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Summary

Suppose different classes of items, for example, beads of different
colours, are placed in a circle. Two probability models have been pro-
posed, which lead to different distributions of runs, i.e. sequences of
one colour. Barton and David [3] have called these Whitworth runs
and Jablonski runs, and have tabulated the distributions for small
samples. Asano [1] has extended the tabulations for Jablonski runs.
In this paper, Whitworth runs are examined, particularly some approx-
imations to the distributions which avoid extensive tabulations. Some
potential uses of Whitworth runs are also pointed out.

1. Introduction

1.1. In this article we discuss the distribution of Whitworth runs on
a circle. These are runs which arise when samples are taken ran-
domly from two or more identical distributions on the circle; this is
equivalent to taking samples successively from the same distribution.
Suppose the first sample gives points P,, P,,---, on the circle, the second
sample gives points @, @,,---, the third gives points R,, R,,---, ete.
A typical pattern, starting at an arbitrary origin, might be RRPPRQ
QQRRPPRQPRR, for samples of size 5 for P, 4 for @, and 8 for R.
A run is defined as a sequence of the same letter; in the pattern above,
arranged around a circle, there are 3 runs of P (of lengths 2, 2, and
1), 2 of Q (lengths 3 and 1) and 4 of R (lengths 1, 2, 1 and 4). In
counting the runs on the circle, the first two R and the last two join
to make one run of length four. It is this property which makes for
a distribution of runs on a circle, different from the distribution of
runs on a line. Runs obtained from samples drawn on the above model
are called Whitworth runs after the man who earlier gave the distri-
bution ; Barton and David [3] also call them runs in repeated sampling.

Probabilities can be attached to Whitworth runs by considering
patterns, or arrangements, on a line, such as the one given above and
finding their probabilities on the hypothesis that the sets P, Q and R
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come from the same distribution; these arrangements are then placed
round a circle and the runs counted. A line arrangement with T runs
gives T—1 or T runs on a circle, depending on whether the first and
last letters on the line are the same or not. Several arrangements on
the line will often become indistinguishable on the circle, since rotations
will not be distinguishable; thus PQQPPQ, QQPPQP, and four similar
patterns obtained by cyclic permutation, all become indistinguishable
on a circle. With three P and three Q, there are four distinguishable
patterns: the one above, and those obtained by PPQQPQ, QQQPPP,
QPQPQP and their cyclic permutations; these give, on the model of
repeated sampling above, 2, 4 or 6 runs with probabilities .3, .6, .1
respectively. If, in a different model, the four distinguishable arrange-
ments on the circle are considered equally likely, the probabilities of
2, 4 or 6 runs become .25, .5, .25 respectively. Runs provided on this
second model are called Jablonski runs; the distribution of Jablonski
runs was discussed and tabulated by Barton and David [3] and extended
by Asano [1].

1.2. In the next sections, the distribution of Whitworth runs is dis-
cussed with a view to testing the hypothesis H,: that k populations
of points on a circle come from identical populations. For small samples,
in Section 2, we use tables prepared for the line by Swed and Eisenhart
[5] and quoted, for example, in Owen [4]; these refer to two samples
of sizes M, N, both M, N<20. For three or four samples, the total
number of observations not exceeding twelve, we use tables prepared
by Barton and David [3]. Since a runs test is a quick and convenient
technique especially suited to large samples, we also examine, in Sec-
tion 3, two approximations, for large samples, given by Barton and
David [3]. These are shown to be very good even for relatively small
samples, and can be used for values beyond those given in the exact
tables; this will be valuable when several samples are involved. In the
next sections the tests have size «; since discrete probabilities are in-
volved, H,, when true, is rejected with probability as close as possible
to a, but less than a. The tests given are one-sided tests (the null
hypothesis will be rejected for too few runs) but can be easily adapted
to two-sided tests. The tables of Swed and Eisenhart [5] will be re-
ferred to as SE, and those of Barton and David [3] as BD.

2. Exact tests

2.1. Case (a). An exact two-sample test of H,

Suppose the two sample sizes are M, N (M, N<20). The test consists
of the following steps:
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1. Count the number of runs T on the circle.
2. Find p=Pr(U<T+1) from the SE Table 1.
3. If p<a, reject H,.

Case (a) Critical region. It is often useful to establish a eritical
region for T, such that H, is rejected if T falls within it. This may
be done from the SE Table 1 by finding the largest odd number u, so
that the probability p,=Pr(U=<u,) is less than or equal to a. The ecrit-
ical region is then T=u,—1.

Alternatively, SE Table 2, giving critical regions for the straight
line, for M, N<20, may be used as follows. For given M, N, and usual
values of a, SE Table 2 gives u, such that, for the lower tail,

Pr(Usu,)=<a and Pr(Uzu,+1)>a;
and for the upper tail,
Pr(Uzu,)<a and Pr(Uzu.—1)>a.

If u, is even, the lower tail critical region on the circle is T<u,; if
u, is odd, the critical region is T<u,—1.

2.2. Case (b). Amn exact test of H,, for three or four samples

Suppose the k sample sizes are r,, 7, 75, and possibly »,, and 7,
the total number of observations, satisfies »<12. The test is as follows.
1. Count the number of runs T on the circle.

2. From BD Table 1b, (k=3) or Table lc (k=4), choose the horizontal
line in which the sample sizes r,, 7, 75, (7)), are found under the
heading “Partition”. Add the table entries to find the number of
arrangements giving T runs or less, and divide by the multinomial
term for the line. This gives p=Pr(T<T).

3. If p<a, reject H,.

Case (b) Critical region. This is given by T<T,, where T, is the
largest integer for which p<a, where p=Pr(T<T).

3. Approximate tests

3.1. When the sample sizes are beyond the ranges quoted for the
exact tests, the SE and BD exact tables cannot be used. An approxi-
mate test is given below for use in these situations. The test is based
on two approximations to the distribution of T, suggested by Barton
and David [3]. They are the circular analogues to approximations to
the distribution of U which these authors investigated in detail in
Barton and David [2]. Their notation is followed as much as possible.
For sample sizes »,, 1=1, 2,---, k, define
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k k
Fz=§l 1'1(""—1) and F3=§ ’I‘;(T{—l)('r‘—Z) .

The mean and variance of T are then given by

__F
(1) , p=r—T
and
s 1 F} A
(2) ""(r—1)(r—2)<r—1 +hr—4) 2F’>

k
where, as before, ) r,=r. Two special cases often occur, for which
i=1

simpler expressions can be found for g and o
Case (a). Two samples, sizes M, N.

2MN . =24 _ AMN(MN+1—M—N)

3 =_2MN . = = :
(3) =3 N—T TTMIN—2 (MIN-1)(M+N—2)

Case (b). k samples of equal size s.

(4) e ksligk——ll) L g gg:}) _

3.2. Approximate distributions

Approximation 1. Suppose z has a normal distribution with mean
¢ and variance ¢’ given above, written N(g, ¢*). As r— oo, k remain-
ing fixed, the distribution of T may be approximated by z. With only
two samples, T must be even, and when the continuity correction is
introduced Pr(T< T) is approximately given by Pr(z<T+1). For three
or more samples, Pr(T<T)=Pr(z<T+1/2).

Approximation 2. A binomial expansion (¢+p)" may be fitted to
the distribution of T, with » and p chosen so that the mean is x4 and
the variance is ¢*; (g=1—p). This can lead to non-integral n; but in
the special case of k equal sample sizes s, the values of n, p and ¢ are

e - _(k—1)s _ s—1
(5) n=ks=r; p=-—1 i 9= — -

With this approximation, Pr(T=T) is given approximately by the co-
efficient of »” in (¢g+p)*. If the coefficient of p' is ¢,

(6) Pr(TgT)zi})cha, say .

Examination of the approximations. Tables 1 and 2 show, for sev-
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Table 1 Comparison of true and approximate cumulative distribution
functions of T for two samples

No. of runs
2 4 6 8 10 12 14 16 18 20
Sample sizes

6.6 True .0130] .1753| .6082 .9329| .9870( 1.0000
’ Approx. 1 | .0199| .1851| .6039| .9226] .9951| .9999
15 True .0013| .0374| .2722| .7417} 1.0000

5 Approx. 1 | .0017| .0359 .2890| .7541 .9733

20  True .0000( .0000 .0000 .0001| .0009 .0075| .0380| .1301) .3143 .5619
20  Approx. 1 | .0000( .0000, .0000 .0001| .0013 .0087| .0406| .1332 .3161 .5612

eral combinations of sample size, the values of the true cumulative dis-
tribution functions and those obtained from the approximations. The
binomial approximation has been examined only for 8 or 4 equal samples.
It is clear that both approximations give good results, even for very
unequal samples. For most cases, the normal approximation will be
good enough to use for significance tests at the usual levels, provided
borderline judgements are treated with reserve. Then it might be use-
ful to use the binomial approximation, which evidently gives greater
accuracy. The test will therefore be as follows.

3.3. An approximate test of H,
The test is for use with

Table 2 Comparison of true and approximate cumulative distribution
functions of T for 3 or 4 samples

No. of runs
3 4 5 6 7 8 9 10 11 12

Sample sizes

True .00069| .0038| .0225/ .0786| .2095 .4262 .6776 .8771 .9664| 1.0000
444 Approx. 1 | .00030| .0031| .0181| .0748| .2132| .4415 .6918 .8747 .9639| .9930

Approx. 2 | .00079| .0050| .0231| .0794| .2080, .4223| .6763| .8796| .9781| 1.0000
642 True .0017 | .0095{ .0494/ .1515 .3593 .6212 .8463] .9632| .9978| 1.0000

Approx. 1 | .0012 | .0089| .0453| .1549| .3675 .6325/ .9451] .9547| .9911] .9988
831 True .0121 | .0667| .2364| .5333( .7879| 1.0000

Approx. 1 | .0090 | .0620 .2380| .5448) .8259| .9611

True .0002| .0018| .0114] .0503| .1614| .3790| .6697| .9081| 1.0000
3333 Approx. 1 .0000 .0006| .0065 .0414| .1619( .4059 .6951] .8959| .9776

Approx. 2 .0003| .0022| .0122| .0508 .1595 .3767| .6700 .9100| 1.0000
5421 True .0009| .0078 .0433| .1515 .3719| .6558 .8792( .9805| 1.0000

Approx. 1 .0007| .0067| .0403| .1534| .3833| .6659| .8757| .9699| .9954
7311 True .0046| .0409| .1742 .4470| .7424] .9546| 1.0000

Approx. 1 .0048 .0389| .1741| .4552] .7620, .9380| .9910
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(a) two samples, when either M or N is greater than 20, or

(b) more than two samples, when r, the total number of observations,
exceeds 12. The test, of significance level «, consists of the fol-
lowing steps:

1. Find g, ¢ from equations (1) and (2), or (3) or (4).

2. Count the number of runs T on the circle.

3. Suppose z is N(g, ¢¥), with g, ¢* given by step 1. For two sam-

ples, find p,=Pr(2<T+1). For more than two samples, find
2, =Pr(z<T+0.5). The probability Pr(T<T) is then approx-
imately p,.

4. If py<a, reject H,.

If the sample sizes are small and equal, and if p, is very near a
(Tables 1 and 2 suggest |p,—a|<0.005) the binomial approximation might
be used. In this case, n, p, ¢ are found from equation (5), and p, from
6). If p.<a, H, is rejected.

3.4. Critical region for T

This is constructed as follows: Let z=N(g, ¢’) as above. For two
samples, find the largest odd number % such that p<a, where p=Pr(z<
). The critical region is then T<u—1. For more than two samples,
find the largest integer v such that p<a, where p=Pr(z<v+0.5). The
critical region is T<w. If the binomial approximation is used, suppose

s is an integer such that, if p1=i‘. ¢, and p;=p+c,,, (With ¢, as in
i=1
Section 3.2), p;=a=p,. The critical region is then T'<s.

Use of SE Table 3. This table gives the critical regions for U, for
various values of a, for two equal samples, sizes up to 100. The critical
regions for T are found by following the steps in Section 2.1. The
SE Table has been itself constructed from the corresponding normal
approximation for the distribution of U.
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