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1. Introduction

An important question to determine in studying tandem queues is
the distribution of output from one channel, which then comprises the
input into the subsequent channel.

Burke [1] showed the independence of time intervals between de-
partures for the steady state in the case of M/M/C. In his system,
he allowed an infinite queue before the channels.

Instead we consider here the queueing systems with limited queue.
We shall prove that the interdeparture times for M/G/1(0) and GI/M]/
1(0) are independent, while the interdeparture times for E,/E,/1(0) and
M/M/[1(1) are not independent. In the notations used above the paren-
thesized number denote the maximum queue size allowed before chan-
nels. Thus, the systems M/G/1(0), GI/M/1(0) and E,/E,/1(0) are zero
queue systems, and M/M/1(1) denotes a system whose maximum queue
size equals to one.

Using Burke’s method, we are going to investigate whether the inde-
pendence of the interdeparture times can be established. First we intro-
duce the similar notations to the ones which are defined in his paper.

A; Arrival rate

¢ Service rate

p=2[p; Utilization factor

L; Length of an arbitrary interdeparture interval

n(t); State at a time t after the last previous departure

mL)=n(L+0); State at a time immediately after last departure

F(t)=P {n(t)=k, L>t}; Probability that n(t)=Fk and jointly that

L>t
A; An arbitrary set which is written as {L,>t,,---, L, >t,} for
some m and some L ,---, L, which are interdeparture inter-

vals subsequent to arbitrary interval of length L
P(L>t) =§;,(‘) F,(t)=F(t); Interdeparture time distribution
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It should be noted the following theorem by Burke. That is, if the
systems have the properties,

The Markovian property ;
P (4|n(L))=P (4|n(L), L)
The independence of n(L) and L ;
P (n(L), L)=P (n(L)) P (L) ,
then the probability P (4, L) may be expressed as
(1) P, L):n%‘.) P, L, n(L)):n(EL) P (4| L, n(L)) P (L, n(L))
=3 P(AIn(L) P (L) P (m(L))= 3} P (4, (L)) P (L)
=P()P(L) .

From this result follows that mutual independence of all interdeparture
intervals.

2. The independence of the interdeparture intervals for the systems
MJG/1(0) and GI/M/1(0)

In the case of M/G/1(0), it is clear that
P{t<L<t+dt, n(L)y=k} =P {t<L<t+dt} P {n(L+0)=k},

which implies the independence of L and w(L), since the probabilities
P {n(L)=Fk} can be written as

1 (for £=0)
0 (for k=1).

P {n(L)=k} =

Moreover for the system M/G/1(0), the Markovian property
P (4|n(L))=P (4|n(L), L)

exists. Therefore, we have P (4, L)=P (4) P (L) using the formula (1).
The independence of L and A4 is proved by this result.

For the case of GI/M/1(0) in similar way to consider the argument
for the case of M/G/1(0), it can be shown that

PA|ML)=P(4|n(L), L)  P(m(L), L)=P (m(L)) P(L) .

It is clear that the system has the property of the independence of
n(L) and L. So, we shall prove only the Markovian property.
In order to prove the relation
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P (4|n(L))=P (4|n(L), L)

let
L,; Interdeparture interval between the (n—1)th customer and
nth customer
S.; The service time of nth customer
7,; mnth customer’s arrival time
and let

A=1,—Tp .
Then, the relation
Ln=Sa+(A~n_S —lIA'n_S —1>0)

holds.

Thus we can see the Markovian property exists for the system GIf
M[1(0). Therefore, the formula (1) holds in case of GI/M/1(0) also,
which concludes the proof.

3. The dependence of the interdeparture intervals for the system
M/M/1(1)

In the case of M/M/1(1), the Markovian property exists. But there
is not independence of L and n(L), and so, one may expect intuitively
that the independence of the interdeparture intervals cannot be estab-
lished for the case of M/M/1(1).

Now, we shall try to support the statement by analysis. To do
this, we set up the following differential equations.

Fi{(t)=—2-F(t)
(2) Fi{(@t)=2-Fyt)—QA+mFi(?)
Fit)=2-F{t)—p-F(t) ,
and subject to the initial condition
F(0)=p{",

where p{" denotes the equilibrium probability of the system being in
the state k& at the time immediately after the previous departure. It
is easy to see that p{" follows

ps+’=ﬁ, po=E—,  BO=0 (for k22).

Equations (2) can be solved to yield
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(8) . F)=Ce™, Ft)=Coe™, Fyt)=C—L (e—gn),

1—p
where
1
C=——.
14p
From the results (3) we get
(4) P(L>t)=F()+ F\(t)+ Fy(t)= 1_1p, (e7*—ple™) .

Now, let L; be an interdeparture interval subsequent to the arbi-
trary interval of length L. Then in the case of M/M/1(1), we get

P(L, L,)=n(g=o P (L, (L), Ll)=n(g=0 P (L,| L, m(L)) P (L, n(L))
=n(Lzl)‘,=0 P (L,|n(L)) P (L, n(L)) .
Hence, if the following relation,
(5) n(go P (Ly|n(L)) P (L, ML) #P (L,) P (L)
can be shown, it is found that
P(L, ))#P(L)P(4) .

With respect to the left side of (5), it should be expressed

P (Li>e|n(L)=0)=—1- (e —ser)
-

P(L>t, m(L)=0)= S" F(t)pdt=Ce*

(6)
P(L>z|n(L)=1)=e*
P(L>t, n<L>=1)=Sng(t)ydt=T§‘—’;(e-“~pe-ﬂ> |
Then we get

(1) 3} P(LuIn(L) P (L, n(L)
=_1_(Iw—1r_Ze—yr)Ce—1t+e—pf_‘o___C(e—it_pe—pt) .
p—2a 1—p

On the other hand, with respect to the right side of (5) we have
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(8) P(L1>r)P(L>t)={ 1 (e'”—pze"")}{

1—p2 (e—lr_pZG—pr)} .

1—p
Using (7) and (8) we obtain (5), which implies the dependence of
interdeparture intervals.

4. The dependence of the interdeparture intervals for the system
E,[Ey[1(0)

We had the independence of the interdeparture intervals in the
case of M/G/1(0) and GI/M/1(0), but we have no further the property
in the case of GI/G/1(0).

For the statement above mentioned, we shall show the dependence
of the interdeparture intervals in the system E,/E,/1(0). First, using
the model shown on Fig. 1, let’s specify the states as Table 1.

Arriving Phase Service Phase
' :
Phase 1 : Phase 2 Phase 1 | Phase 2
| |
(rate;24) |  (rate;22) (rate; 2 ¢) | (rate; 24)
! L !
overflow
Fig. 1
Table 1
State Arriving Phase Service Phase
1 1 0
2 2 0
3 1 1
4 2 1
5 1 2
6 2 2

(the number 0 denotes that there is no customer
in the system)

Then, we can set up the differential equations on
F,(t)=P {n(t)=k, L>t} (for k=1,2,---,6)

as following;
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{(t)=—2aF\(?)
Fl(t)=2aF(t)—22F(t)

1(8)=22F(£) + 24Fy(t) — (224 2p) Fi(t)
F/(t)=24Fy(t)— (22+2p)F(t)
FI(t)=24F\(t)+2uFy(t)— 24+ 2p) Fi(t)
F(t)=2F(t)+2uF(t)— @A+ 2u)Fit) .

(9)

Taking the Laplace transform
S:’ e~ F(t)dt = F*(s)
and noting
F(0)=p"

we obtain the equations
SF¥(8)—p{P=—21F*(s)
SF¥(8)—p{=24FX(8)—2AF}(s)
SFX(8)—p§H =22F *(8)+24F*(8) — (224 21) F'5*(s)
sFX(s)—p{P=2AF}(8)—(22+2p)F X(s)
8F¥(8)—pi=22F (8) +2pF3(8) — (22+2p) F¥(s)
sF*(8) — p§H =24F*(8)+ 2uF ¥(s) — (22+2p) Fg(s) .

(10)

Now, let’s consider the probability
P{t<L<t+dt, n(L+0)=Fk} .

Then, we can see

P {t<L<t+dt, n(L+0)=1} =F(t)2ndt

P {t<L<t+dt, n(L+0)=2} =Fy(t)2pdt

P{t<L<t+dt, n(L+0)=k}=0  (for £=3,4,5,6).
Hence we have

P (L, L))=P (L;|n(L)=1) P (L, n(L)=1)
+P (L,|(L)=2) P(L, n(L)=2) .

In order to prove the dependence of the interdeparture intervals,
we shall show the following ;
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P(L, L)#P(L)P(L,) .
In other words, if we can show the expression
P (L,|n(L)=1) P (L, m(L)=1)+P (L,|n(L)=2) P (L, n(L)=2)
is unequal to
P(L)P(Ly),

it is sufficient to see the dependence of the interdeparture intervals.
We then define

A,=Holding time in phase ¢ of arriving channel (:=1, 2)
S=Service time

It is assumed that A,s are exponentially distributed with average 1/22,
and S has the Erlang distribution of phase 2 with average 1/u.

Next, let g(r) and h(r) be the probability density functions for (4,
+A4,+8) and (A4,+S), respectively. Then, we shall try to get the fol-
lowing ;

(g(z)dz) P (L, n(L)=1)+(h(z)dz) P (L, n(L)=2)
#P(r<Li<z+d7r)P(L) .

Because the following relations
"P(r<Li<r+dr|n(L)=1)=P (t<A;+ A+ S<r+dr) ,
P (r<Li<t+dr|n(L)=2)=P (r<A4A;+S<r+dr)

hold.
Thus, we shall show

(11) (9(z)d7) (F(t)2pdt) + (h(z)d7) (Fy(t)2pdt)
#P(r<Li<t+dr) P(t<L<t+dt) .

Taking the Laplace transform of g(z) and h(z),
|, oo sde=gra), | heemrde=hto)

let’s prove the following relation to get the expression (11)

(12)  2pg*(s)F5(s)+2ph*(s)Fe(s)

) ) 1+ (e 97}
¢{<21+81 2#"‘31 h + 22+81 2ﬂ+sl b (8)

where
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F*(s)= ?5 FXs) .

In regard to p{*, p{* and F*(s) in (12), we get the following results
after some simple calculations.

o= 1+2p+20" o= 20+2¢
(1+20)° (L+py
22\ 2 2 22 2 ¢
F* ___< ) ( L ) +) ( )( Jad ) +
® 2048/ \2p+s P 2248 /\ 2p+s s

In order to find that the relation (12) is true, noting
o) o) () o)
*(g )= h*(s,)= ,
g*) <22+s, 2148, (@) 2048,/ \2u+s,
one may establish the fact that the following

22 22
1 ( F*(8)2u+ F¥*(s)2 :( >F* (+) *( Q)+
19) (g P @2t Fe @202 Pt + F oy

does not exist.

So, one may examine whether (18) cannot be satisfied, for example,
in the case of 4=1/2, p=1.

In this case, we get

2;1F,*(0)=—% 2/.:F,*(0)=%

p=3 =3

8 8

Using the results, we can conclude that the relation (13) is not given.
Consequently, we have

P(L, L)#P(L)P(Ly) .
This implies that the interdeparture intervals for E,/E,/1(0) are de-
pendent.
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CORRECTIONS TO

“ON THE INDEPENDENCE OF INTERDEPARTURE INTERVALS
FROM SINGLE SERVER QUEUEING SYSTEMS”

ToJl MAKINO

In the above titled paper (this Annals Vol. 29, No. 2, A, (1977),
pp. 307-315), we claimed that the interdeparture interval for GI/M/1(0)
is independent. However, the assertion is incorrect and the following
amendments should be made accordingly :

(i) On page 307, lines 8-9 of Section 1, “ M/G/1(0) and GI/M/1(0)
are” should be “M/G/1(0) is”.

(ii) On page 308, in the title of Section 2 and on page 311, line
8 of Section 4, “and GI/M/1(0)” should be removed.

(ili) On page 309, lines 9-14, the two statements, “ Then, the re-
lation...” and “Thus we can...” should be removed.
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