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Summary

The problem of characterizing the infinitely divisible characteristic
functions which have only infinitely divisible factors is considered. Un-
der the assumption that both the absolutely continuous and the singular
(or the discrete) components exist in Poisson spectral measures, several
necessary conditions for this problem are obtained. These conditions
admit partial converses and new examples of infinitely divisible char-
acteristic functions which have only infinitely divisible factors are given.

1. Introduction

Let a characteristic function (abbrev. c.f.) f(t) be the product of
two non-degenerate c.f.’s f(t)=g(t)h(t). Here we say that f(¢) is de-
composable and that g(t) and h(t) are factors of f(t). The class of c.f.’s
which admit only infinitely divisible factors is denoted by I,. It is well
known that any f(f) € I, is itself infinitely divisible. Therefore f(t) has
the Lévy canonical representation

(L.1)  f(t)=exp [irt—a’t’—i— S: K¢, x)dM(z)+ S: K, w)dN(a:)] ,

where the kernel function K(t, x)=e'*—1—1tx/(1+2%).

The main theme of the so-called decomposition problem of c.f.’s is
the characterization of the class ;. In the case ¢#0 in (1.1), Linnik
gave a complete description of possible forms of Lévy spectral measures
dM(x) and dN(x) in (1.1), see Lukacs ([4], Th. 9.3.1, p. 280). On the
other hand, in the case ¢=0, Cramér obtained a necessary condition for
membership of I,, see Lukacs ([4], Th. 6.2.3, p. 176). Shimizu, see
Lukacs ([4], Th. 6.2.3, p. 179), and Cuppens [1] extended Cramér’s re-
sult. And the present author [5] obtained the following result, elabo-
rating Cuppens’ result and method.

THEOREM 1.1. Let f(t)el,. If o=0 and if Lévy spectral measures
275



276 SHIGERU MASE

dM(x) and dN(z) in (1.1) are both absolutely contimuous, then there is a
positive comstant & such that either dM(x)=0 and Supp (dN)cC[9, 2], or
dN(x)=0 and Supp (dM)c[—25, —3].

These conditions are also sufficient for membership of I, as the
following theorem shows, see Lukacs ([4], Th. 9.2.4, p. 287).

THEOREM (Ostrovskii). Let f(t) be an infinitely divisible c.f. defined
by (1.1) with 6=0. Then we have; :

(1) If dM=0 and Supp(dN)cC[d, 28] with a positive constant J,
then f(t)€ L. '

(2) If dM=0 and Supp (dN) constitutes a bounded set with ration-
ally independent points, then f(t)€ L.

Remark (See Gelfand et al. ([2], Chap. 5, Th. 1, p. 188)). A set is
called rationally independent if it is linearly independent over the field
of rational numbers. Therefore, in the case (2) above, dN can be sin-
gular. We shall use this fact in Section 5.

In this paper we shall extend Theorem 1.1 to cases when the dis-
crete or the singular component is present other than the absolutely
continuous one in the Lévy spectral measures in (1.1). Also we shall
show that thus obtained necessary conditions for membership of I, have
partial converses by giving several new type c.f.’s of I, which are closely
related to those of Ostrovskii cited above and the one mentioned in the
book of Linnik and Ostrovskii ([3], Th. 6.4.2, p. 257).

2. Preliminaries

We shall list here some notations and notions used throughout the
paper. Let dL be a signed measure. dL,., dL, and dL, mean the ab-
solutely continuous, the singular and the discrete component of dL re-
spectively, and let the continuous component dL,=dL,.+dL,. The right
and left extremity of dL are defined as

rext (dL)=sup Supp (dL) , lext (dL)=sup Supp (dL) .

A point 7 is called a point of left increase of dL if the restriction of
dL to the interval (r—e, 7) does not vanish for any positive ¢. Points
of right increase of dL are defined analogously.

The nth iterated convolution of dL is denoted by dL* and is de-

fined recurently as

dL*¥=de (the unit measure at the origin),

dL*Y(x)= S dL*"Y(x—y)dL(y) (n=1).
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If dL is written as dL,, we shall denote dL** by dL,. Also if dL,=
&dxz we denote dL, by &,dx. To simplify notations in proofs, we shall
use symbols (though they are abusive) such as

£ % Lk(m)zs §(x—y)dL(y) , & x Ly(x)dz=dL(x) , ete.

There will be no misunderstandings.l Finally let constants C(¢, j,--+; n)
=nl/(dl7!. ).

Next we shall prove auxiliary lemmas which are basic for the rest
of the paper.

LEMMA 1. Let &(x) be a bounded Borel measurable function and dL
be a continuous measure of bounded variation. Then &x L(x) 18 a con-
tinuous function.

PrOOF. This is a slight generalization of a well known theorem
due to Lebesgue and can be proved similarly, so we omit the proof.

LEMMA 2. Let dL, be a positive continuous measure and &(x)dx be
a positive absolutely continuous measure both of which are of bounded vari-
ation and have compact supports. Put dP,=dL,+¢&dx and let

a=lext (dL,) < p=lext (§dx) <y=rext (¢, dx) .

Fix any small positive 8, then, for all large n, dP,—dL, has a continu-
ous density function which is positive at least on the interval (na+p—a
48, ny—6).

PROOF. z=a+p is the left extremity of the measure ¢ x L,dx
which has a continuous density function by Lemma 1. So we can
choose two points ¢ and ¢’ such that a+p8<e<¢' (respectively two points
0 and ¢’ such that §<d’<2y) arbitrarily near to a+p (resp. 27) so that
& x Li(x)>0 (resp. &(x)>0) on the interval [e, ¢'] (resp. [5, 8']). Also
fix a point 24’ of left increase of dL,, a point a+p' of left increase of
& * Lidx and a point 2y’ of right increase of &dx such that

2! —2a, (a+ ') —(a+B), 2r—2¢' <Min (¢’ —e, ' —9) .

Let dG, be the restriction of dL; to [2a, 2¢'], ¢(x) be the restric-
tion of & * Ly(x) to [a+8, a+p'], p(x) be the restriction of & x L,(x) to
[e, €], vi(x) be the restriction of & (x) to [d, &'] and ¢,(x) be the restric-
tion of &(x) to [2/, 2y]. Put dH,=dG,+(¢,+9+v+¢)dz. Since dP=
dH,, we have

APuZdH,=dGo+ S5 C(, 5, kL, M3 )G % gy % s % vy % pudes .

t+j+k+l+m=n
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Each of summands in the second term with k+1>1 has a continuous
density function by Lemma 1 which is positive at least on the interval

L%, 3, k, 1, m)=Q2ia+ j(a+ )+ ke+16+2my’,
2ia’' 4+ j(a+p') +ke' +16'+2my) .

Therefore the density function of dP,,—dG, is positive at least on the
set

k+1>0
InE U I,,('l;, jy k: l; m)

i+i+k+l+m=n
kE+1>0 n—i-l-k

U LG4, kLn—i—7—k-1)

t+l+ksn  j=0

k+1>0
U I®@E, k).

i+i+ksn

Calculating distances between adjoining two intervals comprised in I3,
k,1), we can see easily that I®(4, k, 1) is an interval for all large n.
Next define the sets I®(k, 1) and I®(k) as

I+k>0
L= U I®4,k1)

i+l+ksn

n—-k-1
= U U I®E,1LE)

1sl+ksn  i=0

U_ IP k)

1sl+ksn

0120,0]u[ 00 100, 1))

k=11

——

=0 IO%k) .
k=0

Then it is easy to show that I®(, k), I®(k) and, finally, I, itself are
intervals for all large n and, consequently, that I,=(2(n—1)a+e, 2(n—
1)7+0'). This proves the lemma for all large even n» and odd cases
follow at once.

Proofs of theorems in Sections 8 and 4 are based on the following
lemma.

LEMMA 3. Let f(t) be an infinitdy divisible c.f. defined by (1.1).
Suppose that there exists a signed measure dL, with the non-null negative
variation satisfying the properties;

(i) dL, is of bounded variation with a compact support,

(i) dM—dL,=20 on (—0,0) and dAN—dL,=0 on (0, + ),

(i) > L dL >o0.
n=1 !
Then f(t) does mot belong to I,.
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PrOOF. An analogous result is proved in Lukacs ([4], Th. 6.2.3,
p. 177). Since the method used there is applicable with slight modifi-
cations, the proof is omitted.

3. Necessary conditions for membership of the class I,

In the following, we shall be interested in those c.f.’s defined by
(1.1) with absolutely continuous components in their Lévy spectral
measures. Let [a, 8] be the smallest interval containing the support
of dN,.. If we take note of Theorem 1.1, it is sufficient to consider
the case 0<a<p=<2a. The crucial point in proofs of theorems in Sec-
tions 3 and 4 is to construct signed measures which satisfy the assump-
tions of Lemma 3. Since other properties will be obvious, it is suffi-
cient to check only (iii).

THEOREM 3.1. Let f(t) be an element of I,. If dN,,#0, then dM,=0.

PROOF. Assuming that dM,+#0, we shall construct a signed meas-
ure having properties of Lemma 3. Let [a, 5] be the smallest interval
containing the support of dN,,. We may assume that 0<a<p=2a.
Fix a point —y of right increase of dM, and any point o, 8’ such that
a<d'<f <p. Let dF, be the restriction of dM, to [—7r,0) and &(x)
be the restriction of the density function of dN,, to [a, )U(B, f]. By
taking factors of f(¢) if necessary, we may suppose without loss of
generality that dF) is of bounded variation and that &, is bounded.

For a fixed small number ¢, define dL,=dL,(¢)=dF;+ (¢ —en)dx,
where 7,(x) is the indicator function of the interval [/, §/]. Easy cal-
culations show that

dL,= ~+% (—e)*C(t, 3, k; m)é, %y * Fyde=dL”—dLS™,
i+ Th=n
where dL$P is the sum taken over even k’s and dLS is the sum taken
over odd k’s. The positive measure dL{"7(¢) majorizes dLS$7(0) and,
according to Lemma 2, dL{¥—dF, has a continuous function which is
positive on (a+6—(n—1)y, nf—6) for all large n (say, from n, on), where
6 is a fixed small positive constant<Min (a’—a, —p’). And the density
function of dL{> vanishes outside (¢/ —(n—1)y, (n—1)8+p5’) and can be
made uniformly small as ¢ goes to 0. Then dL,=0 simultaneously for
n=mny, my+1,---,2n,—1 for all sufficiently small values of ¢>0. Hence
also dL,=0 for all n=n,. For example, dL,, =dL, xdL, =0. Moreover,
on comparing supports, we can easily see that, for all sufficiently small ¢,

- 1 1 gro_o 1l a1
Z _dLng dLno _E _dLn go .
2=t ! ! n=1 !
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Consequently, for all small values of >0,

E —dL =0.
n=1 q!

This completes the proof.

THEOREM 3.2. Let f(t) be an element of I,. Assume that dN,,+#0.
If [a, B] ts the smallest interval containing the support of dN,., then
dN,=0 on the interval (0, f—a).

PrOOF. We can assume that 0<a<p=<2a. Fix a point y of right
increase of dN, and any point y’ such that 0<y, y’<B—a. Let dF) be
the restriction of dN, to [y, B—al, &(x) be the restriction of the density
function of dN,. to [a, a+7]U[a+7’, B) and 7,(x) be the restriction of
& * Fy(x) to [a+7y, a+7']. As before, we may suppose that dF) is of
bounded variation and that &(x) is bounded.

Set dL=dF,+(§,—ep)dx. Then

dL"=¢ ,Ex (—e)*C(t, 3, k; m)é, * p * Fydx=dL{" —d LS
+it+k=n
where dL$", dL$> have the same meanings as in the proof of Theorem
3.1. Proceeding as in the preceding proof, we can show that dL,=0
for all n from some m, on if ¢ is sufficiently small. On the other hand,
direct calculations show that

1 1

1 -
dH,,= dLP ——dL$
2 (n+1)! n!

> 5 sk[EC(Hl’ J+1, 2k; 0)—eC(s, 7, 2k+1; 0)]

T i+j+t2k+1=n

© &k agyy ¥ Fjdx .

From this inequality, for sufficiently small ¢, dH,=0 for n=1,2,---, n,
Therefore
) ny—1
> L L.> LdLm 1 Lo+ s am
n=1 n! ! ! n=1 nl :

1 w__ 1 35
= ;L-;!—dL,.o no!dL,,o.

| o[-

Since the right-hand side of this inequality also can be made nonneg-
ative for sufficiently small ¢, we have shown that, for sufficiently small
positive e,

E——dL =0.
n=1 ’n'
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This proves the theorem.

As we have just seen, if f(t) belongs to I,, the existence of dN,,
prohibits the existence of singular spectral measures on the interval
(—o0, B—a]. But as to the interval [f—a, 4+ o0) there are various pos-
sibilities according to the nature and the location of singular measures.
The method used in proofs of above theorems still works in this case
so long as iterated convolutions of dN, become to have absolutely con-
tinuous components. But conditions are far from simple, so we shall
not state them here. It seems that the circumstance is essentially
complicated and that the class I, cannot be characterized with several
simple theorems in this case. In Section 4 we shall give several suffi-
cient conditions for membership of the class I, which constitute partial
converses of results omitted here.

4. Complement to Section 3

The method used in proofs of theorems in Section 3 still works if
we replace dN, by dN,. But in this case an analogous result of Lemma
2 does not hold. Therefore, from the very beginning, we must impose
some restriction on the density function of dN,,. In this way we can
get some further necessary conditions. We shall give only one of such
conditions. It is related the results of Shimizu [6]. Before stating
the theorem we recall that a point y is called a point of condensation
of a set A if the ratio of Lebesgue measures of the sets AN[yr—e, y+e]
and [y—e, 7+¢] tends to 1 as e—0. A theorem due to Lebesgue shows
that a.e. points of a Lebesgue measurable set A are points of conden-
sation of A.

THEOREM 4.1. If there are three numbers y, 6, v such that points
7, 7+26 and y+d—v are different points of condensation of the support
of dN,, and if points v, 6+v are different jump points of Lévy spectral
measure, then f(t) does mot belong to I.

PrROOF. We can suppose y<y+d5—v<y+24. Fix a sufficiently small
6 and p such that ¢ is smaller than saltus of spectral measures at the
jump points v, d+v and that the sets [y—p, r+pl, [7+6—v)—p, (r+5—
v)+p] and [(+20)—p, (r+26)+p] are mutually disjoint. Let [a, 8] be
the smallest interval containing the support of dN,.. We may suppose
0<a<p<2a. Let &) be the density function of dN,., &(x) be the
restriction of &(x) to [a, a+p]U[B—p, B], 7(x) be the function Min [&(x+
7), é(x+7+20), &(x+7r+d—v)] and 7 (x) be the restriction of 7(x) to [—p,
pl. From the assumptions 7,(z) is positive with positive Lebesgue meas-
ure in any neighbourhoods of the origin. Put dL,=dG,+(§+¢)d,
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where
dG(x)=6[de(x —v)+de(x—v—03)] , -
&@)=¢(@)+nl@—r—d+v),
(@) =p(@—r)—en(z—7—08)+7(r—7r—29) .

A straightforward calculation shows that

07 (Pn * G1) (2) =Po(— ) + Po(x —v—5)
=p [C(3, 27, k+1; n)—eC(3, 25 +1, k; n)]

D@ —v—np— (2§ +2k+1)5)
> Y[C(i+1, 27, k; n)—eC(, 25 +1, k; n)]

i+2j+k+1=n

s p(x—v—my—(25+2k+1)d) .

Therefore there is a positive constant e,=¢(n) such that ¢, x Gy(z)=0
everywhere for e<¢. On the other hand, if we set ¢,(x)=¢(2)+¢i(x),
it follows by Lemma 2 that there is an integer n, and a positive con-
stant ¢ such that ¢.(x) is positive everywhere for ¢<¢, and for n>n,.
dL, can be developed as

@1)  dL,=dG,+ f% Cs )y 5 Gueltt 33 Clis m Gt
=1 =ng+

If e<Min[e(1),:- -, &m), &), the second and the third sum on the right-

hand side of (4.2) are positive for n=2. We note also that, as dL,

contains the term 6n(x—7y—4d), dL,+dL,/2=0 for sufficiently small ¢>0.

Summing up all these results we see that for all sufficiently small ¢>0
=1

> —dL,=20.
a=1 n!

This completes the proof.

COROLLARY TO THEOREM 4.1. Suppose that the density function &(t)
of dN,. satisfies §(t)>0 on [a, Bl. If there are two jump points y, 6 of
spectral measures in (a—B, B—a) such that |r—38|<(8—a)/2, then f(t)
does mot belong to I,.

PROOF. In this case any points of (a, ) are points of condensation
of the support of dN,.,. So the proof follows from the theorem at once.

5. Sufficient conditions for membership of the class 1,

Theorems stated in Section 8 admit partial converses and we can
construct new examples of c.f.’s of I,. Consider a decomposition f(t)
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=g(t)h(t) of an infinitely divisible c.f. f(¢) defined by (1.1). According
to a theorem due to Ostrovskii, see Lukacs ([4], Th. 9.4.1, p. 282), if
6=0, dM=0 and 0<lext(dN)<rext(dN)<+oo, there are two signed
measures (not necessarily non-negative) dH, dJ of bounded variation
such that g(t) and h(t) are represented as

(.1) g(t)=exp [S: K, w)dH(x)] . h(t)=exp [S: K, x)dJ(x)] ,

(for simplicity we neglect factors of the form ¢“*). Here supports of
dH and dJ are contained in [lext(dN), rext(dN)]. We consider two
assumptions about dH and dJ.

AssuMmpTION 1.

(1) dH,=dJ,=0,

(2 ) dHac) dJa.cg.Ov

(3) d(H)*", d(J)*" are singular for all n=>1.

AssumpTiON II. dH,,dJ.=0.
Then we have the following lemma.

LEMMA 4. Suppose that, for any decomposition of f(t), Assumption
1 is satisfied. If f(t)=exp [S“ K, x)dN,(x)] belongs to I, then f(t) it-
self belongs to I,. Suppose that, for any decomposition of f(t), Assumption
I is satisfied. If fi(t)=exp [S” K, a;)dN,,(a:)] belongs to I,, then f(t)
itself belongs to I,.

ProoOF. Since both cases can be proved similarly, we shall prove
the first case only. Fix any decomposition f(£)=g(t)h(t) and their rep-
resentations (5.1). From Assumption I-(1), dH=dH,+dH,.. Therefore,
by Assumption I-(3),

dH*"=d(H,)*"+d(H*"), , n=l.
Because g(t) is a c.f., we have (see the proof of Th. 6.2.3 of Lukacs [4])

+oo0 A | R |
0>} —dH*=> —d(H*"+> —d(H*"), .
! 10! n=1 !

n=1 N! n=

The right-hand side of this equality is the decomposition of the left-
hand side into the singular and the absolutely continuous component.
Hence

=1
0> —d(H)*
a=1 n!

and the analogous result holds for dJ. But then, since dN,=dH,+dJ,,
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fity=exp || K, o)iH@ | exp || K, 2)d0(0)]

is a decomposition of f,(t). Since f,(t) € I,, we can conclude that both
dH, and dJ, are non-negative. Taking note of Assumption I-(2), we
can prove the non-negativity of dH and dJ. Therefore g(t) and h(t)
are infinitely divisible and f(t) € I,, as is desired.

In the rest of this section we use the following notations for a
given infinitely divisible c.f. f(t) defined by (1.1). Let [a, 8], [«, 8],
[r,d] and [y, &'] be the smallest intervals containing the supports of
dN,., dN,, dN, and dN, respectively. Also define c.f.’s

fit)=exp [S“” K(t, o:)dN,(ac)] . fdt)=exp H:’ K, x)de(x)] .

THEOREM 5.1. Suppose that dM=0, dN,=0, ¢=0, 0<a<p<2a, f—
a<ly<a, BS2r<d<a+y, 053y and d(N)*" is singular for all n=1. If
fi(t) e I, then f(t)el,. Suppose that dM=0, ¢=0, 0</<p <2d, B —
d<y<d, B2+, IS8, If fult)el,, then f(t)€ L.

ProoF. Let g(t), h(t), dH and dJ have the same meanings as (5.1).
We shall prove the first half of the theorem. The last half can be proved
similarly. Because g(tf) and h(f) are c.f.’s, we see under the conditions
of the theorem that in the interval (— oo, 2r),

OSZ‘, —dH*" dH
n=1 ’n

and also 0=dJ. Hence, in (— o0, 2y),
dH=dH,+dH,., 0=<dH,=<dN,, 0=dH,
dJ=dJ,+dJ.,. , 0=<dJ,<dN,, 0=dJ..
dN,=dH,+dJ,, dN,,=dH, +dJ,. .

From these relations we see especially that dH** and dJ* are singular

on [2r, 37) (D27, 9)) and dHM<dN*, dJ*<dN*. While, on [27, ),

(5.2) 03 Lapw= dH+ L jpe— dH+ L gHx .
n=1 'n
Therefore, on [2r, ), both dH, and dH,, are positive and similarly for
dJ, and dJ,.. As dN=dH+dJ lacks the discrete and the absolutely
continuous component on [2y, §), dH and dJ must be singular on [2y, 9).
Consider the Hahn decompositions on [27, )

dH=dH,=dH® —dH", szdJ;=dJ‘(+)__dJ‘(-)
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(i.e. there are two disjoint Lebesgue null sets A, BC[2r, §) which sup-
port positive measures dJ P and dJ S respectively ete.). Then, by (5.2),

dH.<+>§%dH. , dJ.<->§§dJ, ,

0=<dN,=dH,+dJ,=[dH" —dJ )+ [dJ P —dH)] .
It follows that
0<dHY—dJ=dN,, 0=dJP—dH=ZdN, .

Therefore
de<+>§dM+d.L<->§dN.+§dM*z ,

dJ,‘*’édM+dH§‘)§dN.+%dM*z ,

and dHX*, dJ** are singular for all n=1. Since supports of dH and
dJ are contained in [y, 8], we have shown all the conditions of Assump-
tion I. So the theorem has proved by Lemma 4.

Remark. In order to construct examples of c.f.’s of I, using The-
orem 5.1 (also Theorems 5.2, 5.3) we note the following. From Ostrov-
skii’s theorem cited in Section 2 (see its remark) there are c.f.’s of I,
of the form f,(t) above. Singular measures whose supports are sets
with rationally independent points satisfy Assumption I-(8). Also, from
a theorem of Linnik, see Lukaes ([4], Th. 9.2.1, p. 266), there are c.f.’s
of the form f,(t) above.

THEOREM 5.2. Suppose dM=0, dN;=0, ¢=0, a/2>§/3, 0<a<p=2a,
then f(t)el,. Supp(dN,)C[B/3, a/2] and ANX" are singular for all n=
1. If fi®)el,. Suppose dM=0, ¢=0, 0<d<p'<2d, [2>F[3 and
Supp @Ny)C[/8, B'/2]. If fut) €L, then f(t)€ L.

PRrRoOOF. Let g(t), h(t), dH and dJ have the same meanings as (5.1).
We must check Assumption I (and II). The proof proceeds almost anal-
ogously as that of Theorem 5.1. It is sufficient to consider three cases

dH in [8/3, 22/3)

051 L apm= dH+—;-dH*2 in [28/3, a)
n=1 N!

dH in [a, 8]

and analogously for dJ. We can repeat the same arguments as in the
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preceding proof.

THEOREM 5.3. Suppose that dM=0, dN,;=0, ¢=0, 0<a<pf<2a, —
asplk (kz4), Supp AN}")C[B/k, a/(k—1)]U[a, a+/k] and AN} are
singular for all n=1. If f(t)el, then f(t)el,. If we replace a, B,
dN, and f(t) by o, B’y AN; and f(t) respectively above, them the same
conclusion holds.

Proor. It is sufficient to repeat the same arguments as in proofs
of Theorems 5.1 and 5.2.
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