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Abstract

Consider the search linear model defined as follows. Let y(Nx1)
be a vector of N observations such that

(1) E (y)=4A:6+ A, V(y)=dly

where ¢ may or may not be known, A,(N Xy,) and A,;(N Xy,) are known
matrices, &(v;x1) is unknown and &y(v;x1) is partly known in the fol-
lowing sense. We know that at most %k elements of & are non zero
but we do not know particularly which these nonzero elements are.
The problem is to make inferences about the elements of & and, fur-
thermore, to search the nonzero elements of & and make inferences
about them. We want y to be such that the above problem can be
resolved with certainty when ¢'=0; the underlying design correspond-
ing to y is then called a search design. It has been shown in earlier
work that for a search design, we must have N=y,+2k. In this paper,
we consider the special case of search linear models, when the object
of the experiment is to fit an appropriate response surface. We estab-
lish a basic result, namely, that when the true response surface is rep-
resentable by a polynomial, then search designs exist for which N=
v, +2k, irrespective of the value of v,.

1. Introduction

The model (1) was introduced in Srivastava [3]. The case =0
is called the “noiseless case”. In statistical problems, we always have
a*>0. The noiseless case is, however, important in search theory be-
cause the difficulties in the noiseless case are also present when ¢*>0.
We now recall the following theorem from Srivastava [3].

THEOREM 1. Consider the model (1) with ¢*=0. A mecessary and
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sufficient condition that the search and imference problem can be com-
pletely solved (im this mnoiseless case), is that for every (N X2k) submatriz
Ay of A;, we have

( 2 ) Rank (Al.: Am)=vl+2k .

By “completely solved”, we mean that we will be able to search the
nonzero elements of & without any error, and obtain estimators (with
zero variance) of the nonzero elements of & and of the elements of &,.
A set of observations y for which condition (2) is satisfied, is said to
be based on a “search design?”.

Clearly, even though the basic design used be a search design, the
probability of correct search and estimation in the noisy case (¢4*>0),
will depend upon the size of noise present. This feature is, of course,
present in all statistical problems.

Also, it is clear that search linear models would fit real life situa-
tion better than ordinary general linear models. The reason is that in
an ordinary linear model, a set of parameters like &, gets ignored (par-
ticularly, if v, is large). Thus, in most situations, the ordinary linear
model gives a biased fit. Earlier authors have considered the “ mini-
mization” or “balancing ” of bias. (See, for example, Box and Draper
[1], Hedayat, Raktoe and Federer [2].) The search linear models offer
the opportunity for “searching” the bias and “correcting” for it.

In the theory of factorial experiments with continuous factors, we
approximate the response surface by some linear combinations of cer~
tain (known) functions of factor levels. A natural question to ask is
concerning the validity of such approximations. Of course, such ap-
proximations are never totally wrong, a fact verified on the basis of
the large amount of empirical evidence available from various sciences,
and also partly justified from theoretical considerations.

For example, first and second degree polynomials are widely used
in chemical and other industrial experiments for fitting response sur-
faces. The great popularity of this approach to explain the experi-
mental data suggests that such polynomials do give a fit which is
certainly not extremely bad. The reason is that if the approximation
of a response surface by such a polynomial was in general very poor,
people would not be employing them so often to try to explain their
data. The partial theoretical justification arises from the fact that in
a large variety of situations, the variation in natural phenomena is
sufficiently smooth. In other words, in many natural phenomena, the
response surface is adequately representable by the first two or three
terms in its Taylor expansion. This is particularly so if all the ex-
perimental points are quite close to some center point, this center
point being the point around with the Taylor expansion is considered.
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Such a situation may arise in practice, for example, when the center
point corresponds to a combination of factor levels at which some in-
dustrial article is presently manufactured. The experimental points then
correspond to suggested “small ” changes in the levels of these factors.

In spite of the above, it is also true that in most experiments,
though the fit provided by a low degree polynomial does not go wildly
wrong, it still is considerably improvable. This is particularly so since
in almost every experiment there do occur a few functions of factor
levels whose contributions to response were assumed negligible, but
which in fact are non-negligible, and which are also difficult to pin-
point in advance. The use of search linear models is, therefore, very
much called for.

This paper presents a basic result regarding existence of designs
with the minimum number of runs for response surface experiments
when a search linear model is used. The problems of obtaining search
designs, and optimality criteria for the same will be considered in
separate communications. Some basic developments on optimal search
designs will be found in Srivastava [5].

2. Search linear models with continuous factors

Consider a factorial experiment with m continuous factors. Treat-
ment combinations will be denoted by x'=(x,, 2s,---, %,) where z,¢
[a, b], 1=1,2,--., m, and where a, and b, are real numbers such that
a,<b,. Thus, x belongs to the m-dimensional closed interval [a, b]=
[ay, 0] X [@g, b)) X « + « X[@n, bn]. Let fi,fi---,f, be known functions on
[a, b] with the following properties:

(i) fi,---,f, are continuous and real valued on [a, b],
(ii) fi, ---,f, are linearly independent, and
(iii) fy, ---,f, are distinct from zero.

For each x € [a, b], an experiment is performed, whose outcome is an
observation y(x). Consider the search linear model (1) for this special
case of continuous factors. For N treatment combinations x,(m x1),
-++,Xy(mx1), and the corresponding observations y(x,),---, y(xy), in
the model (1), we then have

(3) y’:(y(xl), <o, y(xw)), §=(.Blr Ty ﬁvl)y
e;—_-(ﬁuﬁ-ly Sty ﬁu)’ 1"_-—'”1"“1"2;
and
l:fl(xl) tet fvl(xl) } [fvlﬂ(xl) e X)) }
( 4) A= s y A,= .o .
Silxy) - fvl(xzv) f»,+1(x1v) o e flxw)
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The following lemma, whose proof is obvious, gives the reason for
assuming f,, - - -, f, to be linearly independent.

LEMMA 1. If in our model f,,---,f, are linearly dependent, then
the parameters §'s will be confounded.

3. Existence of search designs

Let x(mXx1), x,(mx1),---,x(mx1) be a set of ¢ distinct points

in [a, b]. Let

x] Tip *°° Tim
(5) Ttxm)=| « |=

X! Lyp *° Tem
and

[.fl(xl) Jix) - fu(xl):|
(6) At Xv)= , t<v,
fikxe) falx) <o filx)

be the treatment and the model matrices respectively. Note that
there is a correspondence between the treatment matrix T and the
point (%y, -+, Tymy ***5 Loy, * * *» L) Iin the mi-dimensional closed interval
R, where R=[a, b]X - - - X[a, b].

LEMMA 2. For any submatrixz At Xt) of A(tXv), the condition
(7) det A,=0 for all (zy, -+, Z.n), % € [a,, b1,
implies that fi, -- -, f, are linearly dependent.

ProoF. Let
S () -+ fi (%)
(8) A= .
SFo(x) - ft,(xc)
There exist constants A, -, 2, not all zero such that
(9) Afy(x)+ - +2.f(x)=0,

for all x¢[a,b]. This implies that f,---,f, are linearly dependent.
This completes the proof.

The following well known result will be needed later.

LEMMA 3. If é(zy,---,%,) 18 a polynomial of finite degree in z,,
co ey T, tn which not all coefficients are zero, then the Lebesgue measure of
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the set of points satisfying ¢(xy, - - -, £,)=0 in n-dimensional space is zero.

A matrix A(tXv), t=v, is said to have the property P, if every
set of ¢ columns of A are linearly independent.

THEOREM 2. If fi(x), fux), -+, f.(x) are a set of v limearly inde-
pendent polynomials of finite degree in x,, %, ---, and x,., then almost
all points in the mi-dimensional closed interval of the mt variables x,;
(t=1,---,t,7=1,---, m) are such that A(tXv), in (6), has the proper-
ty P,. :

ProOOF. Consider the submatrix At xt) of A, as at (8). Let

(10) ¢il,¢2,...,¢‘(x1, ey x,)=det Ao .
Clearly, ¢, ,,....s,(%1, - -+, %) is a polynomial of finite degree in the vari-
ables z,, t=1,-.-,t, 7=1,.--, m. Also, it is not identically zero, since

in that case it will contradict the assumption of linear independence
by Lemma 2. In other words, ¢, i, ....(X, - -+, X.) does not have all the
coefficients zero. Therefore, by Lemma 3, the set of all points satisfy-
ing ¢,....; (%1, -+, x)=0 in R denoted by S(i), %, - -+, %), has Lebesgue

measure zero. For each of the (:) choices of (7, %, -+, %) the set

S(#, %3, +++, %,), which is a subset of R, has Lebesgue measure zero.
Let S= U S, %, ---,1) and S=R—S. Then S also has Lebesgue
all

Gippeerty) _
measure zero, and S and R have the same Lebesgue measure. Also,
for each point in S, the matrix A has the property P,. This completes
the proof.

It is clear that Theorem 2 is true for more general f’s than just
for polynomials as considered here.

From Theorems 1 and 2 it follows, that for experiments with con-
tinuous factors when the true model is representable by a polynomial,
there exists seach design with (v,+2k) treatments. Indeed, except for
a set of measure zero, all possible designs with (v,+2k) runs are search
designs.

The significance of this result is that, irrespective of the value of
v,, We can, in the noiseless case, solve the search and estimation prob-
lem completely, using only (v,+2k) treatments. Thus, in the more
exact sciences where ¢’ is small, the above shows that there is a great
scope of discriminating between competing models using only a small
number of runs. (The “ competing models” correspond to different sets
of k elements of &.) Note that if k is not known exactly, but an
upper bound k* is known, one could do an experiment with (v,+2k*)
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observations. When noise is present, the above results are still im-
portant, for they lead us to think in terms of “optimal search designs”
with small number of runs, rather than of the so-called “optimal” de-
signs, or of designs for which no special goodness property is claimed.
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