Ann. Inst. Statist. Math.
29 (1977), Part A, 407-414

REGIONS OF AUTOCORRELATION COEFFICIENTS AND OF
THEIR ESTIMATORS IN A STATIONARY TIME SERIES

TOSHINAO NAKATSUKA

(Received Oct. 16, 1976; revised June 15, 1977)

1. Summary and introduction

In many cases in time series analysis the region of estimators of
parameters does not coincide with the region of those parameters. If
the true values of the parameters are outside the region of estimators,
then whatever observations we get, they are not given by those esti-
mators. And unless the region of parameters contains all possible values
of estimators, we may get the meaningless estimates outside it. There-
fore it is important to know the relation between these regions.

In this paper we discuss about the regions of autocorrelations (01,
*++, p,) and the regions of p variate serial correlations (r,- - -, 7).

2. Notations

When {z,} is a real-valued wide sense stationary time series with
zero mean and a spectral distribution funection F(2) on [0, z], its auto-
covariance 7, at lag s and its autocorrelation p, at lag s are represented
such as

@2.1) rv=E 5,2,_,= So cos s2dF(3) ,

(2.2) 0:=7410 5 s=1,2,....

Then, if we define & as the set of all probability distribution functions
on [0, ], y7'F is contained in &. Conversely it is well known that for
any G € ¥ and for any positive number 7, there is a stationary process
with the spectral distribution function 7,G.

Let &, be the set of all absolutely continuous functions in &, &,
be the set of all jump functions in & that are constant save for jumps
at a finite or denumerable set of points, and &, be the set of all con-
tinuous functions in & with a zero derivative almost everywhere. Then,
for any F in &, we may put
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F=a,F\+aF;+aF;, F,ed,, 1=1,2,3, i+t a=1)

by the Lebesgue’s decomposition.
The process for which F(2) is absolutely continuous with the den-
sity

2.3) 9 pay==L {1+2 33 p, cos sx} >0,

da

is called the pth order moving average process. This density function
is rewritten by using real numbers 6,,---, 6,, ¢* such as

2.4) TF(Z)._— 1— zoeml .

The autocorrelation p, at lag s of this process is related with numbers
9, such as

s=1,---,p

1461446,
0, s>p.

—01+0101+1+ e +0p-;0p
(2.5) e —-[

Let M, be the set in &, which consists of all functions 75'F defined
via (2.3) and (2.1).
For an arbitrary set U in &, we let

R.,(CU):{(,;,,---,p,,): p,=S: cos s1dG(2), Gecu} .

n
For observations z,,-:-, z,, we let Z=— 32, and consider the re-
t=1

S|~

gions U,,, Ut., V,. and V;, such as

i,

(2.6) U?,n= {('rl, cee, 1)t 'r,=té+1 2,0, /

uMa

(xh'") xn)eR”, é%i#O} ’
t=1

@7 Upa={rne )i =3} @-8)@.—9)|3 @3,
(xn' ] xn) € R, zE:.‘{ (xt—E)zrteO} ’

(2.8) V,.= {("’1,' TPl T= <xl:c,.-.+1+xzw,.-.+z+ v,

t=3+1

+ ﬁ‘. m._.)/t% zi, (%1, 2,) € R, ;"J:lxzqeo}

and
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2.9) Vp*,‘n={(r1,-..,rp): = {(m—i)(x,,_,“_a)_l___,_l_(x‘_a_:)(w“_i)
+t=$+1 (3&—57)(93,_,—53)} /?;, (x,—7%),
(4,- -+, ®,) € R", g (%—5:)’:#0} i

The 7, in (2.9) is called the circular serial correlation.

3. Regions of autocorrelations

In this section we discuss about R, (F), R, (F,), R (F:), R, (F,) and
R, (M,). Let p(2)=(cos 2, cos24,---,cospl). Then the following theo-
rem holds. For detail, see Karlin and Studden [3], p. 28.

THEOREM 3.1. R, () 18 the smallest closed convex set in R” contain-
ing the curve {p(2): 0=<1=r}.

For example, R,(F) is the closed interval [—1, 1] and Ry (<) is the
two dimensional region surrounded by the line {p,=1} and the quadratic
curve {p,=2pi—1}.

We use the notation o to denote the set of all boundary points of
a set in R*. Then the following theorem holds.

THEOREM 3.2. In R?,

R(F)=R,(F)—0R/(Y) .

PROOF. If p=(py,- -, p,) € IR(F) and ScosdeF=p, (s=1,---, p),
then there is a supporting hyperplane {ye¢ R?: cy=a} to R(SF) at p
such that ¢’y<a for any y in R (<). Therefore by Theorem 3.1, é c;-

j=1

cos jA<a for any A. On the other hand S ﬁ: ¢, cos jAdF=cp=a. Hence
J=1

F has masses only on the set {2: ic, cos jl=a} which consists of at
Jj=1

most p points. This means that R(F,)C R (F)—oR(F).

Next we prove the converse half. R, (<)) is convex. Because vF;+
(1—vF,e <, for any F,, F,e <, and for any v on the interval [0, 1].
Let F be an arbitrary function in &, then there is a sequence in &,
which converges weakly to F. Therefore R, () is the dense convex
set in R,(F), so that R(F)DR,(F)—0R,(F). Q.E.D.

It is easily proved that R,(<,) is the convex set containing the curve
{p(2): 0=2=x}, so that R(F,)=R,(F). Particularly let U,..., be the
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set of all jump functions in &, with jumps only on ,---,2,. Let f;
=F@,)—F@,—) for F in U,, ..., . Then
j=1 j=1
Hence, R(U.,...,,) is the convex set spanned by m points p(4,),- - -, p(4n).
THEOREM 3.3. In R?,
R, (F3)=R,(F)—0oR,(F) .

ProOOF. By the same method as Theorem 3.2, we find that R (S})
CR,(S)—0R(F) and that R,(F,) is convex. Let ¢(1) be the Cantor’s
function on [0, 1] and let

e+o(2=L)0—6),  asis

gb(XIa, b, &, 77)::!

0, otherwise

where 0<a<b<r. Then for any Fe%,,

FW=% g{:(ll%n‘, 2tle p(La), F(ZtLz)) e,
and F(2)=lim F,(2). Therefore, R, (F;) is the dense convex set in R(¥F),
so that R,,zg;,):JR,(SZ)—aR,(EF). Q.E.D.
R(M)=[—1/2,1/2]. The form of Ry M, is given by Box and

Jenkins [2], p. 72. The convexity of R, (.H,) was first proved by Ander-
son [1] by somewhat more tedious method than the following proof.

THEOREM 3.4. R, (M,) i8 the closed convex set in R(F)—oR(F).

ProoF. From Theorem 3.2, R(M,)CR(F)—oR(F). R,(M,) is
the set of all vectors (p,---, p,) satisfying the inequality (2.3), so that
the convexity follows. The function of (¥, -, ¥.)

min <1+2 ﬁ} 9, COS sl)
s=1

0S2sx

is continuous, so that the closedness follows. Q.E.D.

4. U,, and U},

The following theorem shows that U, , is closely related with R,(.¥,)
and R(F). From this theorem we find that the relation R,/(M,)C
U, .CR,(F)—0R, (<) holds for n=p+1,
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THEOREM 4.1.
( i ) U;J,p+1=Rp(=%p)-
(ii) U, 18 the closed convex set in R(F)—0R,(F).
(ili) U, .C U,y for all n=p+1.

@) U U,.=R(F)-R,P).

PROOF OF (i). If a vector (p;,-:-, p,) is contained in R(H,), then
there are numbers 6,,---, 6, satisfying the relation (2.5). By putting
z,=-—1 and 2,=6,, (t=2,---, p+1), we find that r, of (2.6) becomes p,.
Therefore U, ,,;DR(M,). Similarly we can easily prove the converse
part.

PROOF OF (ii). When n=p, R(F) and U,, can be considered as
the projections of R, (%) and R,_,(M,_,), respectively, into the plane
spanned by the first p coordinates. Therefore, (ii) follows from Theorem
3.4.

PROOF OF (iii). We find this easily by putting ,,,=0.

PROOF OF (iv). Let F(2) be an arbitrary function in &, and f(3)
be its density function. Let ,_i" ¢,e'’”* be the Fourier series of v f .

Then + f =li.m. ﬁ} c;6* in L¥—x, z). Therefore if we let Gy(2)=

N—owo j=-=N
Sl
—-x

N 2
> c,e'?| dA, then by the triangular inequality

J==N

FO-Gx@Is| |VF@— 5 ese|an0.

Hence Gy converges weakly to F. Since (constant) X G, is contained in
My, the set G U,. is the dense convex set in R (F)—dR,(F), so

n=p+1

that (iv) holds. Q.E.D.

THEOREM 4.2.
(i) Uk is the closed convex set in U,,.
(i) Ur.c U
(iii) UpaC Uphaspnr.

@) U Ut=R,F)—RF).

PROOF. Let », and r¥ be the serial correlations defined by (2.6)
and (2.7), respectively.

PROOF OF (i). Since il(x,—i)=0, U, is the region of (r,---, )
t=
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n
in the case where 3 x,=0.
t=1

Now, the equation

n— n -1| n—1 2
142 21 r, COS SA= (Z‘. x?) 3 a:,+le“"l
=1 t=1 =0

holds, and if we put i=0 in this equation, we find that é z,=0 is
equivalent to 1+2n§fr,=0. Therefore, Uy, is the counterpart of U,,
=1

and the hyperplane {(rl,- MK nE—j:'r',=—1/2}. Hence (i) follows.
8=1

Proor OF (ii). For a vector (xy,- -+, x,), we put 2,.,= % é Then
t=1
the r¥ corresponding to (,,---, «,) is equal to the 7} corresponding to
(1, X, Xny1), S0 that (ii) follows.
PRrOOF OF (iii). For a vector (wy,-:-, x,), we put
0, n+1stsn+p
L= n
—?:.31» z , t=n+p+1.
n+p+1 . .
Then, 3) x,=0, and the 7, corresponding to (x,,---, %,) is equal to the
t=1
r¥ corresponding to (%y,---, ®,.541), 80 that (iii) follows.

PROOF OF (iv). This is obtained from (iii) and Theorem 4.1.
Q.E.D.

5. V,. and V3,

The purpose of this section is to prove that V,, is the convex set
spanned by the [n/2]+1 points p(2zk/n), (k=0,---, [n/2]) and that V.,
is the convex set spanned by the [n/2] points p(2zk/n), (k=1,---, [n/2]),
where [n/2] is n/2 for even n and (n—1)/2 for odd ». From this con-
clusion we can obtain the relation Vj}.CV,.CR/(Y).

Let 7, be the serial correlation defined in (2.8) and let r(x)=(r,
cee, )y Xx=(2,- -+, 2,) #0. Let Toepl, [4,- -, ¥.] be the nXn Toeplitz
matrix with %, on the main diagonal, 3, on the neighbouring diagonal,
etc. Then 7, can be written such as

8 l—l

=x’' Toepl, [0 ,0,1/2,0,---,0,1/2, O O]x/x'x

It is well known that the eigenvalues of the circular symmetric
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matrix Toepl, [0, 1/2,0,---, 0, 1/2] are

wkzcos% y  k=0,---, K

where k,=[n/2]. Let H, be the eigenspace corresponding to the eigen-
value w,. These spaces are orthogonal each other and span the whole
space. Particularly, H, is the one dimensional space spanned by the
vector whose elements are all one.

We select some different numbers 4,,---,6, from 0,1,-.-, k and
put 6=(3;,- -+, 0,). Let B(3) be the set in R? such as

B(6)= {r(‘% x,) T X € H,,t} .

If m=k+1, B)=V,,. If we put 6=(1,---, k), B(6)=Vz*,.. Because,
if we put z,=x,—% and z=(z,,---, z,)’, then the region of z is the space
spanned by H,,---, H,.

Let 4(3) be the convex set in R? spanned by m points p((2z/n)s,),
«++, p((2r[n)d,), that is,

40)= {33 p( 255 0sws1, Sw=1} .

n
Then, the following theorem holds and from this we can derive
our purpose.

THEOREM 5.1. For any o
B(8)=4(9) .

ProOOF. First we prove B(d)C 4(5). Assume that there is a vector
x=§j X, (x,€ H;) such as r(x)=(ry,---,7,) ¢ 4(3). Then there is a
i=1

separating hyperplane {(y,,- c Yt i b,y,=c} such that ﬁ‘, by.<c for
s=1 8=1

any (¥,---,%,) in 4(8) and §p‘_, br,=c. For these numbers ¢, b;,---,b,,
=1
we put
1 1 1 1
(5.1) A=Toepl, [c, —Lbi e =2y 0, 0, =Ly —gbl] .

The eigenvalues of this circular symmetric matrix A are

’ ’G==(),' ) A% ’

de=c—31b, cos 2rsk
=1 n

and H, is the eigenspace of A corresponding to ¢,. Since p((2z/n)d,)
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€4(0), ¢,= c—é b, cos ZZS 3;>0. Therefore c-—‘é br,=x'Ax[x'x=

(f} gbaix;x,) /x’x>0. This contradicts the equation i} b,r,=c.
i=1 s=1

Next, we will prove B(5)D4(s) by the mathematical induction
method. When m=1, 4(5) consists of only one point, so that B(3)C
.4(3) means B(6)=4(5). Assume that if m<u—1, then B(6)>4(5). We
will prove the case when m=u.

For an arbitrary vector x,=i‘{ v‘p(—zf— 5,) in 4(6), from the assump-
=

tion there are vectors x; € H, , such that
u—1
xozvur(xu)-*-(l_”u)r( igl xi) .

Let lzii‘, b,y,=c} be a hyperplane such as r(x,) el and r(’:i xi) el.
8=1 =1

From these numbers ¢, b;,---, b,, we define A such as (5.1). Then r(x)
€l is equivalent to xX’Ax=0, (x#0). Therefore

<’§]lx,>'A(':E_}1x,>=0 , x,Ax,=0,
=1 =1
and
u—1 ’ u—-1 ’
( E x¢> Axu=gll,;u< E x¢> xu=0 .
Hence for any real number «, r(‘r)zr(rx.,+(1—z-)':i}l x,) €l, because
=1

{rx,,+(1—r)j—2: xi}’A{txu+(l—z-)’§‘_.: x,} ~0.
This means that r(zr) exists on the line
{y € R*: y=1r(xu)+(1—2)r<§ x¢>, —o00 <AL oo} .

Since r(z) is the continuous function of z, there is ¢ such as r(r)=x,.
Since r(r) € B(6), the theorem follows. Q.E.D.
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