (F2@— £ )Y

z%f-‘(x)l W(K)(Xx)f(K)
z__g_f(l{)' W(K)(X)f(x) ,

where “A~B” means lim (A/B)=1. So, when N is sufficiently large,
N—soco

we have

N AUO( ) 1 N econprao (K)
—I-{—Ex(f (2) f(l))~Kf WER(X)F®

Summarizing the above results, we have the following theorem.

THEOREM 2. Let X(t) be a stationary normal process with mean
zero and satisfy Assumption 1, and let N and K satisfy Assumption 2.
Then we have

m NE) E(f®R)—fQ) _
N—woo (N/K)f(x)l W(K)(X)f(x)

In general, there would be many ways to define the joint efficiency
of estimators of infinite dimensional unknown parameters. In the above
discussion, we have defined the efficiency as the limit of the sequence
of efficiencies of joint estimators of (K+1) dimensional unknown param-
eters (o3, @y, @3, -+, ag) for K=1,2,3,---. We have shown f‘x’(l) has
the efficiency in this sense for the case we have treated.
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CORRECTIONS TO

“ON A SPECTRAL ESTIMATE OBTAINED BY AN
AUTOREGRESSIVE MODEL FITTING ”

MITUAKI Huzn

In the above titled paper (this Annals 29(1977), 415-431), the fol-
lowing corrections should be made:

On page 420, line 15:
KN—— K'|IN
On page 429, line 10:

W) — x| IO E IR = W)
IWEE) = WX = 1 i g — Wm0 [0 X) ]

— [|WEX) — WE(Xg)||

V2| WX [P WO(X) ' = WHX) | )
1=V 2 | WX WX [P W (X) ™ = WX) ]

IA
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