ASYMPTOTIC EXPANSIONS FOR THE DISTRIBUTIONS OF LATENT ROOTS OF $S_hS_r^{-1}$ AND OF CERTAIN TEST STATISTICS IN MANOVA

TAKAFUMI ISOGAI

(Received Nov. 12, 1975; revised Mar. 9, 1977)

Abstract

S_r and S_h are independent central and noncentral Wishart matrices having Wishart distributions $W_p(n_r, \Sigma)$ and $W_p(n_h, \Sigma; \Omega)$ respectively. Asymptotic expansions are given for the distributions of latent roots of $S_hS_r^{-1}$ and of certain test statistics in MANOVA under the assumption that $n=n_r+n_h$ becomes large with a fixed ratio $n_r:n_h=e:h$ ($e+h=1$, $e>0$, $h>0$) and $\Omega=O(n)$.

1. Introduction

In MANOVA model we are often interested in latent roots of $S_hS_r^{-1}$ where S_r and S_h denote independent $p \times p$ matrices distributed as central Wishart $W_p(n_r, \Sigma)$ and noncentral Wishart $W_p(n_h, \Sigma; \Omega)$ respectively, where n_r and n_h are the degrees of freedom for the error and for the hypothesis respectively and Ω is the noncentrality matrix.

In this paper we shall consider the problems of MANOVA model in the situation that n_h is relatively large, for example, in testing the interactions in multivariate multi-way classification design with relatively large levels and a small sample size. (See Fujikoshi [2]). Therefore we shall assume that $n=n_r+n_h$ becomes large with a fixed ratio $n_r:n_h=e:h$ ($e+h=1$, $e>0$, $h>0$) and $\Omega=O(n)$.

In Section 2 an asymptotic expansion is derived for the joint and marginal distributions of the latent roots of $S_hS_r^{-1}$ when all the roots of Ω are assumed to be simple.

In Section 3 we shall consider three test statistics, the likelihood ratio, Hotelling's T^2_r and Pillai's V statistics, which are available in tests of dimensionality for MANOVA model, and we shall give asymptotic expansions for the distributions of these three test statistics in

Key Words and Phrases: asymptotic expansion, distribution of latent roots, Wishart, MANOVA, perturbation, test for dimensionality.
the nonnull and the null cases.

Our results are expressed in terms of the standard normal distribution function \(\Phi(x) \) and its \(j \)th \((j=1, 2, \cdots) \) derivatives \(\Phi^{(j)}(x) \), and are given up to order \(m^{-1/2} \) with respect to \(m=\mu^{-1}n-\gamma \) where \(\mu \) and \(\gamma \) are correction terms. We shall obtain the asymptotic expansions for the distributions of traditional statistics by choosing (i) \(\mu^{-1}=(1+e)/2 \), \(\gamma=(p+1)/2 \) for the likelihood ratio statistic, (ii) \(\mu^{-1}=e, \gamma=0 \) for Hotelling's \(T^2 \) statistic and (iii) \(\mu^{-1}=1, \gamma=0 \) for Pillai's \(V \) statistic. In the sequel we may assume without loss of generality that \(\Sigma=I_p \) (the identity matrix of order \(p \)) and \(\Omega=n\Theta=n\text{diag}(\theta_1, \cdots, \theta_p) \) since we treat only latent roots of \(S_nS_r^{-1} \).

2. Asymptotic expansions for the distribution of latent roots

We shall apply a perturbation method in order to get expansions of latent roots of \(S_nS_r^{-1} \) and derive an asymptotic expansion for their joint distribution under the assumption that all \(\theta_i \)'s are simple. Formerly the perturbation formula for latent roots was used by Girshick [5] and Lawley [7] and recently has been given as Taylor's series expansion by Sugiura [8].

Let \(S \) and \(V^{(j)} \) \((j=0, 1, \cdots) \) be \(p \times p \) real matrices. We assume that \(S \) is expanded in terms of \(V^{(j)} \) in the following way:

\[
S=A+\varepsilon V^{(0)}+\varepsilon^2 V^{(1)}+\cdots,
\]

where \(A=\text{diag}(\lambda_1, \cdots, \lambda_p), \lambda_1>\cdots>\lambda_p \) and \(\varepsilon \) is a real number whose absolute value is small enough. The following lemma can be easily obtained as in Bellman [1], pp. 60–63.

Lemma 2.1. For any fixed \(\alpha (\alpha=1, \cdots, p) \) let \(\lambda_\alpha \) be simple. When \(S \) is given in (2.1), the \(\alpha \)th latent root \(\lambda_\alpha \) of \(S \) can be expanded as follows:

\[
\lambda_\alpha = \lambda_\alpha + \varepsilon \lambda_\alpha^{(1)} + \varepsilon^2 \lambda_\alpha^{(2)} + \cdots,
\]

where \(\lambda_\alpha^{(i)} \) \((i=1, 2, \cdots) \) is a scalar. The first few of them are determined by

\[
\begin{align*}
\lambda_\alpha^{(1)} &= \psi^{(0)}_{a\alpha}, \\
\lambda_\alpha^{(2)} &= \psi^{(1)}_{a\alpha} - \sum_{j\neq a} \psi^{(0)}_{a\alpha} \lambda_{j\alpha} \psi^{(0)}_{j\alpha}, \\
\lambda_\alpha^{(3)} &= \psi^{(2)}_{a\alpha} - \sum_{j\neq a} \lambda_{j\alpha} (\psi^{(1)}_{a\alpha} \psi^{(0)}_{j\alpha} + \psi^{(0)}_{a\alpha} \psi^{(1)}_{j\alpha}) - \psi^{(0)}_{a\alpha} \sum_{j\neq a} \lambda_{j\alpha} \psi^{(0)}_{a\alpha} \psi^{(0)}_{j\alpha} \\
&\quad + \sum_{j\neq a} \lambda_{j\alpha} \lambda_{a\alpha} \psi^{(0)}_{a\alpha} \psi^{(0)}_{j\alpha} \psi^{(0)}_{j\alpha},
\end{align*}
\]
where \(v_{u,v}^{(q)} \) is the \((u,v)\) element of \(V^{(q)} \) and \(\lambda_u = (\lambda_u - \lambda) \). Now we shall consider expansions of latent roots of \(S_nS_e^{-1} \). Let \(T_e \) and \(T_h \) be the statistics defined by

\[
T_e = \sqrt{m} (S_n/m - \mu I_p) \quad \text{and} \quad T_h = \sqrt{m} (S_n/m - \mu (hI_p + 2\Theta)),
\]

for \(m = \mu^{-1}n - \gamma \) where \(\mu \) and \(\gamma \) are correction terms. It is well known that each of \(T_e \) and \(T_h \) converges in law to a \(p(p+1)/2 \) variate normal distribution with mean 0 as \(n \) tends to infinity. From (2.4) it follows that

\[
\frac{1}{m} S_e = \mu I_p + \frac{1}{\sqrt{m}} T_e \quad \text{and} \quad \frac{1}{m} S_h = \mu (hI_p + 2\Theta) + \frac{1}{\sqrt{m}} T_h.
\]

As the latent roots of \(S_nS_e^{-1/2} \) are the same as those of \(S_e^{-1/2}S_nS_e^{-1/2} \), we shall consider an expansion of the latter as follows:

\[
S_e^{-1/2}S_nS_e^{-1/2} = \left(\frac{1}{m} S_e^{-1/2} \right) \left(\frac{1}{m} S_n \right) \left(\frac{1}{m} S_e^{-1/2} \right)^{-1/2} = \left(\mu I_p + \frac{1}{\sqrt{m}} T_e \right)^{-1/2} \left(\mu (hI_p + 2\Theta) + \frac{1}{\sqrt{m}} T_h \right) \left(\mu I_p + \frac{1}{\sqrt{m}} T_e \right)^{-1/2} = A + \frac{1}{m} V^{(0)} + \frac{1}{m} V^{(1)} + \cdots,
\]

where

\[
A = \frac{h}{e} I_p + \frac{2}{e} \Theta,
\]

\[
V^{(0)} = \frac{1}{\mu e} \left(T_h - \frac{1}{2} (T_e A + AT_e) \right),
\]

\[
V^{(1)} = \frac{1}{(\mu e)^2} \left[\frac{3}{8} (T_e^2 A + AT_e^2) - \frac{1}{2} (T_e T_h + T_h T_e) + \frac{1}{4} T_e^2 A T_e \right].
\]

Applying Lemma 2.1 to the matrix \(S_e^{-1/2}S_nS_e^{-1/2} \) in (2.6), we have the following:

Theorem 2.1. If \(\theta_1 > \cdots > \theta_p \), an asymptotic expansion for the joint distribution of the latent roots \(\lambda_1 > \cdots > \lambda_p \) of \(S_nS_e^{-1} \) is given by

\[
P \left\{ \left(\frac{1}{\mu e k^2 m/2} \right)^{1/2} \left[l_s - \left(\frac{h}{e} + \frac{2}{e} \theta_s \right) \right] < x_s \right\} = \prod_{s=1}^p \Phi(x_s) \left(1 - \frac{1}{\sqrt{m}} K_s \right) + O(m^{-1}),
\]
where

\[k_s = e \left((1+2\theta_s)^2 - e \right)^{-1/2} \]

\[K_i = \frac{1}{\sqrt{2\mu e}} \sum_{s=1}^{p} k_s \left(\frac{1}{2} R_s \phi^{(1)}(x_s) + \frac{2}{3} S_s \phi^{(3)}(x_s) \right) \]

\[(2.9) \quad R_s = 2(p+1) \{(1+2\theta_s) e^{-1} - 1 \} + \sum_{j \neq s} \left(\frac{(1+2\theta_j)(1+2\theta_s) - e}{e(\theta_s - \theta_j)} \right) \]

\[S_s = k_s^2 e^{-1} \{2(1+2\theta_s)^2 - 3e(1+2\theta_s) + e^2 \} \]

\[\phi^{(j)}(x) = \Phi^{(j)}(x) / \Phi(x) \]

Proof. An asymptotic expansion for the joint distribution of the latent roots \(l_1 > \cdots > l_p \) of the matrix \(S^{-1/2} T S^{-1/2} \) given in (2.6) can be obtained by inverting their characteristic function

\[(2.10) \quad \phi(t_1, \cdots, t_p) = \mathbb{E} \left[\exp i \sqrt{m} \sum_{s=1}^{p} t_s (l_s - \lambda_s) \right] = \mathbb{E} \left[\exp i \sum_{s=1}^{p} t_s \lambda_s^{(1)} \left(1 + \frac{i}{\sqrt{m}} \sum_{s=1}^{p} t_s \lambda_s^{(2)} + O(m^{-1}) \right) \right] \]

where the expectation \(\mathbb{E} \) is taken with respect to the random matrices \(T \) and \(S \). Useful integral formulas for calculating this type of expectation are given in Fujikoshi [2]. We can get the following expectations.

\[(2.11) \quad \mathbb{E} \left[\exp i \sum_{s=1}^{p} t_s \lambda_s^{(1)} \right] = \left\{ 1 - \frac{4t^2}{3\sqrt{m}} g_s + O(m^{-1}) \right\} \exp (-g_s) \]

\[(2.12) \quad \mathbb{E} \left[t_s \lambda_s^{(2)} \exp i \sum_{s=1}^{p} t_s \lambda_s^{(1)} \right] = \left[\frac{t_s}{2\mu e} R_s + \frac{4t^2 t_s^2}{\mu e^2} (h + 2\theta_s) \right] \times \left\{ (1+2\theta_s)^2 - e \right\} + O(m^{-1/2}) \exp (-g_s) \]

where

\[g_s = \frac{1}{\mu e^2} \sum_{s=1}^{p} \{(1+2\theta_s)^2 - e\} t_s^2 \]

\[(2.13) \quad g_s = \frac{1}{\mu e^2} \sum_{s=1}^{p} \{(1+2\theta_s)^2 - 3e(1+2\theta_s)^2 + 2e^2\} t_s^2 \]

The inversion of the characteristic function \(\phi(t_1, \cdots, t_p) \) yields the result.

Q.E.D.

Corollary 2.1. When \(\theta_s \) is simple for fixed \(\alpha \), an asymptotic expansion for the marginal distribution of \(l_s \) is given by
(2.14) \[P \left\{ (\mu e k^2 m / 2)^{1/4} \left[l - \left(\frac{h}{e} + \frac{2}{e} \theta_* \right) \right] < x \right\} = \Phi(x) - \frac{1}{\sqrt{m}} \left\{ a_1 \Phi^{(1)}(x) + a_2 \Phi^{(2)}(x) \right\} + O(m^{-1}), \]

where

(2.15) \[a_1 = \frac{1}{2\sqrt{2\mu e}} k_* R_* \quad \text{and} \quad a_2 = \frac{2}{3\sqrt{2\mu e}} k_* S_* , \]

and \(k_* , R_* \) and \(S_* \) are the same as in Theorem 2.1.

Proof. Let \(x_i = +\infty \) for \(i = 1, \ldots, p \), except \(\alpha \), in Theorem 2.1.

3. Asymptotic expansions for the distributions of three test statistics

We shall consider the following multivariate linear model:

(3.1) \[X = A\xi + E \]

where \(A \) is an \(N \times w \) known matrix with rank \((A) = w \), \(\xi \) is a \(w \times p \) unknown matrix and each row of the random matrix \(E \) is independently distributed as \(N_p(0, \Sigma) \).

Consider the hypothesis \(H_0 : \text{rank} (B\xi) = k \), and the alternative \(H_1 : \text{rank} (B\xi) > k \), where \(B \) is a \(b \times w \) known matrix with rank \((B) = b \). Then we have three typical test statistics,

1. The likelihood ratio statistic

\[\Lambda_k = \sum_{\alpha = k+1}^p (1 + l_\alpha)^{-q/2} \quad (q = N - w), \]

2. Hotelling's \(T^2 \) type statistic

\[T_k = \sum_{\alpha = k+1}^p l_\alpha , \]

3. Pillai's \(V \) type statistic

\[V_k = \sum_{\alpha = k+1}^p l_\alpha / (1 + l_\alpha) , \]

where \(l_1, \ldots, l_p \) (\(l_1 > \cdots > l_p \)) are the latent roots of \(S_*^{-1/2} S \xi S_*^{-1/2} \) and \(S_* \) and \(S_h \) are independent \(p \times p \) random matrices distributed as central Wishart \(W_p(q, I) \) (\(q = N - w \)) and noncentral Wishart \(W_p(b, I; \Omega) \) respectively and \(\Omega \) is a diagonal matrix. Assuming that \(\Omega = O(q) \) and \(b \) is a fixed constant, asymptotic expansions for the distributions of these three statistics have been obtained up to order \(m^{-1/2} \) by Fujikoshi [3].

Now we shall assume that \(q = n_*, b = n_h, n = n_* + n_h \) with a fixed ratio \(n_* : n_h = e : h \) (\(e + h = 1, e > 0, h > 0 \)) and \(\Omega = n\Theta, \Theta = \text{diag} (\theta_1, \ldots, \theta_p), \Lambda = \)
diag (λ₁, · · · , λₙ) = (h/e)Fₙ + (2/e)θ. Under these assumptions asymptotic expansions for the distributions of those statistics are given in both the nonnull and the null cases.

1° (Nonnull case)

Suppose that the latent roots θ_{k+1}, · · · , θ_{p} are simple. Based on Lemma 2.1, we have the following expansion of the modified likelihood ratio statistic

\[A^*_k = \prod_{s=k+1}^{p} (1+\lambda_s)^{-m/s} \]

with \(m \) replacing \(q \) in \(A_k \).

(3.2) \[\bar{A}_k = \sqrt{m} \left(-\frac{2}{m} \log A^*_k - \sum_{s=k+1}^{p} \log (1+\lambda_s) \right) \]

\[= \sum_{s=k+1}^{p} \frac{\lambda_s^{(3)}}{1+\lambda_s} + \frac{1}{\sqrt{m}} \sum_{s=k+1}^{p} \left(\frac{\lambda_s^{(3)}}{1+\lambda_s} - \frac{\lambda_s^{(3)^2}}{2(1+\lambda_s)^2} \right) + O(m^{-1}). \]

The characteristic function of \(\bar{A}_k \) is written as

(3.3) \[E \left[\exp it \sum_{s=k+1}^{p} \frac{\lambda_s^{(3)}}{1+\lambda_s} \right] \left[1 + \frac{it}{\sqrt{m}} \sum_{s=k+1}^{p} \left(\frac{\lambda_s^{(3)}}{1+\lambda_s} - \frac{\lambda_s^{(3)^2}}{2(1+\lambda_s)^2} \right) + O(m^{-1}) \right]. \]

Utilizing the formulas due to Fujikoshi [2], the expectation of each term in (3.3) can be given in the following:

E \left[\exp it \sum_{s=k+1}^{p} \frac{\lambda_s^{(3)}}{1+\lambda_s} \right] = \left[1 - \frac{4(it)^3}{3\sqrt{m}} d_s + O(m^{-1}) \right] \exp (-d_s t^2), \]

where

E \left[\sum_{s=k+1}^{p} \frac{\lambda_s^{(3)}}{1+\lambda_s} \right] \left[\frac{1}{2\mu} \sum_{s=k+1}^{p} \frac{R_s}{1+2\theta_s} + \frac{4(it)^3}{(\mu e)^3} \sum_{s=k+1}^{p} (h+2\theta_s)((1+2\theta_s)^{-1} \right.

(3.4) \left. \left(-e(1+2\theta_s)^{-1} + O(m^{-1}) \right) \exp (-d_s t^2), \right]

where

E \left[\sum_{s=k+1}^{p} \frac{\lambda_s^{(3)^2}}{(1+\lambda_s)^2} \right] \left[\frac{2}{\mu e} \sum_{s=k+1}^{p} \left[1-e(1+2\theta_s)^{-1} \right] + \frac{4(it)^3}{(\mu e)^3} \sum_{s=k+1}^{p} \left[1-e(1+2\theta_s)^{-1} \right] \right.

\left. + O(m^{-1/2}) \right] \exp (-d_s t^2), \]

where

\[d_s = \frac{1}{\mu e} \sum_{s=k+1}^{p} \left[1-e(1+2\theta_s)^{-1} \right], \]

(3.5) \[d_s = \frac{1}{(\mu e)^2} \sum_{s=k+1}^{p} \left[1-3e(1+2\theta_s)^{-1} + 2e^3(1+2\theta_s)^{-1} \right]. \]
and R_\ast is given by (2.9). Combining these terms and inverting the characteristic function of \tilde{A}_\ast we have the following result:

Theorem 3.1. If $\theta_{k+1}, \cdots, \theta_p$ are simple, the following asymptotic expansion for the likelihood ratio statistic Λ_\ast can be derived

\[
P \left\{ \frac{\sqrt{m}}{\tau_1} \left[-\frac{2}{m} \log \Lambda_\ast - \sum_{a=k+1}^{p} \log \left(\frac{1+2\theta_a}{e} \right) \right] < x \right\}
= \Phi(x) - \frac{1}{\sqrt{m}} \left\{ \frac{a_1}{\tau_1} \Phi^{(1)}(x) + \frac{a_3}{\tau_1} \Phi^{(3)}(x) \right\} + O(m^{-1}),
\]

where

\[
\tau_1^2 = \frac{2}{\mu e} \{ (p-k) - es_1 \},
\]

\[
a_1 = \frac{1}{2\mu} \left((p-k)(p+k+1)e^{-1} - 2(p+1)s_i + s_i^2 \right) + \sum_{a=k+1}^{p} \sum_{j=1}^{k} \left(\frac{1+2\theta_a}{e} \frac{(1+2\theta_j)}{e} - e \right),
\]

\[
a_3 = \frac{2}{3(\mu e)^2} \left((p-k) + 2s_i - 3s_i e \right),
\]

\[
s_i = \sum_{a=k+1}^{p} (1+2\theta_a)^{-i}, \quad i = 1, 2, \cdots.
\]

By similar procedures we can get asymptotic expansions for the T_\ast and V_\ast statistics.

Theorem 3.2. If $\theta_{k+1}, \cdots, \theta_p$ are simple, the following asymptotic expansions for Hotelling's statistic T_\ast and Pillai's statistic V_\ast can be derived

\[
P \left\{ \frac{\sqrt{m}}{\tau_2} \left[T_\ast - \sum_{a=k+1}^{p} (h+2\theta_a)e^{-1} \right] < x \right\}
= \Phi(x) - \frac{1}{\sqrt{m}} \left\{ \frac{b_1}{\tau_2} \Phi^{(1)}(x) + \frac{b_3}{\tau_2} \Phi^{(3)}(x) \right\} + O(m^{-1}),
\]

where

\[
\tau_2^2 = \frac{2}{\mu e^3} \{ t_2 - (p-k)e \},
\]

\[
b_1 = \frac{1}{2\mu e^3} \left(2(p+1)t_1 - 2(p+1)(p-k)e \right) + \sum_{a=k+1}^{p} \sum_{j=1}^{k} \left(\frac{1+2\theta_a}{\theta_a - \theta_j} - e \right),
\]

\[
\theta_i = \sum_{a=k+1}^{p} (1+2\theta_a)^{-i}, \quad i = 1, 2, \cdots.
\]
\[b_i = \frac{4}{3\mu^2 e^i} \{(p-k)e^i - 3et_i + 2t_i\}, \]

\[t_i = \sum_{a=k+1}^{p} (1+2\theta_a^i), \quad i=1, 2, \ldots, \]

and

\[P \left\{ \frac{\sqrt{m}}{\tau_i} \left(V_x - \sum_{a=k+1}^{p} \frac{h+2\theta_a}{1+2\theta_a} \right) < x \right\} \]

\[= \Phi(x) - \frac{1}{\sqrt{m}} \left\{ \frac{c_1}{\tau_i} \phi^{(1)}(x) + \frac{c_2}{\tau_i^2} \phi^{(2)}(x) \right\} + O(m^{-1}), \]

where

\[\tau_i^2 = \frac{2\mu}{\sigma} (s_i - es_i), \]

(3.11)

\[c_1 = \frac{e}{\mu} \left\{ k\sigma e_i - (p+1)s_i + s_i s_1 + s_2 \right\} + \frac{1}{2\mu} \sum_{a=k+1}^{p} \sum_{j=1}^{a} \left(\frac{1+2\theta_a}{1+2\theta_a} - e \right) \left(\theta_a - \theta_j \right) \left(1+2\theta_a \right)^2, \]

\[c_2 = \frac{4e}{3\mu^2} \left\{ -s_i + 3es_i + e^2 s_2 - 3e^2 s_3 \right\}, \]

and the \(s_i, i=1, 2, \ldots, \) are defined by (3.7).

2° (Null case)

Assume that \(\theta_1 > \theta_2 > \cdots > \theta_k > \theta_{k+1} = \cdots = \theta_p = 0. \) We have an asymptotic expansion for the likelihood ratio statistic by a similar procedure to that in the nonnull case. We have only to be careful for the number of multiplicity.

A perturbation formula for multiple roots was obtained by Lawley [7]. In this paper we shall utilize the following perturbation formula given by Fujikoshi [4].

Lemma 3.1. When \(S = \Lambda + \epsilon V^{(0)} + \epsilon^2 V^{(1)} + \cdots, \) where \(\Lambda = \text{diag}(\lambda_1, \lambda_2, \cdots, \lambda_k, \lambda_{k+1}I_{(p-k+1)}), \) with \(\lambda_1 > \cdots > \lambda_k > \lambda_{k+1} \) and \(I_{(p-k)}, \) the identity matrix of order \((p-k), \) and \(V^{(i)} \) is a \(p \times p \) symmetric matrix partitioned similarly to \(\Lambda; \) namely

\[V^{(i)} = \begin{pmatrix} V_{\lambda_1}^{(i)} & \cdots & V_{\lambda_{k+1}}^{(i)} \\ \vdots & \ddots & \vdots \\ V_{\lambda_{k+1},1}^{(i)} & \cdots & V_{\lambda_{k+1},k+1}^{(i)} \end{pmatrix}, \]

the \(i \)th \((i=k+1, \cdots, p) \) latent root of \(S \) is the \((i-k)\)th latent root of \(Z \) which is defined by
(3.12) \[Z = \lambda_{k+1} I_{(p-k)} + \varepsilon V_{k+1,k+1}^{(0)} + \varepsilon^2 \left[V_{k+1,k+1}^{(1)} + \sum_{j=1}^{k} \lambda_{k+1,j} V_{k+1,j}^{(0)} V_{j,k+1}^{(0)} \right] \\
+ \varepsilon^3 \left[V_{k+1,k+1}^{(2)} + \sum_{j=1}^{k} \lambda_{k+1,j} \left(V_{k+1,j}^{(0)} V_{j,k+1}^{(0)} + V_{k+1,j}^{(0)} V_{j,k+1}^{(0)} \right) \right] \\
+ \frac{1}{2} \left(\sum_{j=1}^{k} \lambda_{k+1,j} \right) \left(V_{k+1,j}^{(0)} V_{j,k+1}^{(0)} \right) V_{k+1,k+1}^{(0)} \\
- \frac{1}{2} \left(\sum_{j=1}^{k} \lambda_{k+1,j} \right) \left(V_{k+1,j}^{(0)} V_{j,k+1}^{(0)} \right) \left. \right] + O(\varepsilon^4). \\

Based on Lemma 3.1, an expansion for the likelihood ratio \(L^* \) under the null case is given by

(3.13) \[\tilde{\lambda}_k = \sqrt{m} \left[-\frac{2}{m} \log \lambda_{k+1}^{(p-k)} \log (1 + \lambda_{k+1}) \right] \\
= \frac{\text{tr} Z^{(1)}}{1+\lambda_{k+1}} + \frac{1}{\sqrt{m}} \left(\frac{\text{tr} Z^{(1)}}{1+\lambda_{k+1}} - \frac{\text{tr} Z^{(1)^2}}{2(1+\lambda_{k+1})} \right) + O(m^{-1}), \]

where \[Z^{(1)} = V_{k+1,k+1}^{(0)} \] and \[Z^{(1)} = V_{k+1,k+1}^{(1)} + \sum_{j=1}^{k} \lambda_{k+1,j} V_{k+1,j}^{(0)} V_{j,k+1}^{(0)}. \]

Therefore the characteristic function of \(\tilde{\lambda}_k \) is written as

(3.14) \[\mathbb{E} \exp \left(\frac{i t}{1+\lambda_{k+1}} \text{tr} Z^{(1)} \right) \left[\frac{i t}{\sqrt{m}} \left(\frac{\text{tr} Z^{(1)}}{1+\lambda_{k+1}} - \frac{\text{tr} Z^{(1)^2}}{2(1+\lambda_{k+1})} \right) + O(m^{-1}) \right]. \]

Each expectation can be evaluated as follows:

\[\mathbb{E} \left[\exp \left(\frac{i t}{1+\lambda_{k+1}} \text{tr} Z^{(1)} \right) \right] = \left[1 - \frac{4(i t)^2}{3\sqrt{m}} \tilde{d}_3 + O(m^{-1}) \right] \exp (-\tilde{d}_3 t^2), \]

\[\mathbb{E} \left[\frac{\text{tr} Z^{(1)}}{1+\lambda_{k+1}} \exp \left(\frac{i t}{1+\lambda_{k+1}} \text{tr} Z^{(1)} \right) \right] \]

(3.15) \[= \left[\frac{(p-k)}{2 \mu} \tilde{p}_{k+1} + \frac{4(p-k)(i t)^2}{(\mu e)^2} \tilde{h}^2 + O(m^{-1}) \right] \exp (-\tilde{d}_3 t^2), \]

\[\mathbb{E} \left[\frac{\text{tr} Z^{(1)^2}}{1+\lambda_{k+1}} \exp \left(\frac{i t}{1+\lambda_{k+1}} \text{tr} Z^{(1)} \right) \right] \]

\[= \left[\frac{2(p-k)h}{\mu e} + \frac{4(p-k)(i t)^2}{(\mu e)^2} + O(m^{-1/2}) \right] \exp (-\tilde{d}_3 t^2), \]

where
\[\tilde{a}_k = \frac{(p-k)h}{\mu e}, \quad \tilde{a}_k = \frac{(p-k)(1-2e)h}{(\mu e)^2}, \]

\[\tilde{R}_{k+1} = \frac{1}{e} \left\{ 2(p+1)h - 2k - h \sum_{j=1}^{k} \frac{1}{\theta_j} \right\}. \]

Inverting the characteristic function of \(\tilde{A}_k \), we have an asymptotic expansion for the distribution of \(\tilde{A}_k \).

Theorem 3.3. If \(\theta_1 > \cdots > \theta_k > \theta_{k+1} = \cdots = \theta_p = 0 \), an asymptotic expansion for the distribution of the likelihood ratio statistic \(\Lambda^*_k \) is given by

\[\begin{align*}
\mathbb{P} \left\{ \frac{\sqrt{m}}{\tau_1} \left[-\frac{2}{m} \log \Lambda^*_k + (p-k) \log e \right] < x \right\} &= \Phi(x) - \frac{1}{\sqrt{m}} \left\{ \tilde{a}_1 \frac{\phi^{(1)}(x)}{\tau_1} + \tilde{a}_2 \frac{\phi^{(3)}(x)}{\tau_1^3} \right\} + O(m^{-1}),
\end{align*} \]

where

\[\tau_1 = \frac{2}{\mu e} (p-k)h, \]

\[\begin{align*}
\tilde{a}_1 &= \frac{(p-k)}{2\mu e} \left((h-e)p-k+1 - h \sum_{j=1}^{k} \frac{1}{\theta_j} \right), \\
\tilde{a}_2 &= \frac{2}{3(\mu e)^2} (p-k)(1+e)h.
\end{align*} \]

Similar results can be given for Hotelling’s \(T^2_9 \) type and Pillai’s \(V \) type statistics.

Theorem 3.4. If \(\theta_1 > \cdots > \theta_k > \theta_{k+1} = \cdots = \theta_p = 0 \), asymptotic expansions for distributions of Hotelling’s \(T_k \) and Pillai’s \(V_k \) statistics can be given by

\[\begin{align*}
\mathbb{P} \left\{ \frac{\sqrt{m}}{\tau_2} \left[T_k - \frac{(p-k)h}{e} \right] < x \right\} &= \Phi(x) - \frac{1}{\sqrt{m}} \left\{ \tilde{b}_1 \frac{\phi^{(1)}(x)}{\tau_2} + \tilde{b}_3 \frac{\phi^{(3)}(x)}{\tau_2^3} \right\} + O(m^{-1}),
\end{align*} \]

where

\[\tau_2 = \frac{2}{\mu e^3} (p-k)h, \]

\[\begin{align*}
\tilde{b}_1 &= \frac{(p-k)}{2\mu e^2} \left(2(p+1)h - 2k - h \sum_{j=1}^{k} \frac{1}{\theta_j} \right), \\
\tilde{b}_3 &= \frac{2}{3(\mu e)^3} (p-k)(1+e)h.
\end{align*} \]
\[\bar{b}_s = \frac{4}{3 \mu e} (p-k)(2-e)h, \]

and

\begin{equation}
\begin{aligned}
P \left\{ \sqrt{\frac{m}{\bar{\tau}_1}} \left[V_s - (p-k)h \right] < x \right\} &= \Phi(x) - \frac{1}{\sqrt{m}} \left\{ \frac{\bar{c}_1}{\bar{\tau}_1} \Phi^{(1)}(x) + \frac{\bar{c}_2}{\bar{\tau}_2} \Phi^{(2)}(x) \right\} + O(m^{-1}),
\end{aligned}
\end{equation}

where

\[\bar{\tau}_1 = \frac{2e}{\mu} (p-k)eh, \]

\begin{equation}
\begin{aligned}
\bar{c}_1 &= \frac{(p-k)}{2\mu} \left\{ 2kh - 2k - h \sum_{j=1}^{k} \frac{1}{\theta_j} \right\},
\end{aligned}
\end{equation}

\[\bar{c}_2 = \frac{4(p-k)}{3\mu^2} (e-h)eh. \]

It is noted that the result for the null case can be also obtained by substituting \(\theta_{k+1} = \cdots = \theta_p = 0 \) into the formulas for the nonnull case. When we set \(k=0 \) in Theorems 3.1–3.4, each coefficient of order \(m^{-1/2} \) corresponds to that obtained in Fujikoshi [2]. Coefficients of order \(m^{-1} \) are omitted here because of their complexity but are given in the author's master thesis [6].

Acknowledgements

I wish to thank Professor Y. Fujikoshi for his valuable guidance during the preparation of this dissertation and also Professor M. Okamoto for valuable advices and comments on the paper.

OSAKA CITY UNIVERSITY MEDICAL SCHOOL

REFERENCES

