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1. Introduction

In 1948, Cochran and Bliss [1] introduced the notion of using covari-
ates in discriminant functions. These were variables that in themselves
had no discriminating power, but because they were correlated with
other variables, they could be useful in combination with those other
variables. They showed that the Mahalanobis distance between the
two populations always increased, and thus the power of tests would
be increased. The use of covariates could never hurt. The method
was simple ; one computed the usual covariance adjustment for the dis-
criminators and did a standard linear discriminant analysis on the ad-
justed variables. Somewhat later Cochran [2] compared the performance
of this procedure with doing a discriminant analysis on the complete
set of discriminators and covariates. In this study, he found that the
covariance technique produced more powerful significance tests, but the
gain was trivial for assigning new observations. This is not surprising,
for let the densities be fi(x, 2)=/fi(x|2)g9(z) in II, and fy(x, 2)=fi(x|2)g(2)
in I7,. (/I and II, denote which population we are sampling from.)
For the discriminant function, we assume f(x, z) are multivariate nor-
mal. The optimal rule is to assign the unknown observation to 77, if

filx, 2) 1-p
filx, 2) >In '

but this is equivalent to

fix|2) g1, 1-p
fxln) T

Cochran assumed a linear relation between x and z. Denote this
by E(x|2)=m+Alz in 11, and E(x|z)=pm+ A}z in II,. If the relation-
ship between z and x is such that fi(x, 2) and fi(x, z) have the same
covariance matrix, then the optimal rule is the linear discriminant func-
tion. This occurs if A,=A,, that is, the relation differs only with re-
spect to ;. Otherwise, the quadratic rule will be optimal. Depending
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on the difference between A; and A,, and the magnitude of the compo-
nents of z, the linear discriminant function may be an excellent appro-
ximation to the optimal rule. If the relationship is not linear, then the
pair (x, z) cannot be multivariate normal if z is multivariate normal,
and x is conditionally multivariate normal.

We have seen one reason why covariance adjusted discriminant
functions are used. That is, the model is appropriate, and it is desired
to test for significant differences between the two groups. For classi-
fying observations, when there is a linear relation with the covariate,
little or no gain accrues from using the covariate adjusted function
over the function including all variates and covariates. A second reason
for using the covariate adjusted function is that the relation between
the covariates and the discriminators may not be linear. If this is so,
then the density functions are not multivariate normal, and may be
quite messy. If the assumption is made that f(x|z) is normal, the usu-
al form of the linear discriminant function holds with the means in 7,
and I, replaced by the conditional means in 17, and I7,. It is not
necessary that the means have the same functional form in 7, and I7,,
but only the marginal distribution of z has to be the same.

In their original article, Cochran and Bliss were not concerned spe-
cifically with the form of classification regions. This paper will discuss
them in some detail for the case of one discriminator and one covari-
ate. Some of the regions have rather strange shapes which may lead
statisticians to prefer different forms for the conditional means than
might be assumed otherwise. Some other problems can be subsumed
under this model. For example, suppose it is desired to predict sur-
vival or non-survival of an operation, but the number of patients may
be too small to calculate adequate statistics at any one hospital. By
combining data from several hospitals, one can get a more stable esti-
mate of the covariance matrix if it can be assumed constant over hos-
pitals.

2. The covariance adjusted discriminant function

Let z denote the vector of covariates and let x be the k-dimensional
vector of discriminators. Suppose the conditional distribution of x given
z is multivariate normal with mean A,(2) in 7, and hy(2) in I7;, and co-
variance matrix Y in both 77, and I7,. z itself may have a distribution,
or it may be a variable that is non-stochastic and under the control of
the investigator. Then the optimal classification rule is to assign an
unknown observation x to I7, if

Do(l2) =05 (h(a) + hu@))) 2 (hu(z) —hu(z))>In 12
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where p is the a priori probability of x belonging to I7,. This is easily
seen since the optimal rule assigns x to 17, if

In JUx12) 1 1-p

fxl2
Now
1 1 —
1n Six12) _ “2n) | T exp <_§(x—hl(z)) 2 x h,(z)))
e W exp (— 3 (—h@) I (x—h(2))

—In exp (x’Z'“hl(z)—%h,(z)’Z'“hl(z)—x’Z“hz(z)
+%h2(z)'z*'hz(z))
= (=2 @)+ h@) ) T (D)~ ()

which yields the desired result.

If the parameters are unknown, they can be estimated by maximum
likelihood. No general results can be given regarding estimation of
h.(z), but for specific examples, it is a straightforward matter to esti-
mate parameters of these functions. Estimation of X seems fairly
simple, if the ML estimates of h,(z) and h,(z) are available. The ML
estimate of Y is

1
N+ 1Ny

3=

(53 (Rl = Ru(20) + 33 (o~ haz)) (e — Ptz -

i=

That is, replace the x values by their covariance adjusted values and
estimate Y in the usual manner.

If z has some distribution, say g(z), it may be of some interest to
replace h,(z) by the relation h(z)=E (h,(z))+a(z). Denote E (h(z)) by
;. Note that E (a,(2))=0. Then

Do(x|2)= (x——;—(m+pz+a1(z>+az(z)))'z-'(m—mal(z)—az(z» :

Now from this representation- we can see that if a,(z)=a,(z), the co-
efficients of the covariance adjusted discriminant function are the same
as if we had ignored the covariates entirely. However, the constant
term is affected, so the covariance adjustment will still have an effect.
This particular case states that the relation between x and z is identi-
cal in /7, and I, except that the intercept is different.
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3. Some special cases

Suppose an operation is to be performed, and it is desired to predict
success or failure of the operation. Because the condition is a rare one,
few patients are seen at any one hospital, but several hospitals may be
combined to give data. Let z be a J-vector of dummy variables which
indicate which hospital the patient comes from (i.e., z,=0 or 1 and
>12z,=1). Then we may write

h(z)=p+ Az

where A,=(a$?) is a matrix of coefficients which have the property that
J
> a9=0 for 1=1,2, j3'=1,...,J".

Here J is the number of covariates (dummy variables) and J’ is the
number of discriminators. The coefficients af? represent inter-hospital
differences, which may be due to differences in population served, skill
or hospital personnel, facilities of the hospitals and so forth. Estima-
tion is quite simple. We have

L Mj .
ﬁ;— g %x“g:jt.. 'I«-—_—l, 2

where x,, is the kth observation in the Ith hospital from the ith popu-
il

. _ 1 _ N . .
lation. Define X =— >1 Xu. Then a{?=x, —Xx,. is the ML estimate
i1 k=1

satisfying 3} n,,a°=0.

For the remainder of this paper we shall be concerned with a set
of specific examples where x and z have only one component and we
shall give some picture of the assignment regions which result from
various different forms of 4,(z). Note first that the covariance adjusted
diseriminant function has the form assign z to 17, if

Do(a|2)=( (2= (h@+ (@) (&)~ @) [*>1n L

We can assume that ¢*=1 in the following examples. They were chosen
to show the wide variety of shapes of classification regions that can be
obtained with very simple covariance functions.

The first case is the linear relation

h(2)=a,+bz .

Then we have



COVARIANCE ADJUSTED DISCRIMINANT FUNCTIONS 251

Do(o19)=((5— 1 (0+ar-2bu-b) ) @—os+20:—by)) -

and we assign x to I7, when Dy(x|2)>In((1—p)/p). If b,#b;, the bound-
ary of this region is a hyperbola when p+#1/2, and a degenerate hyper-
bola (i.e., a pair of straight lines) when p=1/2. This can be seen as
follows. If a,—a;+2(b,—bs)>0, then we assign = to /I, when

o3 (@n+ant2rtb)> (0122 [o1—auta(b,~b)
which is the equation of a hyperbola. If p=1/2 we get a straight line.
The case in which a;,—a,+2(b,—b,)<0 is handled similarly and yields a
second hyperbola, and another straight line. The case illustrated in
Fig. 1-a), b), ¢) has h,(z) =242z, hy(z)=2 and is given for values of p such
that In((1—p)/p)=0 for 1-a), 1 for 1-b) and —1 for 1-¢). In this figure
the shaded region is the region in which we would assign x to II,.
This is a quadratic discriminant function. In general if z is univariate
normal with mean 0 and variance 1 and z is univariate normal with

mean a+bz and variance 1, then the pair (‘:) has a bivariate normal

2
distribution with mean <g’> and covariance matrix <1_£'b i’) Thus if

b,#b, one is led to the quadratic function.

The second case is that of a quadratic relationship, k(2)=a,+bz+
c7t. Again if b,=b,, ¢,=c,, a discriminant function that is linear is
both z and z results. Otherwise the covariance adjusted function is
linear only in x. Fig. 2 shows classification regions for h(2)=2* and
hy(2)=22'. Clearly, the mean in /I, is always greater than the mean
in I7,, so that large values of x should be assigned to /7,. Note the
behavior at z=0. In this case the means are both equal to 0. In Fig.
2-a), « is assigned to I7, if it is less than 0. In 2-b) it is always as-
signed to II, since In((1—p)/p)=1 implies I, is more likely. In 2-¢), it
is always assigned to II,.

Case three is a step function. In I7,, h(2)=[2], and in II,, hy(2)=
2[2]. Thus if 2>0, the mean in 77, is greater than the mean in II;, so
that large values of « are assigned to I7;. On the other hand, when
2<0, the mean in II, is greater than the mean in IT,, so large values
of x are assigned to I7;. Fig. 3-b) is of some interest because of the
kinky shape of the assignment region. Note that it is for In((1—p)/p)
=2.

Case four uses hy(z)=|z|, hy(2)=2|z|. Its shape is similar to the
regions of case 2, for the same reasons.

The final special case is the so-called hockey stick function. This is
the case where there is a fixed response up to a threshold level, and a
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c) h=2+42z

Fig. 1
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b) h=[z]
he=2[z]

= (5%)

c) hi=[z]
hy=2{z]

1n(1"’)=—1
)

Fig. 3
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b) h1=|z|
hz=2[2|

Fig. 4
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h1=2 z§0
hy=2+42z z2>0
| ! ) h:=0 z=0
= 1 1
=7 —5 -3 h1=Z z>0
In (1_”)=o
b4

Fig. 5

linear regression thereafter. In the example illustrated in Fig. 5,

hy(z)=2 250
h(z)=2+4+22 2>0
hy(2)=0 z2=0
hy(z)=2 z2>0.

The corresponding figures for In((1—p)/p)+#0 are not shown because
they differ minutely from Fig. 5.

4. Error rates

For a fixed z, it is quite easy to determine the error rate when
the parameters are known. D,(x|z) is normal with mean /2 in I7,,
—ad*/2 in II, and has variance o’ in both populations, where a*=(h,(z)—
hy(2))’Z7(h(2)—hy(2)). Thus

P,=P (D,(x]2)<In I;P LARTRS Sy

L a

and

L o

P2=P<D0(x|z)>1n 1;1’ 11,) o — ln((l—p)/p)+a’/2]

where @ is the cumulative normal integral. However, these are con-
ditional on z. They are likely to be useful only when z is not a ran-
dom variable. For example, in the surgery example, each hospital
would want to know what its error rate was.
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Table 1 Expected error rates

mi)  h2) » In 1—‘52 E(R) E@® ol
Izl 212|731 -1 032 193 .23
5 0 348 .38 .38

269 1 793 .032  .237

119 2 902 .06 .13

2 22 731 -1 02 .13 220
.5 0 .351 .351 .351

.269 1 .743 .027 .220

119 2 832 .006  .104
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If z has a normal distribution we can integrate over z to find ex-
pected error rates. This was done numerically for two cases with re-

sults as given in Table 1. It was assumed that z was N(0, 1).

The error rates are symmetrical about values of p=.5 and they
behave as expected. The total error reaches a maximum at p=.5.
E(P,), the expected error rate in II,, is a monotonically decreasing

function of p while E (P,) is monotonically increasing.
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