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Summary

New lower and upper bounds are given to the probabilities of bi-
nomial and multinomial random variables. Exact bounds are also pre-
sented for the sampling distributions of chi-square type statistics and
the K-L information number from a multinomial distribution.

1. Introduction

Many parts of the theory of statistics are based on approximate
results. Suppose that the exact sampling distribution of a certain sta-
tistic is unknown or is very complicated to use for statistical purposes.
Then it is quite natural to use approximate distributions (or functions)
by the aid of approximation theories. In fact, large numbers of ap-
proaches to such problems have been done in various situations, in
which the limiting or asymptotic distributions are frequently of main
concern as the underlying sample size n tends to infinity. However,
it should be noted that they are valid theoretically only for the sample
size n is sufficiently large and that the magnitude of the approximation
error is hidden behind the convenient but vague symbol O(n™*) (a>0).

In reality, the size n of the sample at our hand is always finite,
and frequently it would not be assumed sufficiently large ; to use asymp-
totic approximations in such cases seems to be dangerous. So, from
both theoretical and practical point of views, it is desired to give exact
error evaluations being applicable to a general case of any given n.
From the above standpoint, bounds on some basic approximations will
be investigated in subsequent sections.

The main purpose of this paper is two-fold. The first one is to
approximate the binomial probabilities and related quantities more pre-
cisely than the usual normal approximation. Another one is to evalu-
ate the x*-approximations for the distribution of chi-square type statistics
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by using double inequalities. To the former problem a few exact bounds
have been presented so far to evaluate the accuracy of the De’Moivre-
Laplace theorem (e.g. Uspensky [8] and Feller [2]). However, as far
as the present author is aware of, exact evaluations for the x*-approxi-
mations have hardly been examined except for Vora [9]. .

In the following section some basic inequalities are proved, of which
two new forms of the Stirling formula are presented, assuming % not
to be large. In Section 8 approximation theory on the binomial distri-
bution is treated. A set of lower and upper bounds for individual bi-
nomial probabilities is given in Theorem 3.1. Further, bounds for the
tail probabilities of the distribution are estimated in Theorem 3.2. In
Section 4 bounds on multinomial probabilities are given in Theorem 4.1.
In Section 5 exact evaluations are made for the sampling distributions
of chi-square type statistics in Theorem 5.1, which are improvements
of Vora’s results. Moreover, bounds are given in Theorem 5.2 for the
sampling distribution function of the K-L information number from the
multinomial distribution. Some numerical results are given in Table 5.1
on the evaluations of the distribution function of the chi-square type
statistics from a number of different multinomial distributions.

2. Preliminary lemmas

In this section some basic lemmas are given which play fundamental
roles in subsequent sections. First, some inequalities are obtained based
on inverse factorial series which are more accurate than those so far
obtained (cf. Theorem 2.1 of Matsunawa [5]).

LEMMA 2.1. For >0 and for any positive integer K=2, it holds
that

@2.1) In (1+l) =1 S but_ S (w)
u u i=1

with

(2.2) Sx(w) < Sx(u)<Sx(u) ,

where u™'") denotes the inverse of an advancing factorial u''=w(u+1)---
(u+7r—1) (r: a positive integer),

(2.3) ,S'K(u)zi-%+1 b+
(2.49) Sr(u)=(K—1)bg(u+1)"u-tx+1

(2.5) Sx(u)=Kbgu 'y 51,



APPROXIMATIONS TO THE PROBABILITIES 335

and b=1/2, b,=1/6, b,=1/4, b,=19/30, b;=9/4, b;=863/84, b,=1375/24,
b, =33953/90, b,=57281/20, b,;=3250433/132,--- and in general

2.6) b¢=§,(—1)‘+f-*d,,,-1(i—j+1)-*, G=1),

where d’s are absolute values of Stirling’s numbers of the first kind,
satisfying
do,z=1 ’ dz,z=“ ’ (l.Z_O); dk,l=0 ’ (k>l) ’

dk,zzl‘dk-l,t—l‘l"dk,z-l (1§k§l—-1) .

2.7

Proor. The right hand expression of (2.1) with (2.3) was shown
in the previous paper [5] but with the coefficients b’s of the different
form
2.8) 1=% : bizglt(l—t)(2—t)- C(—1—-t)dt  (i22).

0
This representation, however, reduces to (2.6) by noticing the fact that

| 2.9 Hl—t)(2—1).- -(i—l—t)s(—l)“‘t“’:jg(—1)‘““d,,,_,t“f .

Thus, it suffices to prove the inequality (2.2) with the bounds (2.4) and
(2.5). Since it is easily verified by evaluating (2.8) that

I'(i—1) 1) @)
2.10 b, < b
(2.10) FE=1) br<bi< TK) "
for 1=K+1 and K=2, then by using Lemma 3.3 of [5] we can evaluate
Sx(u) as

b
I'(K-1) =
b 3
I'K—1)-u

— bx 1 % . —[§+1
_I’(K—l)-u{(u—l—l)z jz“-am)(“ﬂ) : ]}

bx I'(K) _
“TE=1)u W) wrnm ox®

Sr(u)>——E— Z I(i—1u "0

2 T0) w1y

and

o »Yqy —(1+1]

Setw) < 33 Tliu

— bx _1__ & Y 6 +1]
(K {u’ 1Ig}ll“(z)u
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bx  I'(K+1)

- IK)  wt=s =Sx(w) ,

which completes the proof of the lemma.
LEMMA 2.2. (i) For x> —1 and for any positive integer M =3,
@2.11) In 1’(x+1)=_;_ In 21r+<x+—;—> In (@+1)—(z+1)
~3 a(o+1) - Ry(z+1) ,
with

(2.12) Ru(y) <Ru(y) <Bu(¥) ,

where

2.138) Ru(y)= 3} ay™™, (¥>0),
i=M+1

(2.14) Iju(y)=%[(M—1)(M+4)<yil+M}H y12>

—(M—%%]m-w ,

(2.15) Rx(y)=(M—1)[Ma"‘<y_]+-_1+M}_1 yf-2>_MW(M)(’yil

1 Yy > y+M] —[M+1)
—Z_\4+WM)Z—— ,
M1 gz T

with
1

and a,=—1/12, a;,=0, a;=1/360, a,=1/120, a;=5/168, a,=11/84, a,=3499/
5040, a;=1039/240, a,=369689/11880, a,,=83711/330,---; in general

1 -1 _ 1 2 .
217 a= 3 (- (2 ), 2D,
@17 a=gr RV Gy T Gz1)

(ii) For x> —1/2 and any positive integers M =3, K=2,

@18 InI@+)=21n 2zr+(:c+-;—> In (x%)_(“%)

M K
— 2 @+ -2 ST b+ 1) - i)
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where a’s and b’s are the same as before and

(2.19) R x(x)< R x(x) < R x(%) ,
where

(2.20) R} x(#)=Ru(z+1)+(2+1/2)Sx(22+1) ,
(2.21) RE x(¥)=Ry(x+1)+(x+1/2)Sc2z+1) .

PROOF. (i) The R.H.S. expression of (2.11) can be derived from
the result given in Theorem 2.1 in [5], that is, for >0 it holds that

2.22) lnr(y+1)—-—1n2z+(y+ )lny y+L—R(y),

where

(2.23)  R@=Z ey =3y
(2.24) ai:%- S:t(l—t)(Z—t)- - .(i—l—t)%—t)dt , 629,

which is equivalent to (2.17). Then, putting y=2+1 (x> —1) in (2.22)
and noticing the fact In I'(x+1)=InI'(x+2)—1n (z+1), it follows that

lnl’(a:-[-l):%ln 21r+<x+ ;) In (z+1)— (x+1)+m—R(x+l) :

which is nothing but (2.11) with (2.13).
It remains to prove the inequality (2.12). For i=M+1 and M=3
we can evaluate a; as

i—2 1/2
a>L T (+1) [ (R ) -y ydy
1 j=H-1 2/ Jo \2
1—2 i~2
=L 74 1 (1) M,
1 j=M-1 j=M-1 27

from which we have

3 IrG—1) 1 IG—2) .
(2.25) a>{2 D) E F(M—Z)} Fau,  (ZM+1, Mz3).

On the other hand, it can be seen that

a<t TF 0| (F-v) (0w b (T + =)~ (=) dy

j=M- 0 2

- R -0 (e
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that is,

226) a< 7{—;% ot (L-1)WaD] ,  GzM+1, M23),
where W(M) is the quantity defined in (2.16). Thus, applying these
inequalities (2.25) and (2.26) to (2.13), we can prove the inequality (2.12)
in the same manner as those in the proof of Lemma 2.1.

(ii) By using (2.1) to the part of In(x+1) in (2.11), the R.H.S.
expression of (2.18) follows at once, so the inequality (2.19) can be
directly derived.

Remark 2.1. Lemma 2.1 is also true for u<—1 with exclusions
u=-—2, —3,---, although our later discussions need not to consider such
cases. As for Lemma 2.2, (2.11) and (2.18) give wider applicability than
the usual Stirling formula for Inx! which is used for sufficiently large
n, whereas our results are also valid for small values of # and even
when n=0 with fair accuracy. Though the above lemmas are prepared
for developing an approximation theory in the subsequent sections, some
numerical computations show that (2.1), (2.11) and (2.18) are useful in
the practical purposes and that give considerably close bounds for vari-
ous combinations of (u, K), (x, M) and (z, M, K).

Remark 2.2. It should be also remarked that
Sz(w)—0 as K—co, for any >0,
and that
Ry(y)—0 as M— oo, for any >0,
because by Lemma 3.2 and Lemma 3.3 of [5] we see that

1 + 1
2u(u+1)  6u*(u+1)

0< S(u)= :2, bu g

and

w1 { 1 1 }
O<RW=Fer<gli-raty
thus, the series of positive terms S(u) and R(y) are absolutely convergent
for any >0 and y>0, respectively. Therefore, the more terms of the
series we use, the more accurate results we get, in case of approximat-
ing InI'(z+1) by making use of the inverse factorial series. On the
contrary, the usual Stirling series does not have the convergent property ;

1n1’(x+1)=%ln2rr+<x+%> In x—x+T;7—,u(w) ) (x>0),
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where

— - (_l)n—an f— n—1 -(2n—l)
P = =3 (-1

and B, denotes the Bernoulli number defined by

2(2n)! <& 1
(@ —1)z 7= 2r+1)»

B,=

Since C,,,/C,~ B,,:/B,~(n/z)* as n— oo, the remainder part p(x) is diver-
gent series for any fixed x>0.

The following lemma is a partial improvement of Feller’s result
[2] which is useful to replace sums by integrals in our approximation
methods in Section 5. The proof of the lemma can be done by the
similar manner as that in [2], so it will be omitted here.

LEMMA 2.3. For 0<h<1 and |zh|SV5,

@.27) JES“” gy = exp{ +M+w(x, DI
Z—h/2 2 24

where

_x'
960

h4

2.28 S L
(2:28) 288 —24h*

= <oz, h)<

3. Approximations to binomial distribution

Let S, be a random variable distributed according to the binomial
distribution B(n, p) whose probability function is given by

3.1) Py(S,=k)= ( )pq"‘ k=0,1,---,m,

where 0<p<1 and g=1—p. First, let us apply the improved Stirling
formulae to the binomial coefficient in the manner such that we use
(2.11) to n! in the numerator but (2.18) to the factorials in the de-
nominator, then it can be represented as

3.2) (Z)_: «/271-(1‘@+1) {( k::gz ><k+|/z>/<»+n

(1 k+1/2 >l—((k+l/2)/(n+l)) =(n+D
T+l }

exp (7x,x(k; n)) ,

where for any positive integers M (=3) and K (=2)
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B3 ruxlli =3 a{(k-+ 1)+~ 1) (n4 1))
+2 210 (@k+2) -+ 2(n—k)+2)19)

+ R x(k)+ R (n—k)— Ry(n+1) ,

and where a’s, b’s, Ry(-) and R% x(-) are the same ones as those de-
fined in the preceding section. Thus, by applying the inequalities (2.12)
and (2.19) to (3.3), we get the lower and upper bounds for 7, .(k; n);

(3.4) Tux(l; 1) <Tu,x(l; 1) <Tax(k;m) ,

where

(3.5) T, x(l6; 1) =2u, x + R x(k)+ R x(n—k)— Ry(n+1) ,
(3.6) T x(k; B)=Zy 5+ RY x(k)+ Bf x(n—k)— Ru(n+1) ,

and where X x denotes the sum of the first two terms of the R.H.S.
in (3.3). Assume now that » and k are positive integers such that

3.7) s=ok; p=+t12 550
n+1

for a given p, then 0<p+d<1, 0<g—o<1, p/6>0, ¢/6>1, and then it
can be represented as

Nk n—k__ 1 _ .
@8 (})per=p exp (— (v Dloelli m, )}
where
(3.9) Lo x(; 0, p)=U(3; p)— n_lH ru(kn) |
with
(3.10) 3; p)=(p+38) In (1+i)+(q—a) In (1—i> .
P q

Here, making use of Lemma 2.1 and the remarkable inequalities
given by Okamoto [6] and Kraft [4], the R.H.S. of (3.10) can be eval-
uated as

(3.11) I3; )<U; P)<iE; D),
where
(3.12) U(d; p)=max {ly, Lo, lk} ,

with for any integer K (=2)
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(3.13) h:% _gaé {<p+2> (=11 p(%_l_l)-[t—u}
{ ( 2)" ”—(K-1)p’(%+1)""”} :

2 - ] - 9
( () or .K 2

(3.14)  Le=26"+(4/9)*,
(8.15) lo=2(vp+é—vp),

and where for any positive integer K (=2)

(3.16) 1(s; p)__;;;__azbi{ < +2>“[‘—11_p<%+1)—n—u}

ol

ot +1)

(s &’ _ (g—p—0o)& . for K=2>_
T 2pqg  6pg(p+0)(9q—9)

Thus, from (3.4), (3.9) and (8.11), we have for any positive integers
M (z3) and K (22),

(3.17) Ly x(k; 1, p)< L (k5 1, D)< L (% , 1)

where

(3.18) Lux(k; 1, p)=U0; p)——L T x(k; )
n+1

and

(3.19) Lo x5 1, ) =103 p)——2— 1 xlley 1) .
n+1

Summarizing the above result we obtain the following estimations for
binomial individual probabilities :

THEOREM 3.1. For mon-negative integers n and k such that (n+1)p
—1/2<k<mn, it holds that

(8.20) b(k; », p)< ( Z ) p*q"*<b(k; n, p) ,

where
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@.21)  blk;n, p)=—2n—(~,—n1+——1—”5 exp {— (n+1)Lux(k; 7, D)} ,
and

= _ 1 _ .
(3'22) b(ky ny p)— ‘\/2—7;(_’;1:—_ -l-l)pq exP { (n+1)_L_M,K(k’ ni p)} .

Next, let us consider to estimate extreme tail probabilities of the
binomial distribution. Usually, this problem is treated asymptotically by
resorting to certain approximate distributions such as normal approxi-
mations to the binomial tails. In what follows, however, we shall try
to give some computable bounds on the probabilities without using other
approximate distributions. To this end the following inequalities due to
Hodges-Lehmann [3] and Bahadur [1] are useful:

LEMMA 3.1. Under the same conditions for m and k as those in
Theorem 3.1, it holds that

P,(S,2k)

'———_S_ y 1y ’
PS.=k) =" D)

where

020 oo sy (BSOS, 215

o . (1=((n—k)/(k+1)-plg)t  a+1
(325 (ks m, p)=min | 1—((n—k)[(k+1)-pla) ’a+1—zq}’

and where
3.26 —2k; m, p)=2T1p,
(3.26) z=2(k; n, p) k+1p

1 1 \/k+1
3.97 —alk;m, =< - )( .
(3:27) a=alk;m P)=\2T =0T k+2)z

In view of Theorem 3.1 and the above lemma, we can immediately
state the following estimations on the binomial (upper) tail probability :

THEOREM 3.2. Let 0<p<1, q=1—p, and k be non-negative integer
such that (n+1)p—1/2<k<m, then it holds that

(3.28) c(ke; m, p)<PAS.=k)<c(k; m, p) ,
where

(3.29) c(k; m, p)=7(k; n, p)-b(k; n, p) ,
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and
(3.30) é(k; m, p)=7(k; n, p)-b(k; m, p) .

4. Approximations to multinomial distribution

In this section we give some estimates for multinomial probabilities
along the line of the preceding section. The results given below will
become basically important in the subsequent section where x*-approxi-
mations related to multinomial random variables will be investigated.

Let X, =(X,---, X;) be a k (=2)-dimensional random variable which
takes values zy,=(2,,- -, ,)=(my/N,- - -, m;/N), where

(4.1) . N=n+k2, m=n+12 (i=1,---,k)),

k
and where n,’s are non-negative integers satisfying > n,=n. Let, fur-
i=1

ther, the probability function of X, be given by

! k
(4.2) P X=Fq)=—2— T[] 01= P& | Do) »
k i=1
T[ni!

i=1

where pu,=(py,- -+, D:) is the parameter vector of a multinomial distri-
bution and is any point in the simplex

k
2= {(zl,-.-,z,‘)lzigo, 1=1,--+, k; Zzi=1} .
. i=1 ‘
Then, taking a convention pji=1 if p,=n,=0, we can rewrite (4.2) as

k
(4.3) P(xw] p<k>)=iT=Tl (@:/D)"* P> | Trr) €Xp { — N-I(Zesy; Pao)}

where
k
4.4) I(xa; Pa) =i2=]1 ;. In (z/p)) .

Now, let us again apply the improved Stirling formulae (2.22) and (2.18)
given in Lemma 2.2 to the multinomial coefficient in P,(xy,|2w) to n!
in the numerator and to the factorials in the denominator, respectively.
Then, it can be further represented that

1
(v 27tN)k'"\/;[il; D:
- exp {RY x(n, k; ny)} ,

(4.5) P(24 | Pay) = exp {—N-I(Zu; Pa)}

where for any positive integers M (=3) and K(=2)
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. - — 3 -] 1 s 2n o
(4.6) R'M,K(n’ k’ ni) ;2_1 a;n + ( 2 411/) g ( k +1>

— K —Ru(m)+(n+1)Sx —>+m

+3 [ia,(n,+1)-m +L 35,2+ 1)
=il 2 j=2

+R}*1,K(’"fi):| )

and where a’s, b’s, Rx(-), Sx(-) and R% x(-) are the same quantities as
defined in Lemma 2.1 and Lemma 2.2. We thus have the estimations
for (4.6) as

4.7) RY x(n, k; n) <Ry x(n, k; ni)<R’M,K(n1 kym),

by applying the inequalities (2.2), (2.12) and (2.19) to Sx(-), Rux(-) and
R% x(+) in (4.6), respectively.
Next, we proceed to evaluate I(xu,; Pu). Let us put

n+1/2
n+k/2

for i=1,..., k, then 0<p,+4; (=2,)<1 for each 7 and tﬁ&.:O, and then
=1
it follows that

4.8) 0,;=0(n;; p))= —Di=%;—D;

4.9) I(%u; p<.>)=§ 405 D) »
where

N 0y
(4.10) 80, p)=(p+3) In (1+ p_) .

Using Lemma 2.1 it can be represented as
0, if 6,=0,
(4.11) 80:; p)=1 0,+di2pi—wi(@i;p), if 6,>0,
i+ 0i2p+wx(@i; p) ,  if 6,<0,

where for any positive integer K(=2)

(4.12) w0 p)=(p+0){ 33 b,(%)_m”w (2 2 )l

and

@13) Rl p)=(oct )| b, (D) s (RS
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Thus, applying the inequalities (2.2) to Sg(-) in (4.12) and (4.13), we
have estimates

4.14) 0wk, <wix(0:; P)<Wk,« 0= wx,  <wzx(3:; P)<Wk.s »

where the concrete forms of the above bounds are easily obtained and
will be omitted to avoid redundancy. In passing, the following bounds
are less accurate but simpler than those obtained by (4.11) and (4.14);

5 3 i b
———=<U(0;; P) =0+ - '
2p, 6pt - VTt 2p,  6pdpitd)

which are valid independently of the sign of 4;, t=1,---, k.
Noticing the fact 314,=0, we have from (4.9)-(4.14)
i=1

(4.15) 3+

(4.16) I(x(k);'p(k))é-[(x(k); p(k))éf(x(k); D) »
where

1 % o —
(4.17) (X ; Pao)=— 2 —+—204 Wk +2_ Wk,

2 =1 p,

1 X0 1 o >
>SSy 2 SV )
(233027
and
_ 1 k 5% .

(4.18) I(2gy; Pa)=— 2 —+—20, Wk, +>_ Wx,¢

2 =1 p,

where 3, and 3)_ denote the summations over the sets {i;4d,>0} and
{¢; 6,<0}, respectively.

Consequently, we have the following local approximation to the
multinomial probabilities :

THEOREM 4.1. For any point pu, € 2 it holds that
(4.19) m(k; n, Pa>) < Pr(Xa =Fw) <m(k; 1, D) »
where
(4.20)  m(k; m, Pw)=Co exp {— N-I(@a; Do)+ Bl x(mn, k5 )},
421)  m(k; m, Pa)=Cs exp {— N-I(@w; Pew)+ Rl x(m, k5 n)}

(4.22) C= r
BN ]
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and where 1(-), I(-), R% «(-) and R x(-) are the same bounds defined by
(4.17), (4.18) and (4.7), respectively.

5. Evaluations on the 1-approximation

In this section we give bounds to the so-called 2*-approximation to
the distribution functions of chi-square type statistics and the K-L in-
formation number related to multinomial random variables.

Let » and k be positive integers such that 2<k<n, and let, C,,
..+, C, be mutually exclusive cells, each of which having probability

P.(C)=p;, (>0, 1=1,---, k) with ép,-—-l. Let, further, n, be the ob-
. = . _
served cell-frequency in C; after » independent trials, then ;} n=n
=1

and the joint probability of =,,---, n, is given by the multinomial prob-
ability function stated in the preceding section, that is

1 k
(5.1) Py(%ao | Py =—o— T P24,
I ! =
i=1
where as before pu,=(p;,- -, p) is the parameter vector of the multi-

nomial distribution and z,,=(2,,---, x,)=(m,/N,---, m;/N) with N=n+
k/2 and m,=n,+1/2 (:=1,---, k).

Assume that the parameter vector p., is completely specified. Un-
der this situation, K. Pearson [7] introduced the statistic

(5.2) Xﬁzzk} (n,—np,)*
=t mp,
for the purpose of the goodness of fit test.
When k is fixed independently of =, it is well-known that as n— o
the sampling distribution of X2 weakly converges to the distribution
function

1 T e

(5.8) K, ()= 2 AL (h—1)[2) So Uy, |

that is, the X’-distribution with k—1 degrees of freedom, which is com-
pletely independent of p,,. Based on this chi-square approximation the
so-called X’-test has been made. But, as Uspensky [8] pointed out, the
lack of information as to the approximation error by using the limiting
distribution renders the application of X*-test somewhat dubious. Cer-
tainly, several literatures on the error evaluation are found, but the
almost all of them treat the problem asymptotically. From the practi-
cal point of view we wish to know the approximation error in the case
of moderately small n. Only Vora [9], so far as the author knows,
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considered such cases by extending Feller’s notable techniques for the -
normal approximation to the binomial distribution in [2] to the k-dimen-
sional case. He gave bounds on the chi-square approximation for the
sampling distribution of the statistic

i< (m—Np)* _ & {n,+41/2—(n+k/2)p}’
6.4 Xi= '2=1 Np, B ‘Eﬂ (n+k/2)p, '

At first glance this statistic seems more complicated than X2, but the
former statistic also converges in law to the distribution K,_,(x) as n—
oo. Further, as he showed, we can get somewhat sharper bounds for
P.(X7?=<c) than for P(X2<c) and fortunately the bounds for X} is help-
ful for obtaining the bounds for X?. This fact would be suggested by
the discussions in the preceding section, too. In the subsequent part
we intend to improve Vora’s result along almost the same line of his.
The improvements result from using the bounds stated in Section 2
which are more accurate than almost all his bounds corresponding to
ours. Our approach, different from his, has another merit that we can
see the behaviors of the following statistic

(5.5) I(Xar; po)=3 X, In (Xi/p)

which is a special case of the K-L information number playing very
important roles in the modern statistical theory.

Prior to estimating the X!-approximation on X} statistic we must
prepare some lemmas to approximate sums by integrals in k-dimensional
case

Let &;_1,=(&, -, &_1) be a (k—1)-dimensional column vector such
that
_Np .
5.6 = =M VD =1,--+, k—1),
(5.6) §i=£&(n,) x/Npt(l—p,) @ )

then we have

k-1
(5.7 X7 =5fk-x)2_15<k-1)=”2=1 agg,,

where 3 '=(¢") with

(5.8) a‘f=[pm,(l—po(l—p»]*ﬂ(%ﬁ—) ,

(4, 7=1,---, k—1; &,,: Kronecker’s delta).

Since X! is positive definite, there exists a (k—1)x(k—1) lower tri-
angular matrix T=(t,;), t;;>0 such that 3'=T'T. Then according to
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[9], let us consider the transformed vector yu_.,=(%,- -, Y1) defined
by

(5.9 y(k-l)=ﬁT$(k—l) ’

where d is a positive constant satisfying some conditions described
later in (5.20) and we have put ng_,=(n,---, m_,). Therefore, it fol-
lows that

(5.10) S ui=dX; .
=1
Now, let hg_p=(h, -, h_y)’ be a real vector whose components
are defined by
d .
5.11 hz\/—-—-———t S0), (=1, k—1),
(5.11) =iyt G0 )

and consider rectangles in the (k—1)-dimensional Euclidean space R._;,
of the following form

(5.12) A@Wa-v; ha-v)={Ua-v|Yi—hi2<u, ZYi+hi/2; 1=1,. .-, k—1},

where wug_;,=(%y,- -, U_,) and y’s are the same ones defined in (5.9).
Under the setup the following result due to Vora holds (ef. Lemma 1
in [9]):

LEMMA 5.1. Let n,=0, +1, +2,-.- (t=1,---, k—1), then the rectan-
gles A(Yx—1>; ha—1y) are mon-overlapping and cover the entire space R_.

Now, noticing the definition of 7' and (5.8), some calculations (cf.
[9]) yield that

k
G.13)  t=-p)(1+p) 2 p). @=Ll kD),
and
k-1 k-1
(5.14) M ti=p" [T 1—p) .
Therefore, it follows from (5.11) that
dt? d ( _ k N_d
15 M= @ _ Lyt 51 p) =,
(6.15) Nodl—py N 2 TP N
(E=1,--+, k1),

and from (5.11) and (5.14) that

(6.16) d* PG, =C¥(d) ,

1 k-1 _
Wary =
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where C, is the constant defined by (4.22). Let us then evaluate the
multiple integral

(5.17) J Y- ha-v) = SA( . Sug_p)dug_ys »
Y(k—1)ih(k—1))
where
) 1 1 %=t
(5.18) F @)= X (25w

and dug._;,=du,---du,_;. We can state the following generalization of
Lemma 2.3:

LEMMA 5.2. Put, for each n

(5.19) b= min b, and b= max b, ,

1sisk-1 15isSk~-1
where b, (i=1,---,k—1) are the quantities defined in (5.15). If the
conditions

(5.20) 5% <1 and b-x %<
’ N "'N
are satisfied, then
(5.21)  JWaon; ha-o)=CHd) exp {—é(d—%dz)xyz—?} ,

5.22)  JWaov; ha-v)<CHd) exp {—%(d——lé’lﬁdz)xz—x} :

where C¥(d) is the quantity defined in (5.16),

k-1

5.23 P, XD Bty APy
( .23) "'—"'( y X7)= 24N +960Nz v
and
k-1 k-1
d3ib &3b
— —_i=1 =1 .
(5.24) r=r(d) 2N 64N
PrROOF. From (5.15) and (5.20) we see that
(5.25) h:gi_dﬁa and ;"‘_,:hﬁy2§5X,?—N-<5,

hence, 0<h;<1 and |hy;|<¥5 (i=1,.---,k). Thus, by Lemmas 2.3
and 5.1, it can be represented that



350 T. MATSUNAWA

k-1
: T[h = h2
(5.26) JWa-1; ha-n)= (4/_)’"' €exp {——2—?‘:‘( "Tzi—)yz
_ 1 5 }
o 2t
where
1
5.27
(5.27) 960 2 11‘<w< g
Remembering (5.10) and (5.15) we have
(5.28) L <5 < bxp
. N-_ V——£=l Y= N 1 4
_ant = d'b*
.29 X3,
(6.20) N’(k——l) vex s X

Thus, from (5.26)-(5.29), we immediately obtain the target results (5.21)
and (5.22).

With the help of Lemma 5.2 we can evaluate the multinomial prob-
abilities (4.2) by certain multiple integrals related to J(¥u—-»; ba-n). For
the later applications let us assume that

(5.30) X <e (c: a non-negative constant).

Assume also that

(5.31) b/N<3,

then we can set the numbers |

p=sfi-(i- )} (4)°
and

-oft- (1)) ()"

as two special values of d in (5.9). The above values have been so
chosen that the coefficients of X3} in (5.21) and (5.22) are equal to 1/2,
respectively. These facts will be used in the later proof of Lemma 5.3.
Further, let us define (¥—1)-dimensional vectors analogously to (5.9) and
(5.11):

— 1
?_I(k—l)= (yl AR 7_!1;-1) H 1_/( =DV E trtsr(nr) ’
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i
1_/(1:-1):(171, ety 17k-1) ’ <g¢=21/’§ trter(nr) ’

hop=, -+ bes) 5 he=(bD/N)",
ha-o=Chs, -+  he) 5 he=(bDIN).
We can now state the following
LEMMA 5.8. If the conditions
(5.34) b/N<3, bDIN<1, cbD*IN<5
are satisfied, then
(5.38)  PuXo=%w)>J Y-} ha—p) €XP {Qu,x(n, k; n)} D%,
(5.36)  PUXo=2w) <J(@e-1>; hcx-1) €XD {Qu x(n, k3 m)} D+,
where for any positive integers M(=3) and K (=2)
(6.37)  Qux(n, k; n)=RY x(n, k; n)+r(D)+ N{Z, wk—3_ Wz} ,
(5.38)  Qu.x(n, k; n)=RY x(n, k; n)+F(D, ¢)+ N{Z, Wk — - wz,o}

and where Ry x(-), >, wt:, 3wk, etc. and r, T are the same defini-
tions as those in (4.6), (4.17), (4.18), (5.23) and (5.24), respectively.

ProOF. From Theorem 4.1 we have

(5.39) Co exp (—X7/2)-exp (%, x) < P/( X =% )
<G, exp (—X7/2)-exp (P x) ,

where

(5.40) 'r’MK R'ux(n,k n)+N{Z, Wk — > Wg,i} »

(5.41) Tgr,x;fR’M,K(ny k;n)+N{3, We—>_ 'l);r,i} .

On the other hand from Lemma 5.2, (5.32) and (5.33) we have

(6.42) J(Fu-1; har-1)ZCHD) eXp{ 1 (D—-LDZ)XV—T(D c)}
) T = 12N

(5 43) J(?/(k v Pa- 1))SC*(D) exp {——l-(D—_b__DZ>X2_r(D)}

12N

Thus, noticing (5.32) and (5.16) and combining (5.39), (5.42) and (5.43),
we get the desired inequalities (5.35) and (5.36), which completes the
proof of the lemma.

Remark 5.1, In the above proof we have used Theorem 4.1 which
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are similar but of different forms from Vora’s, so the differences are
kept in the present lemma. Apart from them, however, Lemma 5.3
gives more accurate evaluations under weaker conditions than those in

[9].

Now, we are in a position to evaluate the Xx*-approximation to the
sampling distribution of the X} statistic. We can prove the following

THEOREM 5.1. Under the same conditions as those in Lemma 5.3,
1t holds that

(5.44) P(X}=c)zexp {Qux(n, k; 1))} . Do

% [Kk_l(g) + { Ve(A*; ha-ry)— T%}

P
X“'—w‘z;)b—x] ‘
(5.45) P(X}=c)<exp {Qu,x('n, k; @)} - D-*-v~

X [K,,_l(é) - {%— V(A% Tbu_n)}

v 8—3/2 ]
where K,_,(-) is the distribution function of the X’-distribution with k—1
degrees of freedom, Vz(A*; hu_y) 18 the quantity defined by (5.58),

(5.46) n,=(1—a,)Np,—1/2 , (i=1,--+,k)
(5.47) n:=(1+a)Np,—1/2, (t=1,---, k)
where a,;’s are some constants satisfying later (5.57) and
5.48 </ (L-1), (G=1--,k),
( ) at_\/ N < 2, ) (=1 k)

— 1 k-1 1/2) 2 . 1 k-1

e (& ET, v e
(5.49) Q:{ ° 4N 4z}=1 ¢ e N& !

0, otherwise ,

— 1 k-1 1/2) 2
— 1/2
(5.50) c—L){c +(———4N E'") } :
and
(5.51) ={era(- 0 )
. c=C _4_1V—i=1 7 .

PrOOF. Let
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A*Ya-1 ha-v)
yi_%<ui§yi “";i—y 7::1)"'1 k_]-)

=9 Uw-»

for all »,,---, n,_, such that ;V_‘_,l Ying_»)=Dc
=1
and define

(5.52) I*Ya-v; h(n;_n):S S (ug_p)dug_y -

A*W(—1)ihE—1)
Since

P(Xyp=c)= > | P,(Xwy=2w)

{rw; XP<c

= > Pr(dx(k) = x(k)) ’

(153 &, ¥i(no-n)SDe)
we have by Lemma 5.3 that
(5.53)  PAX?=0)>I*Wa-v; ha-v) exp {Qu.x(n, k; m)} D¢,
and
(5.54)  P(X}<¢)<J*@a-v; hav) exp {Qux(n, k; W)} D%,

In the above we have used the following facts that, from (4.6), (4.12)
and (4.13), Qu,x(n, k;n) and Qux(n, k;n,) defined by (5.37) and (5.38),

respectively, are monotone decreasing functions with respect to each
n, for given 7, k and py,, and that for each 7

(5.55) n,zinf {n 516,=0, N3} a:/pi=xagc} :
i=1 =1

and

(5.56) n,<sup {nt; izk‘.51=0, N i" oifpi= v’sc} ,
=1 N =1

which are seen from the estimations (cf. [9])

5 X1 ) .
557 |s Gy s G=1onb.
(.57 P N\ L)z G )

Here, let Vi(A*; hq_) and Vs(B;c) be the volumes of A*(Yu—1; ha-1)

k-1
and Bg_p= {Ua_1»; 1IZ‘,uigc}, respectively, then
=1

k-1 k-1
(5.58) Ve(A¥*; ho_v)=4% {n(k—l); i2=1 y:(n(k-n)§Dc} ;l;[l he,
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provided that cg’:ﬁ b;/AN. Otherwise, let us put conventionally V.(A4*;

ha-1)=0.
Let (y1+Qu o Y1t ber) be any point outside A*(Ya-1; ha-p), then

,:Z:Eb Dec and  @=(h/2=Db/AN,

and then, by the Cauchy-Schwartz inequality, we have
k-1 k-1 1/2 k-1 1/2) 2 — — k-1 1/2) 2
Swerz{(2e) -(2 &) 2@ —(DF o)} =,

k—
if cgiZ‘.lbi/4N. That is, A*Wa_n; ha.p) contains the sphere Be_p=
=1 LA

k-1
{e_1; 2 uisc}. Thus,
i=1

(5.59) J*(y(k_u;@w_,,)zg RLCT T

Bk-1)

+ {Ve(A*; ha-»)—Vs(B; c)} :EfB S (W)

i ) D
=Ka_n(c) + {VR(A* b ha-v) I'((k+1)/2) }

e—g’/2

XW.

Combining (5.53) and (5.59) we have the desired inequality (5.44).
On the other hand, we can prove (5.45) in the similar manner as
the above.

Remark 5.2. In the bounds in (5.44) and (5.45) we have additional
terms of the form

—c/2

D %=g@ux {Vo(A*; hey) —Vis(B; c)}ﬁ
which were not appeared in [9]. Related to these, Yarnold [10], [11]
obtained a similar term of the order of magnitude O(n~%*~"/*) in his new
asymptotic expansion, whereas his term is a little different from ours.
It should be also remarked that he gave further higher order terms of
the magnitude O(n~!). However, it seems difficult to give exact bounds
on the underlying approximation by the multivariate Edgeworth ex-
pansion.

Next, let us consider to evaluate the sampling distribution of the
K-L information number defined by (5.5). From (4.9) and (4.10) the
statistic can be also represented as
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2 k
(5.60) I D)= —3) G(i):‘i,
2N =t \p/p

where
(5.61) G(z)=z2+1/2—(14+2)In (1+2)/2*, (z#0) and G(0)=0,

which is a monotone increasing function of z. Put here that

(5.62) G=max G(—a,)
15isk

and

(5.63) G=min G(a;) ,
1sisk

then by the estimates (5.57) it holds that

(5.64) G=G(3/p)=G .

Thus, from (5.60) and (5.64), we have

(5.65) 2N-I(%a; Pw) SZN-I(20; D) S(1—G) X3 ,
(5.66) 2N-I(¥a; Paw) Z2N-I(@w; pw)Z(1—G) X3 .

Thus, for ¢=0

(6.67) P.2N-I(Xu; Pa)S )2 P2N-I(Xus; D) S¢¥)
2P(X7=d(1-G))=P(Xy=c¥),

(5.68) P,2N-I(Xw); pw)Sc)SP,2N-I(Xw>; Pw)=c*)
SP(XP=(1-G))=P(X}<c%)

where we have put
(5.69) c*=ct(1—G)' and ©e*=c¢(1-G)".
Consequently, from (5.67), (5.68) and Theorem 5.1, we get the following

THEOREM b5.2. Under the same conditions as those in Theorem 5.1,
it holds that

(5.70) P,2N-I(X4»; par) =) LN (1—-G)™)
and ‘
(5.71) P,@N-I(X4; Por) S SLNA1-B)Y ,

where L¥c*) and L¥c*) denote the R.H.S. members in (5.44) and (5.45),
respectively.
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In the final place of this section we shall give some numerical re-
sults on the evaluations for the sampling distribution function of X32.
For brevity let us denote the exact probability and its lower bounds
and upper ones as follows:

E=P(X7<¢) (the exact probability),
L1=exp {Qux(n, k; n)} - D~*2K,_(c)=pK,_,(c)

_ ) _ ( gn.)(k—l)/z e—«s’/2
L2 = L]. +E { VB(A* ’ L&(k-—l)) P((k_l_ 1)/2) } (‘«2_”)):—1 ’

Ui=exp {Qu.x(n, k; W)} - D~* 22K, _,(¢)=pK,_(C) ,
S ) i .3 P

U=U, p{—~—F«k iy Ve ) T

Ul=min (U, 1) and U2=min (U,, 1),

then under the conditions of Theorem 5.1 the inequality L1SL2<E<
U2<U1 must theoretically hold. From the practical point of view it is
interesting to know the numerical accurracy of the bounds. In the
following examples we shall treat only the case where the underlying
multinomial distributions have equal cell probabilities ;

() p=p,=---=p,=1llk=p  (say).

In addition, to avoid trivial bounds, let us set that

S-1) M=ap=-- - =a,,Ea=min( /_%(k—l), 0.3)

corresponding to (5.48), and that

(S-2) % max {

5y (m,—Np,))’ ¢, (m,—Np,) I} = S_l‘
igl Np; ‘gl mp; == 20

related to the last terms in (5.837) and (5.88). It should be remarked
that —Qux(n, k; n) in (5.44) and Qu x(n, k;%,) in (5.45) are monotone
decreasing function of . So, larger choices of the values of a« and 8
give us poor bounds. The above values a=0.3 and 8=1/20 were chosen
by some trial computations, although the last setting seems to be a
little conservative in practical situations. Other setting is put on the

occasion of using inverse factorial series of the forms in Lemma 2.1
and Lemma 2.2;

(S-3) M=K=10.

’

Under the above set-up computations were carried out to give
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Table 5.1 Bounds for P{(X?<c) for small samples

c 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000 10.0000 11.0000
k=3, p=1/3
Ki—i(c) 0.8647 0.9179 0.9502 0.9698 0.9817 0.9889 0.9933 0.9959
n Exact prob., Lower and Upper bounds
10 L1 0.6872
L2 0.7520
E 0.9069
U2 0.9410
Ul 0.9914
12 L1 0.7037 0.7972

L2 0.8048 0.8335
E 0.9147 0.9296
U2 0.9476 0.9296
U1l 0.9828 1.0000

15 L1 0.7218 0.8114 0.8715
L2 0.7854 0.8811 0.9080
E 0.8752 0.9571 0.9697
U2 0.9164 0.9773 0.9972
Ul 0.9729 0.9988 1.0000

20 L1 0.7420 0.8270 0.8833 0.9201 0.9440
L2 0.8327 0.8933 0.9193 0.9487 0.9577
E 0.8979 0.9444 0.9624 0.9778 0.9864
U2 0.9182 0.9655 0.9877 1.0000 1.0000

Ul 0.9610 0.9894 1.0000 1.0000 1.0000

O HESoo
ggRde

25 L1 0.7555 0.8373 0.8910 0.9258 0.9483 0.9627 0.9719 0.9777
L2 0.8557 0.9012 0.9360 0.9510 0.9640 0.9797 0.9821
E 0.9022 0°9262 0.9699 0.9779 0.9881 0.9944 0.9978
U2 0.9167 0.9588 0.9863 0.9999 1.0000 1.0000 1.0000
Ul 0.9526 0.9829 0.9999 1.0000 1.0000 1.0000 1.0000
30 L1 0.7654 0.8447 0.8964 0.9298 0.9513 0.9737 0.9792

0.9815 0.9833
0.9969 0.997}

L2 0.8750 0.8874 0.9407 0.9577 0.9656
E 0.9068 0.9208 0.9669 0.9711 0.9860

HrSoo mmso
g88 38 ga8g

U2 0.9181 0.9454 0.9827 0.9977 1.0000 1.0000 1.0000
Ul 0.9463 0.9780 0.9960 1.0000 1.0000 1.0000 1.0000
k=4, p=1/4
Kei(c) 0.7385 0.8282 0.8884 0.9281 0.9540
n Exact prob., Lower and Upper bounds
15 L1 0.4658
L2 0.5553
E 0.8089
U2 0.8719
Ul 0.9575
20 L1 0.5011 0.6303 0.7307

L2 0.6129 0.7160 0.7934
E 0.7908 0.8788 0.9117
U2 0.8484 0.9257 0.9672
U1l 0.9337 0.9796 1.0000

25 L1 0.5258 0.6522 0.7491 0.8205
L2 0.6534 0.7414 0.8109 0.8638
E 0.7888 0.8629 0.9108 0.9484
U2 0.8350 0.9089 0.9576 0.9894
Ul 0.9166 0.9660 0.9954 1.0000

30 L1 0.5442 0.6683 0.7624 0.8311
L2 0.6566 0.7423 0.8360 0.8799
E 0.7595 0.8858 0.9056 0.9410
U2 0.8133 0.8898 0.9471 0.9800
U1l 0.9034 0.9557 0.9870 1.0000

:—"HQQQ
© O
zzacE

~ O -




358 T. MATSUNAWA

bounds for P,(X}?<c) for small samples. We shall now give a table of
the bounds for a number of combinations of k, » and ¢. In Table 5.1
the exact probability E, the bounds L1, L2, Ul, U2, and the theoreti- -
cal probability K,_,(c) are presented for k=83, 4, some selected n’s<30
and for c=4.
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