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1. Introduction and summary

Let S; and S, be respectively the covariance matrices formed from
samples of sizes n,+1 and 7,41 drawn from independent m-variate
normal distributions with covariance matrices 3, and %,; then 7,S, and
n,S; have independent Wishart distributions W,(n,, 3)) and W,(n,, 2)
respectively. Let b,>b,>--->b, (>0) and 0, =0, = - - 2o, (>0) denote
the latent roots of S,S;! and Y, 3;' respectively. Various functions of
by, by, -+, b, have been proposed as statistics suitable for testing the
null hypothesis 3,=2, (see e.g. Khatri [12] and Pillai [15]). In this
paper we investigate the asymptotic behavior of the distribution of
by, by, o, by

The forms of the limiting joint and marginal distributions of the
sample roots b,---, b, (for large m, and m,) depend on whether the pop-
ulation latent roots @, -, ®, are simple or multiple. It is shown that
if @, is a simple root then, for n, and n, large, b, is asymptotically in-
dependent of all the other sample roots and the limiting distribution of
[/ 2(ny+1,)]2(bi/w;—1) is standard normal N(0,1). Both the asymp-
totic independence and normality break down if , is a multiple root.
This result is, of course, analogous to the well-known result concerning
the limiting normality of the roots of the sample covariance matrix
(see e.g. Girshick [8], Anderson [1], [2]).

In Section 2 it is assumed that the smallest latent root of X 3;! is
multiple. Putting n=n,+mn, and writing n,=kmn, n,=kmn (k+k.=1),
an asymptotic expansion is given, up to and including the term of order
n~!, for the joint density function of the sample roots in terms of nor-
mal density functions and other “linkage” factors which appear due to
the multiple root assumption. This then yields an expansion for the
marginal density function of b;. There are, of course, two cases to be
considered here; the corresponding population root w; can be either a
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simple or a multiple root. In the latter case it appears extremely dif-
ficult to obtain the expansion for the marginal density function of b,
when o; has arbitrary multiplicity, ¢ say. For small ¢, however, the
expansion can be readily obtained, and is given for ¢=2 and ¢=38.
Asymptotic expansions in the cases of distinct roots and equal roots
follow from these expansions.

An alternative approach which works for the extreme latent roots
b, and b,, is suggested in Section 8. It is shown that the distribution
functions of b, and b, can be expressed in terms of the Gaussian hyper-
geometric function ,F) of matrix argument. A system of partial differ-
ential equations satisfied by this function can be used to expand the
distribution functions in terms of normal distribution and density func-
tions.

In Section 4 the expansions for the marginal distributions of the
largest latent root, obtained in the previous sections, are examined in
the bivariate case, m=2.

2. Expansions for the joint and marginal density functions

In this section an expansion is given for the joint density function
of the latent roots b,,-:-,b, of S,S;! in the case when the smallest
root of 2. 2;! is multiple. We assume that

O> SO S0 ==0,=0(>0), m=k+gq,

and put n=n,+mn,. It is convenient to introduce some new notation;
put A,=n,S,, 4;=n,S; and let a,>a;>--->a, (>0) denote the latent
roots of A,A;'. Thus a,=bmn, (i=1,---, m). The (exact) joint den-
sity function of a,,---, a, can be expressed in the form (see James [10])

@1 T2 [T/ 2) a2 (D]
11, @—a)Fin2; -7, 4) ,

m
- T ap-rarme
i=1 i

where p=(m+1)[2, [n@)=x"""T] [a—(i—1)/2), 2=diag (@, -, w.),

A=diag (a,,- -, a,), and F} is a hypergeometric function of two argu-
ment matrices. The problem of obtaining asymptotic expansions for
the ,F, function in (2.1) has been considered by Chang [3] and further
developed by Li, Pillai and Chang [13] and Chattopadhyay and Pillai
[4]. An asymptotic expansion for this function has been derived for
large n in our one multiple root case in [18]. Throughout this section
from now on we write n,=kmn, n,=km (k;+k,=1). In [13] it is shown
that the joint density function of a,,---, a, can be expressed as
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(2.2) K'ﬁ' [wt—kln/2+p—la::1n/2-p(1 +ai/wi)—n/2+p-l]
i=1
. ‘ﬁ‘ [w(-klﬂ.+k)/2a::1n/2-—p(1 +a‘/w)(—n+k)/2]
i=k+1

:jw

T le—api@—o)]T @—0)-G,

Hig i<j

-
I
DN

where
K=nr"}(n[2) ¥tm—k-D/ ﬁ I'((n—1+1)/2) /

[ 1T ram—i+v T fT rem—i+r2)|

j=11i=1

m

G=1+@n" {3 31 0w, +ado) (1+a /)@ (@—a)]

ot
~ -

<

+k[(k—1) (4k+ 1)/12+(m2—k2)/2]} +

and p=(m+1)/2.

Now put ;= [mms/2(n;+n)] 4 (nea, /e, — 1) = (Kieyn|2) (ks /Forw,— 1)
(t=1,---, m). From (2.2) the joint density function of z,,---, 2, can
be expressed in the form

m

@3 1.6l s {Lrenr| 5 5 oo ldtor—ay

i=1 =1

<j

+h((k—1) (4k+ 1)/12+(m’—k’)/2)] +0(n-=/2)} :
where
Gi=ro T kgm0 TT P(n—i+1f2)
[ 1 rm—i+vm) 1T Ji rtem—i+112)]
Gy =T [1+(ledern/2) im0,

Gy= ;ﬁ— [14(kfesn/ 2) Vi ] AR
=1

= ﬁ (14 (k.Jesn/2)~ ko 2 ]t

i=k+1

and

=11 fj [L+ (ke 2) (o — w2, ) (01— @)1

i=1



224 YASUKO CHIKUSE

It remains to expand G,, G, G;, G, and G; in (2.3) for large n. For
example, by expanding the gamma functions for large n it follows that

G, = [(2,:)&/: T vErm—i+ 1)/2)]_l
- [1— (@4kdesn) ey — Lym(2m?+ 3m —1)+O(n-Y)] .

The functions G;, G;, G, and G; can be easily expanded in terms of
n~Y%; however these expansions, up to and including the terms of or-
der n~!, are quite lengthy and are omitted here. Substituting these
expansions in (2.3) gives an expansion for the joint density function
of z,,--+,2,. The final result is summarized in the following

THEOREM 2.1. The joint density function of x,=(kkm/2)"*(b,/w.—1)
(t=1,---, m), where b,,---,b, are the latent roots of S,S;! and the latent
roots wy,- -+, w, of .37 satisfy w,> -S> =" =0, (=0>0), may
be expanded for large n as

@4 116@) T lexo (—ay2v 2 I(m—i+1/2) [T (ei—2)

i=k+1
i<j

[t @ 5 Rueo+ @[5 Ruled + 3 Rule)Ra)

+ i i :p,x,wiw,/zklk,(w,_wj)z] +0(,n—a/z)} ,

i=1 j=1 .
i

R

where ¢(-) denotes the standard mormal density function, n=n,+n,,
m=kmn, ny=km (k+k,=1),

(2.5)  Rifx)=[1/6(kike:)"*1{2(1 + k,) Hy(%) + 3[(1 +m)k, + A H ()}

‘ (’l:=1, cee, k)
(2.6) =[1/6(kfes)'*1{2(1 + k) Hy(%) +3[1 — ¢ +(2+m — q)ke, + Ao Hy()}
(i=k+1” ) m) ’

2.7 Ruyu(x)=(/72k.);) {41+ k))*Hy(x) + 6[3 + (11 +2m)k, + (5+2m)k?
+2(1+ o) A Hi(w) + 42+ myle,+ (1-+m) (B3-+ m)kd
+2@+m)k A+ A—2BlH(@)}  (i=1,---, k)

(2.8) =(1/144k k) {8(1+ k)’ Hy(x) +12[5 — 2q + (15 + 2m — 4q)k;
+(7+2m —29)ki+2(1+ k) AJHi(x) +18[(1—q) (3—q)
+2(10+3m —mq—Tq+¢*)k,+ (8 + 6m +m*—2mq
—6q+g"ki+2(1—q+ 4k, +mk,—qk,) Ay + A} — 2B, Hy(x)
+3(1—qg)[—(1+49)+ (19+12m — 149)k, + (5+ 6m — 4q)k}
12k, A, —6B)Hy(z)}  (i=k+1,---,m),
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(2.9) A;=§i o,f(0—a,) , Bi=g Ofw—w,), (G=1,---, k),
FE ]

J#i
A= of@-v), B=3ellw-w), gq=m—k,

and H.(x) is the Hermite polynomial of degree r (tabulated to r=10 in
Kendall and Stuart [11], p. 155).

By integrating out the variables z,,.--, z, in the expansion (2.4)
an expansion for the joint density function of z,,,-:-, @, is easily ob-
tained. Here in carrying out the integration we note the following :
It is readily seen that we are involved only with integrating functions
of the form,

pu(@) =i exp (—2}/2)/v2x  (a=0,1,--),

over the integral domain “ —(kkn/2) <2, <+o00” (1=1,2,---,k). To
calculate using integration by parts, we have only to evaluate the
values, ¢.(—(kk:n/2)?) (@=0,1,---) and O(—(k.km/2)"?), which appear
as parts contributing to the integration from the integral domain
“ —(kien[2)*<x;”. Here @(-) is the standard normal distribution func-
tion, and we note that ¢,(—o0)=0 (a=0,1,---) and &(—o0)=0. It is
easily shown that

b — (kikeyn[2)") — g —00)<O(n7¥)  (a=0,1,---)

and that, from the asymptotic series, 1—®(u)=gy(—u)[u'—u?*+1-3u"
—...], valid for large u,

D(— (kiken[2)"*) — @(— 00) =1—@((kifesn/[2) ) < O(n~¥) ,

where the symbol < means that the left-hand side is of order less than
the right-hand side and M is any sufficiently large positive number.
Therefore, we can consider the integral domain of z, to be “ —co <z,
<+4o” (t=1,2,---,k) in our calculation. This kind of consideration
has also been applied in the derivation of the following corollaries.

COROLLARY 1. The joint density function of Xy,,,::+, T. where w,>
DW= =0, (=0>0), can be expanded for large n as

@10) 1T lexp (—a/2)v 2 I((m—i+ /21 T @—2,)

i=k+1
i<y

frremn B Rum)+Em] 3 R

+3 Ru(@)R,(x) |+ 0]
i<y
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where Ry (x;) and R;(x;) are given by (2.6) and (2.8) respectively.

It is extremely difficult to obtain a general expansion for the mar-
ginal density function of =z, (i=k+1,---, m) for general q (=m—k),
except when ¢ is small. In the cases ¢=2 and ¢=38 expansions for the
marginal density functions of the “extreme” variables z,., and «,, have
been obtained. By integrating out the other variables in (2.10) we have

COROLLARY 2. The marginal density function of each of the vari-
ables x=2x,,, and y==,, where ;> ->o>w ="+ =0, (>0) (g=m—
k), can be expanded for q=2 and q=38 and for large n as follows:

(i) when ¢=2;

(2.11) F(@)=Fox)+(2/n)"fi(x)+(2[n)f(2)+O(n"*")
and
(2.12) F@)=F(—=y)— @) fi(—y)+@n)f(—y)+0n~")
where
fi@) =7 ¢(z)[p(x)+2P(2)] ,
fi@) =7 ¢(z) [1:(2)p(x) +1:(2)D(2)] ,
Si(@)=vm () [0:(x)p(2) +0x(x)P(x)] ,
n(@)=Cz'+(C+C)z ,
rx)=C'+ Cox*—3C,—C, ,
0y(x) = Dyx*+ (3D, + Dy)z*+(C,C;+ 9D, + D, + Dy)a* + 48D, +8D,

+2D,+2D,
and
8(x) = Dyx"+ Dyx* +(— 3C} — C,Cy + Dy)x* +(—38C,C; — C; +15D,
+3Dy+Dy+2D))x .
(ii) when ¢=3;
(2.13) F(@)=gu(2)+(2/n)'"g(x)+(2/n)gy(2) + O(n™*)
and

(2.14) FW)=9(—y)—2/n)"g(—y)+(2[n)g:(—y)+O0(n™"?) ,

where
9(x) =¥ 2 §(2) [(2r)"*¢(2)®(2) + (xv 2 ) +27(22* ~ 1)O(zv 2)]
9:(%) =V 2 () [§(2)p(2)0(x) + Ex(@)p(xv 2) +&4(2)P(xv 2)] ,
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9:(%) =¥ 2 §(2) [ (@) $(x)D(2) + (@) (v 2 ) + (@) P(x 2)]
&i(x) =2(2n)"*[Cix*+ (3C,+Cy)=] ,

&y(x) =Cyz*+(C,+ Cy)x*—4C,—C, ,

&(x) =2"1*[2C\x° + (2C,— Cy)x*— (18C;+ 5Cy)z] ,

w(x)= (27)*[4Dx*+2(C,Cy+ 12D, + Dy)x* +(C3 +4C,C, +54D,+-8D,
+2Dy)x*—2Ct—14C,C,+105D,+23D,+5D;+8D,] ,

(x)=(1/8)[8D.2'+8(3D;+ Dy)a*+8(3D, + Dy + Dy’
+(—12C;—68C,C;+ 828D, + 148D, + 32D, +24D,)z]

and

() =(1/8V 2 ) [16Dyz* +8(2D; — D,)a* +8( — 18C2 — AC,C, — D, +2Dy)ac*
+2(—20C2—92C,C,+ 492D, + 92D, +20D,+24D,)z*
+28C:+196C,C,— 420D, — 172D, —40D,—24D,] .

Here C; and C, are the coefficients of x* and x respectively in R, (x) given
by (2.6), and D,, D,, D, and D, are the coefficients of x°, x', «* and x°
respectively in Ry (x) given by (2.8) namely;

(2.15) Ci=[1/3(kikr)'*] (1 +F) ,
Co=—[1/2(k:k,)' "1 (1 +q— Kk, — Ao)
D,=(1/18k\k;) (1 +k,)? ,
Dy, = —(1/12k:k,) [64 29+ (5 —2m +-4q)k, + (3 —2k)ki — 2(1+ K1) Al]
Dy=(1/8k:k:) [(1+9) (3+9) —2k(1+ @)k, — k(2 — k)i — 2(3+q—kk:) Ay
+A;—2B]
and

D,=(1/48kk,) [1—3q—2¢*— (1—3¢—2¢")k,+ (1 +3q—6m —2¢*
—6mk)ki+12(1+q—ki—mk)A;—6A5+6(1+9)Bi] ,

where A, and B, are given by (2.9).

Putting k=0 (g=m) in the expansions given in Corollaries 1 and 2,
we can obtain expansions for the joint density function of =z,,---, z,
and for the marginal density functions of z, and x,, in the case when
o=-++=a,(>0). Thus

COROLLARY 3. The joint density function of x,,---, X,, when o=
v o=, (>0), has the expansion (2.10), with 1 replacing k+1 and R, (z,)
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and R,(x;) given by (2.6) and (2.8), with m replacing q and A,=B,=0.

COROLLARY 4. When m=2 and m=3, the marginal density func-
tions of x, and x,, where o,=---=w, (>0), have the expansions (2.11),
(2.12), (2.13) and (2.14) with the comstants C,, Cy, D, D,, Dy and D,
given by (2.15), with m replacing q, k=0, and Ay=B,=0.

By integrating out the variables z,,,---, , in the expansion (2.4)
an expansion for the joint density function of z,,- - -, «, is easily obtained.

COROLLARY 5. The joint density function of z,--:, ., where >
eSS W= =0, (>0), can be expanded for large n as

216) T 420 {1+@m)" 3} Rulm)+@Im)| 3 Bulw)
+. zf}_ Ru@)Ry )+ é 20, 00, 2o, —m,)=] + O(n”/’)} ,

where Ry(x,) and Ry(x,) are given by (2.5) and (2.7) respectively.

It is clear that an expansion like (2.16) can be obtained for the
joint density function of any subset of the variables z,,---., z,, where
the corresponding population roots e,---, », are all simple. The form
of the general expansion is obvious. In particular we have

COROLLARY 6. The marginal density function of z,, when o; 18 a
simple root of 237, may be expanded for large m as

(2.17) $() [1+(2/)"Ru() + (2/n)Ru(@) +-0(n=*7)] ,
where R(x;) and Ry (x;) are given by (2.5) and (2.7) respectively.

When k=m, (2.4) reduces to the expansion for the joint density
function of z,,:--, z, in the case when all the latent roots of . 3;! are
distinet (o,> >0, >0).

It is noted that Chikuse [6] investigated asymptotic distributions of
the latent roots of the sample covariance matrix, and it may be inter-
esting to compare the results given in this paper with those derived
in [6].

Asymptotic moments of b,, when o, is a simple root, can be ob-
tained from (2.17); in particular we obtain

(2.18) E(®)=o+[1+m)k,+Alo/kkmn+0n™) ,

(2.19) Var (b)) =2w/k:ksn +2[2(2+ m)k, + (1 + m)k} + 2k, A, — B;lo}/(k.esm)?
+0(n7?) ,

(2.20)  Ky(be) =8(1 + k)l (Fesfesm) +O(n ™)
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and
(2.21) k(b)) =481+ 3k, + k) wi/(kFem)*+O0(n™*)

where ry(b;) and x(b;) are the third and fourth cumulants of b;, and A,
and B; are given by (2.9). From the expansion for the joint density
function of z, and z,, where o, and », are simple, we obtain

(2.22) Cov (b, b;)=20iw}/(w;— ;) (kikn) +0(n°) .

We note from (2.18) that, as an estimate of w,, b, has a bias term
of order n~!. A “better” estimate of w, having a bias of order n~? is

(Bi=bi—bi[ j}"_j b,/(bi—b,)—kl(m+1)] /klkzn .
j#i

It is easily seen that the expansion (2.17) is the Edgeworth expan-
sion obtained by substituting the expressions (2.18)-(2.21) for the first
four moments of b, in the general Edgeworth expansion form given in
Kendall and Stuart [11], p. 164.

3. Distributions of the extreme latent roots

In this section we derive exact expressions for the marginal distri-
bution functions of the extreme roots b, and b, of S,S;!, valid when
the corresponding population roots @, and , of 2,3;' are simple. An
alternative approach is then suggested, valid for deriving asymptotic
expansions for the distribution functions of the extreme roots when the
corresponding population extreme roots are simple. Now A,=n,S, and
A,=mn,S, have independent Wishart distributions W,(n,, 2,) and W,(n,,
%,) respectively. '

The largest latent root a, of A,A;' is considered first. Since the
events “a,<y”, “0<A,A7'<yl,” and “0<A,<yA4,, A;,>0” are equiv-
alent, we have

31 P (al<y)=]z[l [P,n(—;—n,) det (22,)"1/2]'1
j=
1 -1 /2—
. S etr <——-Z, A,) det Ap/t-?
4,>0 2
- S etr (—lz,—%) det AM*-2dAdA,
0<4,<yd, 2

where, throughout this section, p=(m+1)/2. Put

(3.2) L=S etr (—-}-E;‘Al) det AM-7dA, .
0< 4 <ydg 2
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Making the transformation T'=(yA4,)'4, it is easily seen that (3.2) be-
comes

(3.3) L= 3 ) Eu@)| Ta i) | det (payre
2 2
. 1F1<?13-n1; -;—n1+p:——;—y2r’Az>

where ,F) is a confluent hypergeometric function of matrix argument
(see Herz [9], Constantine [7]). From (8.1), (3.2), (8.3) and the general
system via integrals, defined by Herz [9], of hypergeometric functions
&y, it is shown that

(3.4) P (a1<y)=1“m(p)l’m(% (nx+’nz)> [F m(% "2)F m(‘é‘”‘“’)]_l

. det [y(Z,Z7Y) 1 J’l(%(nl-i-nz), —;-n —;—nl-i—p;

_y(zlzz_l)—l> .

Since the event “b,<y” is equivalent to the event “a,<ny/n,”, we
have

LEMMA 3.1. The distribution function of the largest root b, of S,Si!
18 given by

35)  P(b<y) =I’m(p)1"m(%- (n,+nz)) [I’,,,(—%— n,>rm(%nl+ p) ] -

- det [(ny/ns) (2,551 F(% (m+1a),

L ek p; — () (555

We now consider the distribution of the smallest root a, of A,A4;!.
The events “a,>y”, “A,A;'>yl,” and “0< A, <y~ 'A,, A,>0” are equiv-
alent. It follows that P(a,>%) can be obtained from P (a,<y) given
by (3.4) by replacing n,, n,, ¥, 2, and 3, by n,, n,, ¥, 3, and X, re-
spectively. Noting that the event “b,>y” is equivalent to the event
“a,>ny/n,”, we have

LEMMA 3.2. The distribution function of the smallest root b,, of S,S;!
18 given by
1 1

(36) P lu>9)=Lu®n( 5t ) [ L Zm) Lo St p) |
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- det [(m/m) EE T+ (u+ma),

ERWE

D) -é-'nz‘i'p; ""(7"2/"7'11/)2122_1> .

A system of partial differential equations satisfied by the ,F, func-
tion has been given by Muirhead [14]. We now assume that the re-
spective population extreme roots », and o, are simple and write n=
ny+ny, my=km, ny=km (k,+k.=1). Then, starting from the above sys-
tem, we can derive asymptotic expansions for large n for the distri-
bution functions of the “standardized ” extreme roots x,=(kk:n/2)"* (b,/
@;—1) (t=1, m). The detailed calculation is found in Chikuse [5] and is
omitted here. The resulting expansions agree with the expansions for
the marginal density functions of z, and «,, given by (2.17).

4. Numerical comparison

To examine the expansions obtained in the previous sections, we
compute approximate powers of the 0.05-level test of 3,=2J, based on
the largest root b, in the bivariate case, m=2. We follow previous
notation. The expansion for the distribution function of z,=(kkyn/2)"?
+(b;/w;—1) can be obtained from (2.17) for the case, o,>w;, and from
(2.11), in connection with Corollary 4, for the case, w;=w,. These are
respectively given as follows:

(4.1) P (x,<%)=0(x)—(18kkym) " ¢(x) {2(1 + )z — 2+ Tk,
+ 3w/ (0 — @,)} — (86k kesm) " 'g(x) {4(1 + ke )
—2[11 -5k, — Tki—6(1 + ky)w, (0, — wy)]2°
+8[2— 2k, + 11k — 6(2 — 3ky) oo/ (o — @3)
—30}/(0y— w,)']x} +0(n~"?)

and

4.2) P(z<2)=—+v 7 $(x)P(x)+P(xv 2 )— (36kfe;n)~1
+ [(2r) ()P (%) + B2V 2 )] [2(1+ Fy)2t + 3(— 1+ 2k,)]
— (86kidesn) " {v & $(2)D(2) [4(1+ky)'x®+6(—5— Ky + k)t
+9(8—4ky) 2} +8(— 2+ 11k, — 111)] + 2 2p(xv/ 2 )
- [4Q1+ky)'x* + 2(— 13+ ke, + 5Kty + 3(5 — 8k, + 8k?)] }
+0(n2) .

The approximate powers are computed from these expansions and com-
pared in Table I with exact powers given by Pillai and Al-Ani [17].
Here upper 5% points of the distribution of b, were obtained from
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tables in Pillai [16]. The agreement is seen to be quite good, except
in the case when w, is close to w; with w,#w,. A decrease in accuracy
in such situations is to be expected since this is near the case when o,
is not a simple root and the limiting distribution is non-normal.

Table I Powers of the 0.05-level test of J;=2: based on the largest
root against several alternatives
(Columns (1), (2) and (3) are values of limiting term,
n-!/? term and n~! term in expansions, and columns (4) and
(5) are (1)4(2)+(3) and exact values.)

m ns o ws (1) | (2) | (3) | (4) | (9)

5 33 1.0 1.0 0.001 | 0.009 | 0.036 | 0.046 | 0.050
1.05 1.05 0.002 | 0.017 | 0.052 | 0.071 | 0.061
1.5 1.0 0.024 | 0.087 | 0.013 | 0.124 | 0.125
1.5 1.333 | 0.024| 0.199 |—0.262 |—0.039 | 0.175
4.0 1.0 0.570 | 0.000 | 0.002 | 0.572 | 0.585

7 33 1.0 1.0 0.001 | 0.009 | 0.032 | 0.042 | 0.050
1.05 1.05 0.002 | 0.017 [ 0.047 | 0.066 | 0.062
1.5 1.0 0.029 | 0.089 ( 0.011 | 0.129 | 0.137
1.5 1.333| 0.029 | 0.207 (—0.229 | 0.007 | 0.193
4.0 1.0 0.638 | 0.019 | 0.004 | 0.661 | 0.684
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