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Summary

Asymptotic expansion of the distribution of the likelihood ratio
criterion (LRC) for testing a composite hypothesis is derived under null
hypothesis and a correction factor p which makes the term of order
1/n in the asymptotic expansion of the distribution of it vanish is ob-
tained. The problem is extended to the case of a general composite
hypothesis and of Pitman’s local alternatives. The asymptotic distri-
bution of LRC for a simple hypothesis is studied under a fixed alterna-
tive.

1. Introduction

Let X=[x;,---, x,] be an m Xn observation matrix, where x,’s are
independently and identically distributed with probability density func-
tion f(x|6) depending on an unknown parameter 8=(4,,- -, 6,) with p
components.

The problem considered is that of testing a composite hypothesis
H,: 6,=86y, against H: 6,#60,, where 6'=(6;, 6;), 8:=(6,,---,8,), 0;=
(Bgs1s-+++0,) and 0 =(0y11.0,° - -, 0,,0) 18 a specified (p—q)-dimensional vec-
tor. The likelihood ratio criterion (LRC) was proposed by Neyman and
Pearson [8] as a method for testing a composite hypothesis. Wilks [12]
showed that the limiting distribution of the log-likelihood ratio eriterion
—2log 2, based on n observations, is a central chi-square distribution
with (p—q) degrees of freedom when the null hypothesis H, is true.
The limiting distribution of the LRC under a particular sequence of
Pitman’s alternative H,: 0,=0y+&/y ", e=(c441,° * *, &,), has been studied
by Davidson and Lever [2] and the asymptotic expansion of its distri-
bution up to order 1/4/n under H, has been studied by Hayakawa [4].
(Peers [9] studied the case of simple hypothesis.)

The purpose of this paper is to present the asymptotic expansion
of the distribution of LRC up to the order 1/n under the null hypothesis
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and a correction factor p which makes the term of order 1/n in the
asymptotic distribution of —2log 2 vanish in Section 2, and the asymp-
totic expansion of the distribution of LRC under a general composite
hypothesis and . Pitman’s alternatives, respectively, in Section 3. We
also study the asymptotic behavior of the distribution of —2log 1 for
a simple hypothesis under a fixed alternative H,: #=86,+¢ in Section 4.

2. Expansion of the LRC under the null hypothesis

In this section we discuss some notations needed for our consider-
ation and the asymptotic expansion of the distribution of a LRC under
the composite hypothesis.

Let the likelihood ratio criterion 2 for H, versus H be

_T f(xulél’azo)
1 A= =220
(1) I f(x.]0,, 6,)

where 6'=(6!, ;) is the maximum likelihood estimator for # under H
and @, is that for 8, under H,.

Defining the log-likelihood function by L(0)=i‘, log f(x.|0) we have
a=1

log A=L(8,, 6x)— L(6,, 65) .

In the asymptotic expansion of the log-likelihood function the following
notations and assumptions will be adopted.

(i) The function L(@) is regular with respect to @ derivatives up to
and including those of fourth order.

(ii) Any function evaluated at the point 0=0 will be distinguished by
the addition of a circumflex.

(ili) Any function evaluated at the point 6,=6,, 6,=80, will be distin-
guished by the addition of a tilde.

(iv) Let
v=y7R(0.,—0) , V=, ", V),
w,=y 7 (0,—0), W=(wy, -, W),
i.e., v=y(0—0), w=y7(6,—6)).
(v) Let
Yigorrty =11 gl Yatyoty » y..ﬁ...,ﬁw

By, =144, p; 1=1,2,8,4.
=W ¥ Y=uy), Y.=Wu), Y..=yw)
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£, =E@yy)=E (.4.5) , £ =E (4:)=E (¥.¢)) -

=V T E@y4)=E Wfes¥r) »

£, x =V BWy)=E Weltoss) »

Fin =o' EY)=E @) -

o100 = B WelesYasle) s K150 =E Walhosd)

K0 =E UulhosYar) s Fyu=EWufa) »  Kyu=E Yum) -
By the regularity conditions we have

K=(r,)=E@y)=—E()=-K..

We assume the non-singularity of Y with probability one and the posi-
tive definiteness of K which is a Fisher’s information matrix. The
partitioned matrices are denoted as

Yz[Yn Y] KZ[KH K} .
Yzl Yy |p-a sz Kzz Lo
q 7-q q P~q

(vi) For three and four suffix quantities, the following summation
notations will be used: Let A be a pXp matrix, and a, b and ¢ be
pX1 column vectors,

K.oacboc=3 rpabce----- scalor
4,7,k
K.oaocb=Cripaby) -ovvve- column vector with p components
Ik
designated by index 17
K.oa=kip) --cvceeeeees pX p matrix with (¢, 7)th element
k
P L
k
K... ° A Obztz Icukaqbk """"" Sca]or
Ik

K, . xAxBxCxK..=3 K kpqrQighioCor »

K. .®A®B=3)r;;,u0uby or ki udubs .
We also use the following abbreviate notations :

K.(ca))=K.-aca-a

K . (xA)P*xK.=K  xA¥AxAxK. .

Let the set of indices {1, 2,---, p} be partitioned into {1,2,---,q} and
{g+1,---, p} and let vectors and matrices be correspondingly partitioned
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a'=(al, a}), etc. Summation with respect to the indices in the divided
set will be denoted as follows:

q
Kyoaiob o c1=$ Ki5x0:DC,

q ?
Kyoayob o= ﬁu.ﬂﬁb;ca
1,7=1 a=q+1

@ »
Kyz0 Ay 0 =2 > Kuplulp .
i=1 a,f=q+1

(vii) Symbols o, and O, denote the orders of magnitude in probability
sense.

Expanding L(8,, 85) in a Taylor series about the point 8,=6,, 6,=4,,
we have

2 log 1=2{L(6,, 04)— L(6,, 6,)}
=@u—v) Y(u—v)+—:1,’— IA’...( ° (u-—v))f

+1_12 Y..(o @w—v))+o/1/n)

where
u=w',0), v=(@,0v).

Noting that
V=Y+7.. v—l——;— Y...( o v)+oyln),

V.=Y.4Y..0v+o(l/n),

A

Y..=Y..+o,(/n) ,
we have
(2) 2 log 1=(u—v) Y(u—v)
+—213-Y...( o @—0)\+Y...0 (@—v) o (W—0) o v

+%Y....( o (u—v))‘—!—%Y....( o @—v)) o v
+-;—Y....( o @—0))( o v)+0,(1/n) .

The equation satisfied by v can be written as
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1

0=1}=y+Yv+EY... opo v—}-l

5 Yoo v +o,l/m) .

Inverting this equation with respect to v, recursively, we have
(3) v=—Y Y- LY [¥.(o Yy)1]

—%Y"[Y... oYy o YHY...o Yy o Y-y)]

1

MG

Y7'Y..(o Y7'y)+ol/n) .

Putting 6,=6, in (3) as we are handling the asymptotic theory of 2
under H,: §,=80,, we have the asymptotic expansion of v at (6}, 8)=
4:, 6,). Similary, expanding g, at 6,=86,,.0,=0,,,
0= =y+Y;, o w+—é—Y1u ow o w+%'Y1111( ° w)8+0p(1/n)
and therefore
(4) u=—Zy— 3 ZY.. > Zop))
— S ZlY... Zoy ° Z{Y... o Zuy  Zu)]

+%ZAY,...( o Zoy)’)+o,(l/n) ,

where

Yt O
zo_[ . 0].

Inserting these values of u and v into (2), we have the asymptotic ex-
pansion of the likelihood ratio criterion for the composite hypothesis
up to order O,(1/n) as follows:

(5) 2log A=y'Zy+q+q:+o,1/n) ,

qF%Y-..( cZy)+Y.oZy-Zy-Yy,

a=1Y.(c Y7ig) o YUY..(o Yg))

—%Y...( o Zey) o Zy(Y.( o z,,y)z)+m117 Y..(o Zy)
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+%Y....( o Zy) o Y-'y o (Z+3Z)y
_%Y'--o( oY ly)oZy,

where
Z=Y"'1-2, and ZYZ=Z, ZYZ,=0.

It should be noted that rank Z=p—gq.

To obtain the moment generating function (MGF) of S=-—2log2
we use the multivariate Edgeworth expansion for the joint density
function of y, Y, Y.. and Y... up to the order 1/n, which is stated as
follows :

(6) fi=fu{l+ AT+ Bjn} +o(1jn)
where
fo=(2a) 7| K| exp (—~y K™y TT =)
* T 0Wuse— Kusel V) TT (15— Figual 1)

A=%{K.,.,.( o K-'y)—3K.. o K= o K-y} —K...o K™y o D..

B=%{K..,..( o D.)'—(tr KD.)}
—l—%(K-,-,-- oK'oD.—K...(cKlytoD.)
+%(p—y’K"y) tr KD.—K...o K™'yo D.
—%K o KK, oD.)o D..+%(K.,.. oK'y oD.y

+?14—{K.,.,.,.( o K-y} —6K.,...o K-( o K-g)
1+3K... (o K™Y
—-}3—{p(p+2)—2(p+2)y'K-ly+(y'K-*y)2}

_1
2

+%K.,.,.( o K-'y)to KYK., ..o D.)

K. .oK'oKYK.. oD.)
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+%K o Ko K-y-K... o K-y o D.
—%K.,.,.( o K-'g)PK... o K-y o D.

+—7-12—{-9K,.,. o Kto KUK, o K)—6K,. (xKY+K,..

+18K...c K'o K'Y(K...(°o K'y))

+9K... oK'to Ky}

+18K., . (xK ')V xK'yyK'x K. ..

+(K.,..(c K'y))'—9K...(° K'y) o K(K...(o K'y))
—6K.,..coK'oK'y-K...(°o K'y)}

D--=(dbc) ’ dbcza’(ybc_‘bc)/a(ybc—xbc)
D..= (dabc) ’ dabc = 5'(2/@: —xabc/\/%—)/a(yabc _xa.bc/‘“.i)

where §’s are Dirac delta functions satisfing

é(x—a)=0, r#a,

S sr—a)dz=1,

Sh(. e, @)@ —a)da=h(-, a, "),

S B(- -+, @, )0P(x—a)da=(—1) ah(- a;c;x, eed) L=a .

As this expression is represented at the any point 8, the MGF M(¢)
should be evaluated at the value H,: 6,=8,, that is,
M,(t)=E [exp (tS)| H)]

=S exp (t9) /iy, Y, Y..., Y....|6,, 8,)dydYdY..dY..+o(1/n) .

By the use of some relations with respect to K, K..., K...., etc., which
are derived from the regularity conditions for the density function,

K. oK'oK'4+4K. .. o K'o K'+K. .o K'o K™
+2K..®K'®K'+2K...c- Ko K
+4K.. . ®K'® K'+K....c Ko K™'=0
K.oK'oKYK.oK")+K.oK'cK\K,. oK™
+K.oK'oK¥K.,.oK™
4+2K.. 0o K1'o K(K..o K)=0
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K.(+*K"'W*K. +K.(xK")*K . +3K.(xK")*xK .=0

K. oK'eKYK..-K"Y)+K .oK'!'-KYK.,..- K™
+K.. oK' K YK, .- K™
+2K. . c Ko K{(K.,. o K*)=0

K. (xKYW"«xK.+K .(«xK*'W*xK . +K (xK")xK..
+K . (*K")V+K _ . +K . .(«K"')«K. . =0

we find the MGF of —2log 1 as given by (5), to
(7) M(t)=(1—2t)“"‘“”2[1 +-L (ad+Ad) +0(1/n)] ,
24n

where
d=2t/(1-2t),
A=12{K . .xMxM+xAxK. .. +K . xAxMxM*xK.
+K, . xMxMxAxK, .+2K . *xAxM+xMx K.}
A =UK")-1l(4),

(K )=38K. (o K")+12K.. (®K)+12K.,. . (®RK™')
+12K...(o K'Y +8K..c Ko K(K..o K™
+12K. ..o Ko K'Y(K...o K™
+12K. . c Ko K'(K..o K)+6K.(* K'Y xK..
+4K. . (x K ') *x K. +24K. . (* K’ x K...
+12K. . (*x K xK...

Kl_.l O e 'Kll Kn e
M=K'-A, A= K= :
l: o 0]”“1 [Kzn Kzzl""

The inversion of (7) gives the following theorem.

THEOREM 1. The asymptotic expansion of the distribution of the
likelthood ratio criterion for a composite hypothesis under the mull hy-
pothesis 18 as follows:

(8) P{—-2logi=sz|H}
=PJ+E};{A2PJ+4—(2A2—A1)Pf+z+(Ag—Al)P,} +o(1/n)
where P,=P {X;<x}, X} 18 a central chi-square random variable with f

degrees of freedom and f=p—q, and A, and A; are given in (7), respec-
tively.
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Remark 1. In case of a simple hypothesis H,: 6§=6,, the vanish-
‘ing of A implies A,=0 in (7), and (8) becomes

UK™)

P{—2log i< =
(9) {—2log 2zZx|H)} =P,+ ™

{Pr.a— P} +o(1/n)

and f=p.
Differentiating M,(f) under H, and setting t=0, we have the asymp-
totic expectation of —2log 2 as follows:

(10) E[—2log 2| Hl=p+YE7) | o1/m) .
12n

Combining (9) and (10), we are able to give a correction factor p which
makes the term of order 1/m of these expressions vanish simultane-
ously :

—1_UK™
(11) p=1—Jprr+oll/n) .

Wilks [12] expected that the magnitude of the second term of the
asymptotic expansion of the distribution would be of order 1/yn. (9)
shows that the convergence of —2log 2 to a central chi-square is more
rapid than it is expected. It is also of interest to note that we can
find a correction factor p for a simple hypothesis.

Remark 2. It is of interest to note that the term A, in the ex-
pression (8) vanishes for a particular distribution. Let x be a random
variable with Darmois-Koopman type probability density function ex-
pressed as

F(x10)=h(x) exp {31 bau)+V(®)]

where V(0) is differentiable with respect to @ up to the fourth order.
We assume that f(x|6) also satisfies the regularity conditions. As the
second derivatives of log f(x|8) with respect to & become a function
of @, not depending on a random variable x, that is,

dlog f_ &V
30,00, 36,00, ’

iyj——_]-)zy""p’

we have by the regularity condition

. =E[azlogf 3logf]= oV E[alogf]_:o
bk 301 aﬂk aot aoj aok aoi )

This implies that K. ..=0, that is, 4,=0 in (8). Noting the relations
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Ki g 6= —Kijx
Kigxu=—Fq 551 » K =0
Eiper Ko g0 Feg e Ko, g+ Ko, g
the coefficient A, in (7) can be simply represented as follows:
A =U(K™M-lA),
UK")=3K..(cK")43K. K'c K(K..o K™)
+2K.(xK')**xK...

Thus we have again a correction factor p as

A

Tonp +o(1/n) .

p=1-

Recently the asymptotic distribution theory of the LRC’s for vari-
ous hypotheses about the parameters of the multivariate normal popu-
lation has been studied by the method developed for the normal dis-
tribution theory (Box [1], Sugiura and Fujikoshi [10], Sugiura [11],
Fujikoshi [3], etc.). Lee, Krishnaiah and Chang [6] have given the
asymptotic expansion of the distribution of a statistic, which has the
moments expressed by Gamma functions, up to the order 1/n!, where
n is a sample size. For these expressions it is of some interest that
we are able always to obtain a correction factor p which makes a rapid
convergence of LRC to a limiting distribution.

We will show in Example 1 how to get the asymptotic expansion
of the distribution of LRC for a particular hypothesis of a multivariate
normal population by the use of Theorem 1. However, the derivation
is laborious.

Example 1 (The calculation of this example is partly due to Miss Y.
Kikuchi). Let x be an m dimensional normal random vector with mean
£ and covariance matrix ¥, and x;,:--, Xy a random sample from this
population. We test the simple hypothesis

H,: 3 '=6=86, (specified), given p¢=0
against
H: 3>'=6+86,, given u=0.

The probability density function of this normal population belongs to
the family of Darmois and Koopman and the likelihood ratio criterion
for this H, is given by
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Nm/2 1
A= (L) 6,S|"" etr (——60S>
N | | 2

N
where S=3 x.x.. Without loss of generality we are able to assume

a=1

6,=1I,. Rearranging parameters as 8= (0,05, Onms b2y, On_1m), We
have the expectations of first and second derivatives of log-likelihood
function,

B[ 2L |-Llep, E[ZL 2]
aaﬁaajj 2 80“ 301,,1

E [&] =079+ 670", respectively .
Making third and fourth derivatives of L with respect to 4,,’s, we have
the following identities with a little algebra
K..oK'o K'=—2m*+5m’+5m)
K.oK'o KYK. o KY)=2m'+4m*+2m
K.xK'«sK'«xK'xK.=m+3m*+4m ,
which gives
A =2m*+3m*—m .

Thus we have the following asymptotic expression of the distribution
of 2 under H,;

i M-8 —1) (P~ Py} +olL/n)

P{—2logigz}=P,+

where P,=P {{;<z}, and f=m(m+1)/2. This result agrees with (2.10)
in Sugiura [11] up to order 1/N. Sugiura considered testing a hypoth-
esis H,: Y=J3,, against Y+23, by the use of a modified likelihood ratio
criterion having an unbiasedness,

*_ i mn/2 /2 <——1—
2 (n) |GuA | etr 29.,A),
where n=N—-1, 6=3", A=é(x,—£)(x,—.i)’.

3. Expansion of 2 under a general composite hypothesis

In the discussion of Section 2 the attention has been restricted to
the test of null hypothesis in which certain components of parameters
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6 have been specified. We generalize this result to a test of hypoth-
esis H, : 0 € v, where o is the subspace of all vectors 8 ¢ & for which
there is a transformation &(@) such that

$z=($q+1(0), Tty Ep(ﬂ))=($q+1,o, tt Ep,o)'——ezo ’

where &40, *, &,0 are constants. The transformation &(@) is required

to satisfy the following properties:

(a) There exists a vector £,(8)=(£.(8),: -, £,(8)) such that the inverse
transformation 8(§)=(6,(8),---, 0,(8)) exists, where &'=(&/, &.).

(b) The partial derivatives of #(&) with respect to & exist up to order
four, and are bounded and continuous function of &.

(c) The transformation should be one to one, that is, the Jacobian
|0(8)/0(6)|+0.

Let @ be a maximum likelihood estimator of @ € 6, then by the one to

one correspondence between 8 and &, e(é)=é becomes also a maximum

likelihood estimator of & By this reason the likelihood ratio criterion

of testing the general composite hypothesis

H,: &=8&, against H,: &+&,

is expressed as

12) 1=ﬁ f(x|€1, 5‘\20) ,
=t f(x|&, &)
where &=(,,--, £,) is a m.le. of & under H,,. The expression (12) is

completely similar to (1) except the notation & and & This implies that
the distribution theory with respect to 1 under the general composite
hypothesis can be handled by similar way as the case of a composite
hypothesis.

THEOREM 2. Under the required conditions for the density function
and &(0), the asymptotic expansion of the distribution of the likelthood
ratio criterion 2 under H,, can be expressed as follows:

(13) P{—2log2=x|H,}

:Pf+ﬁ{A%PJ+4_(2A2m_A1a)Pf+z+(Azﬁ—Al.)Pf} +0(1/'n)
where A,, and A, are the values of A, and A, in (7) at €=(&,, &) and
f=p—q.

To express (13) in terms of #, we have to know the values of A,,
and A,, at o. By the regularity conditions required for transformation,

th(e) =KpTipTsq » Ky, 1(5) =Ky, 5TipTjq
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£ 11(8) = KpgrTinT 1qThr T KpgTig, 05T ja + KpaT s5,00Tip T FpaTik, 257 10

(14)
K, ;n(e )=, 0rTisT 1qTkr + Kp,qTesT 12,04
£, 1,(8) =Ky, TiT1aTar ete.,
where
L 00, ¥4
Y vl P T A AR "
aei aEt aej

The functions of the fourth order derivatives can be obtained as a
similar way.

If the transformation for @ to & is an Affine transformation, i.e.,
6=G&+7, where G=(g,)), 1,5=1,2,---,p, is a non-singular constant
matrix, the expressions given in (14) become more simpler ones:

'Cij(e) = qu(o)gptgqj ’ K, ;(5) =Ky, q(o)gp(gq!
K:11(8) = £0,(0)91190 191 i, 11(8) =K5,0-(0)9i04 19
K;, j,k(e) =Kp,q, r(a)gpigugrk ’ ete.

It is easy to see that I(K™!) of (7) is invariant under this Affine trans-
formation, but l(A4) is not invariant.

We discuss two examples which cover the testing hypothesis of a
multivariate normal population as the particular cases.

Example 2.1. We consider the following composite hypothesis
H,: 6,=60e, 0,=80,, against H: H, is not true,

where 01-:(01 )ty 0q)y 02=(0q+11 tt 01))’ e=(1, M) l)qllxl 0zo=(0q+l,0’ M) 0;;.0)
specified vector. By considering a following Affine transformation such

that
e Folal-Lo]
e2 02 020
where
~ 1 -
-1 1
-1 q
G_lz -1 1
1
1
p—q
L 1 J
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the hypothesis H, is reduced to a simple form,
H,: &=&=---=£,=0, against H,: H, is not true
and the likelihood ratio criterion becomes

& f(x|$1, ) )
15
= ‘;LT‘ f(xleuez)

where £, is a maximum likelihood estimator of ¢ under H,,. It is easy
to check that the first term of —2log 2 becomes

2log 2=u'Vu+0,(1/n) ,
where

_1 aLGl oL —Gy,

Vn o8 vn o0
__TT-1 a_[a O oyl 1 oL \™!
V=U"-V=U" [0 0]’ @ =t (n ae;)
_1 FL _ e
- 6 =0T -

Noting u,,=(¢’, 0')Y(e’, ') =€'Y, e, we have a quadratic form with re-
spect to y and Y as

_ 1 [ee O
vamy ([ v
u'Vu=y Telo o y=y'Zy

It is seen that

ZYZ=Z7Z and rank Z=rank ZY=trZY=p-—1,

which implies that u'Vu approaches to a central chi-square random vari-
able with p—1 degrees of freedom in law as » tends to infinity.

This type of hypothesis can be found in testing hypothesis concern-
ing with a multivariate normal population.

(a) Let x be an m dimensional multivariate normal random vector
with mean zero and covariance matrix Y. Testing the sphericity H,:
Y=d'l,, against H: Y+#¢*I,, o* unspecified, is included in this case.

(b) Let x be distributed as above (a). Testing the hypothesis of
an intraclass correlation model H,: ¢,,=p, 1#J and o,=1, 4, j=1,---, m,
against H: H, is not true, is included in this case.

Example 2.2. For testing a hypothesis

H,: 6;,=6e , against H: 0,#0e, e=(1,1, -, 1)h_pxa
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the first term of 2log A can be expressed by doing a similar way as

u’Vu=y’{Y“—[g :|Y1;'(6)[I 2]}1] vy,

Yull)= [ g] [o g]

ZYZ=17, rank Z=tr ZY=p—q—1.

where

and

This implies that —2log 2 approaches to a central chi-square with p—
g—1 degrees of freedom. We are able to construct many hypothesis
for parameters of multivariate normal population.

To close this section we show the asymptotic behavior of —2log 2
under a sequence of Pitman’s alternative Hw, such that

Ho,: &=§8nt+e/vn

where n is a sample size. The asymptotic expansion of the distribu-
tion of LRC under H,: #=0,+e¢/y/7 has been obtained by Theorem 1
in Hayakawa [4]. By using a representation (12) of LRC and Theorem
1 of Hayakawa, the asymptotic expansion of the distribution of —2log 2
under H, is given as follows:

1 3

(16) P {—2log 12} =PA0) +— 3}

@, Py, 2:(0%)+0(1/n)
where

f=p—q, 52:-%-3'1{22‘13 ,
a=—2 K. (o ¥

al=—%{K...( o ey —2K. . (o e¥)'+3K.. 0 Ao e

+6K... 0 Aoe*4+3K,.0e08*o0e*+3K;.. 080 e*og*}
ty= —%{K.,.,.( o e¥P—K. (o e¥)'—8K.. 0 Ao e*

—6K. ..o Aoe*—3K,.0e0e*oe*—3K,. osoe*oe¥}

Ki'K, ]
* 1u Ay
¢ [—Ip_
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K. ,K. ., K., A and & are the values of these at (§, &x).

4. Expansion of 2 under a fixed alternative

In this section we shall only consider the asymptotic distribution
of the normalized likelihood ratio criterion under a simple fixed alter-
native H,: 6=0,+e, & is a fixed vector.

Expanding L(6,) at #=0 and noting v (6—6)=v+vTe,
an 2{L(6,)—L(6)}
—(wt+vTe) Yo+ Jic)—% V(o w+vme)

1 % n ‘—l )
g Vol o @+ T0) .

Again expanding #i;, ¥, -+ at @ and rearranging (17), we have the
following asymptotic expansion ;

2n{K(8,)—K(0)} +2+/ 7 {u,—u+e'y—e' K.v+&W.v}
4K v+K. . ovovoet+tUW.v+W..ovovoetoll),

where
K(6)=E [log f(xl0)]=S {log f(x|0)} f(x|0)dx ,

K(0,)=E [log f(x]6,)]

=1 _ 1 _
th=—={L(0) ~nK(®)) , u=—(L(O)-nK@)} ,
W.=(w,)=Y-K., wi,=-j;{L‘,(o)—m,,(o)} ,

W..=(wy) =V (Y.~ K.) , wf,k=%{L¢,k(o)—m¢,k(o)} :

where

PL_ and Lou(6)=— 2L

L, (0)=—— 9= .
w(6) 80,06, 36,36,00,

Replacing v by (8), we have the normalized asymptotic expansion of
—21log 4.

Sa=[—2log 1+2n{K(6,)—K(O)})/vn
=2(u—up)—y'Y 'y[vn +o,(1/y7) .
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To find the MGF of S, we need the Edgeworth expansion of (u,, %, y, Y),
which is given as follows.

_ 1 (1 o M- 8E o M-t o Mt
ﬂ—ﬁ,[1+7_;{€{ﬂ.,.,.( M-2p—3H... o Mt o M-z}

—H. oMzo D..} +olt/m)|
where

fo= (@)~ M |2 exp {—%Z'M_IZ} TT 30— )

z’z(uOr U, y,)

M, Mz] [Ml Mz]’
M:E ZZ' = =
( ) |: Mn Mz Ml K J»
2 3
H,.,.z(ht,j,k) ] hi,j,k-:E (z,zjz,,)
H, = (hi, jk) ’ ht, = E (ztyjt)
D..=d,), aiy=0"(Ysy—K:5)[0(Y:;— ki) .

We find after some lengthy algebra with respect to the normal
distribution that the MGF of S is given by

My(t)=exp {2t%' M [1 4 L ]
»(t)=exp {2t’ e} +ﬁ+0( /n)
where
q=pt+¢ {4e'M,zMz;%.e+§ Hyooo e)a} ,
€=(-1,1),

H, 11( 0 €)'=hoo1+hos0thootPysi— {RoootFosst+hyo+h o) -

Putting *=4e¢'M;;e, we have the following theorem.

THEOREM 3. Under the fixed alternative, the normalized likelihood
ratio criterion Sy=[—2log 24+2n{K(6,)—K(0)}1/¥v " has the following
asymptotic expansion of the distribution.

(18) P {Sulr <} = O(z) —71_77[1)@%)/: + {4 MM M e

+ 3 Hyi( o e 00@)e | +olim)
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where t*=4e’M,e and O(x) means the r-th derivative of the standard
normal distribution function @(x).

Under the null hypothesis H,: 8=6,, we have u=u,. This means
=0, by which the asymptotic non-null distribution —2log2 has a
singularity at the null hypothesis, so that the formula given by Theo-
rem 3 does not give the good approximation near the null hypothesis.

Ezample 3. We shall examine the same hypothesis testing as Ex-
ample 1. The parameter 8 is arranged as

[
6 —(5117' ) Ommy O135° **y o'm—l,m) .

To find the covariance matrix M of z, without loss of generality, we
take the expectations of z at ¥=1I,. By doing this, z should be read as

uu=——;-log|2A|—%trAxx’,

1 1
=——log|2L,|—-= 1t ,
% 5 og |2L,| 3 r xx’

J= 1__(aL 4L oL | . L )
) 00y z=z’ ’ 00 mm z=1’ doyy z=1, ’ 00m_1,m |z=1 '
where |
x~N@©,I,) and A=3;"335;,
Then,
MZ[MM M]
My M,]’
1[trA? trA
My== :
" 2[trA m :I
17
Iwzz= 2
Lum-vp2
lau’ 'r}‘amm Qg3 y Aty m
2 2
M;y=—
l e l 0 0
2’ ’ 2 ’ ’

We have
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?*=4e'M,e=2 tr (A—1I),
4e' M M;'Mye=2 tr (A—1I)*,
Hy11( o €)'=hy,1,1+8hy 00— {Po,0,0+8hy,1,0}
ho00=E (uf)=—tr A%,
hio,0=ho1,0=Noe1=E (uiu)=—tr A?,
hyyo=hyo1=hy1 1 =E (uu?)=—tr A,
hi =E@)=—m.
This gives
H (o el=tr(A—1I).
Combining these results, we have the following expression.
P{[—2log i—n{tr (A—I)—log |A|}]/V =z}

—0(x)— 6_}7_ (Bm(m +1)0(x)/c+4(m +2 tr A°

—3tr AH0®(x)/*} +o(l/v ) .
This agrees with (2.16) in Sugiura [11].
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CORRECTION TO

“THE LIKELIHOOD RATIO CRITERION AND THE ASYMPTOTIC
EXPANSION OF ITS DISTRIBUTION”

TAKESI HAYAKAWA

(This Annals Vol. 29, No. 3 (1977), pp. 359-378)

The expressions for the constants 4, in (7) and A,, in (13) are in-
correct. The correct expressions are A,=A4, =0.
This fact is also noted in Cordeiro [1] and Harris [2].
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