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1. Introduction

Let © be an open subset of the real line R and, for each 6¢86,
consider the probability space (X, A, P,). Here (X, A) may be taken

to be equal to ,ﬁo(R” B,), where (R,, B,)=(R, B) denotes the Borel real

line. The probability measure P, is the one induced on A by a prob-
ability measure p,(-) defined on B and a transition probability measure
p(+; +) defined on RxB. Then, for each §¢€6, the coordinate process
{X.}, n=0, n an integer, is a Markov process with initial measure py(-)
and transition measure p,(-; -).

Let A, be the o-field induced by the first n+1 r.v.’s X, X, -+, X,
of the process in question and let P,, be the restriction of the prob-
ability measure P, to the o-field A,. It will be assumed below that,
for any n=0 and any 4, & € 6, the probability measures P,, and P,,,
are mutually absolutely continuous. Then fix an arbitrary 6, € 6 and set

dP, dP,
1.1 —% —q(X,: 8, —L —a(X,, X6
1.1) dp, . q(Xo; 6) d Px,vo o(Xo, X;5 6)

for specified versions of the Radon-Nikodym derivatives involved. Also,
set

1.2 X,| X,; 0)=9FKe; X5 0)
1.2) (X X,; 0) (%1 0)

With the above notation the likelihood function, L.(:;8), of the
r.v.’s X, X;,---, X, is given by
L(Y,; 0)=q(X; 0)}1 aX;|X,.1;0) ,

where Y,=(X,, X;,---, X,). For each #¢6, consider the interval (§—

* This research was supported by the National Science Foundation, Grant MPS 75-
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1/4/m, 0+1/y/m), which will belong in 6 for sufficiently large n, and set
0+1/ynm
1.3) Z(Y 0={""" Lu(Ya; i)

The measure ! is Lebesgue measure and assumptions to be made below
will insure finiteness of the above integral. Then, any (measurable)

function ci,,=ti,,( Y,) for which the integrated likelihood Z,(Y,; §) is max-
imized (with respect to 8) is called a maximum probability estimate
(MPE) of 6.

The concept of an MPE is due to Weiss and Wolfowitz. For more
relevant information see [9] and the bibliography cited there.

In the present paper, it will be shown that, under rather weak

regularity conditions, there exists at least one MPE, J,,, for all suffi-
ciently large n and with P,-probability —1, as n—o. Any such esti-
mates are 4/ n-consistent, in the probability sense, and also asymptoti-
cally normal. Finally, they are asymptotically efficient in the sense of
Weiss-Wolfowitz. By saying that an estimate, d, is ¢ +/ m-consistent ”
(in the probability sense) it is meant that, for each #¢6, Ji(in—ﬂ)
is bounded in P,probability. That is, for every ¢>0, there is a
positive number M=M() and a positive integer N =N(e) such that
P(vn(d,—8)|<M)>1—¢, n=N.

The results just described have been established by this author for
the i.i.d. case in [7] and [8]. Here they are being generalized to the
Markov case.

In order to avoid unnecessary repetitions in the sequel, all limits
will be taken as m— oo, unless otherwise explicitly stated.

2. Assumptions and notation

In this section, we introduce the necessary additional notation and
also gather together the assumptions to be used in the various parts
of the paper.

ASSUMPTIONS
(A1) The parameter set 6 is an open subset of the real line R.

For each ¢ 6, let {X,}, n=0, be a Markov process as described
in Section 1. Then:

(A2) The process {X,}, n=0, is strictly stationary and metrically transi-
tive (ergodic). (See, for example, [1], pp. 94, 457).

For n=0 and 0€¢6, let A, and P,, be as described in the Intro-
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duction. Also, let X and Y be r.v.’s such that X is distributed as X,
and the 2-dimensional r.v. Y is distributed as the pair Y,=(X;, X).
Then :

(A3) The probability measures {P,,; €6} are mutually absolutely
continuous for all n=0.

Thus, the quantities
9(X; 0)=logq(X;0), 9(Y;0)=logq(X,|X,;0)

are well-defined with P,-probability one for all 8 ¢ 8, where ¢(X; 6) and
q(X,| Xy; 6) are given by (1.1) and (1.2), respectively.

(A4) (i) On a set of P,probability one for every #¢€6, there exist
the derivatives

N
@.1) o X; 0)=-2g(X; 0)

and

@.2) oY:0)=-2-0(Y:0), W(Y;o)=%g(1’;a)

for all #¢ 6 and ¢(X; 0) and ¥(Y;6) are continuous in 4 € 6.
(ii) For every 6¢6,

ED(Y; 6)| X]=0, a.s. [P],
and
ElP(Y; OF=—E¥(Y; 0)=d*(0)>0 .

(AB) For each €6, there is an interval, I(6), containing # and con-
tained in ©, and a non-negative measurable function

H,: (R, B)—(R, B)
such that
W(Y;)|sH(Y), teld), EH(Y)<.
(A6) TFor each #¢ 6 and any compact subset C of 6, the functions
inf [T(Y; t)—-E, (Y t); teCl, sup [T(Y; t)—E,¥(Y; t); teCl
are A;-measurable.

For each 6 €8, set Z,=(X,_, X,), j=1,2,---,n, and define 4,(f) by

2.3) A»<o)=¢—1i- 30Z;:0).
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Also, for he R, let

_ h
(2.4) O=0+—r -
Thus, 6, €6 for sufficiently large »n. Finally, set
dP,,
2.5 A, 6,)=4,(6)=log — =,
(2.5) (0, 6,)=4,(6)=log ap.,
Then:

(A7) For every 0¢6, the log-likelihood function A,(6) satisfies the fol-
lowing convergence property

(2.6) A,.(o)—hd,,(a)—»—-%-h’a’(a) in P,-probability .

Conditions on the probability density function involved which secure
the validity of (2.6) may be found in [2], Theorem A.4. Also, a set
of conditions of a somewhat different nature from the ones just re-
ferred to can be found in [5], p. 45.

It should be noted here that all results in this paper, except for
those in Section 7, are derived under Assumptions (A1)-(A6). Thus,
Assumption (A7) is used only in establishing the asymptotic efficiency
of an MPE.

3. Some preliminary results

In this section, some auxiliary results are presented which play a
key role in the sequel. To this end, recall that Z;=(X,.1, X;), =1,
2,---,m, and that Z is a (2-dimensional) r.v. distributed as the pair
(X, X)). Next, for each t€8, let

(3.1) W(Z,; )=V (Z,; t)—E, ¥ (Z,; 1) ,
so that
(3.2) EW(Z,; 1)=0.

In this section, the parameter point ¢ is treated as if it were fixed.
Also, let

(3.3) W) =Wy(Ya; t)=% DM .

Then, by the Ergodic theorem, it follows that, for every te 6,
W.(t)—0 a.s. [P)].
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According to the lemma below, the above convergence is uniform in ¢,
provided ¢ lies in a closed interval. Namely,

LEMMA 8.1. Let Assumptions (Al)-(A6) hold and let W,(t) be defined
by (3.3). Then, for each 6 €6 and any closed interval I(6) centered at 0
and belonging in 6,

sup [|W.@t)|; te I(6)] -0 a.s.[P)].

PrOOF. It is done as that of Lemma 3.1. in [7], where X and X
there are replaced by X, distributed as X,, and Z,=(X,_, X,), respec-
tively. Also, the Law of large numbers is replaced by the Ergodic
theorem.

In the sequel, the following result, immediate from the previous
lemma, will also be needed.

LEMMA 3.2. Let Assumptions (Al)-(A6) hold and let 7,€6 with
7,—0. Then, for sufficiently large m, the r.v.’s W, (6+2z,), 2€]0,1],
given by (3.8), are well-defined and

S: |Wi0+1c) |dl)—0  a.s.[Pi].

To this lemma, there is the following

COROLLARY 3.1. Let Assumptions (A1)-(A6) hold and let =, € 6 with
t,—0. Then, for sufficiently large n, the r.v.’s ¥(Z,; 6+iz,), 2€[0, 1],
given by (2.2), are well-defined and

S: [_11; Ex vz, 6 an)]dl(i)-* —d(0) as.[P].

ProoF. See Corollary 3.1 in [7].

4. Existence of roots which are consistent estimates

Before the results of this section are formulated and proved, it
would be convenient to recall some of the notation employed so far.
To this end, the likelihood function of the r.v.’s X;, X;,---, X, is given by

L.(0)=L.(Y.; 0)=q,0) }T a,6) ,
where

6@)=a0(X;0), q,0=0X,|X,_;0, j=1,---,m,
and Y,=(X,, X, -+, X,). The integrated likelihood function is given by
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0+1/ym
4.1) Z0)=Z Y. 0)=\, " L)l .
—-1/ym
Now consider the equation
d
4.2 s =0.
(4.2) 2 Z0)=0

In this section, it will be shown that there exists at least one root of
(4.2) with P,-probability—1, which is a 4/ 7 -consistent estimate of @ in
the probability sense. (For the definition of the concept of the “y/7-
consistency ” the reader is referred to the third paragraph from the end
of Section 1.) More precisely, the following is true.

PROPOSITION 4.1. Let Assumptions (A1)-(A6) hold. Then, for all
sufficiently large n and with P,-probability—1, there exists at least one

root J,,:ci,,( Y,) of equation (4.2) which is a 4/ 7 -consistent estimate of
# in the probability sense.

The proof of this proposition is facilitated by two lemmas. Set

4.3) 0,0)=0(2,; 0= 9(2,: 0)= 2 o2 q(X,1X,1;6)
and
(4.9) vo(o)=;—0¢,(o) ,

where Z,=(X,_;, X,), j=1,---,n. Then

LEMMA 4.1. Suppose Assumptions (A1)-(A6) hold and let d be a
parameter point close to 0 (explicitly defined below). Then equation (4.2)
18 equivalent to the following relation

(4.5) 44,0 +[vn@—OPIL— L) +2yn(d—6) (L + L))+ (L — 1)
1 \]_
o) -afe- )]0
where

(4.6) I:= I[0+<d ”“LT’)}:S {_1_ 517, <0+1(d iﬁ)}}dl(l)
and 4,0) 18 given by (2.3).
Proor. In all that follows, we shall always work on a set of P,-

probability one for every 6¢ 6 without mentioning it explicitly. Dif-
ferentiating in (4.1) and then taking logarithms, equation (4.2) becomes
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as follows

y

4.7 (0+~/ )+Zg,<0+~/_> g,,<o—717>+ji=lg,(o—

2
3]""

where, it is recalled, that

(4.8) 9o(6)=1log () .

Upon replacing 6 by d, where d will be given specific values in the
next lemma, relation (4.7) becomes

(4.9) <d+7———>+zg’<d+¢n> g"(d 1/n>+2g’( x/i"r?)

Now, for j=1,---,n, the functions g,(d+1/4/%) are expanded around
8, according to Taylor’s formula and up to terms of second order, and
give

(4.10) ¢ (d+i> g(a)+( +_1__>q> @)

. rl *N/%— J ——1/—,7[ J
) Lol )
—+— v, 60+2d— 0+—_ di.
*3 <d *7w) Wt vn
In (4.10), sum over j, from 1 to n, and replace the expression jﬁ g,(di
=1

7%) in (4.9). One then has, after the appropriate cancellations, and

by also taking into consideration relation (4.6),

go(d+¢—lw—)+A,.(o>+§wmd—o)m+%I:+~/md—o)z,.+

=go(d—ﬁ)— n(o)+ VH@d—O L+ Ly mA—0)-.

From this last expression, relation (4.5) follows in an obvious manner.

LEMMA 4.2. Consider the left-hand side of relation (4.5) as a func-
tion of d and call it ¢,(d) (=¢(Y,;d)). Also, suppose that Assumptions
(A1)-(A6) hold. Then, for every >0 and all sufficiently large M >0,
there exists a set A,=A,(s, M) such that P(A,)>1—¢ for n=N=N(s, M)
>0 and on A,,

4.11) <p,,(o+7MT><o , (o—J—_)>o

ProOF. Consider ¢,(d) as defined above and, for some M >0, re-
place d by 6+ M|,/ n successively. Then, relations (4.5) and (4.6) give
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“12) g0+ ./—> 44,0)+ M L,(0+ M1

)]

7 Vi) ~h o+
+2M[I,,<0 l‘f/ﬂ) ( 1:4/ )]
+[I(0+1‘f/il>_ ( )]
oo Aol 220

(4.13) %(0—%>=4An(0)+M‘[I,,<0— ‘/:1)_1,,@_ 1‘%1)]
—2M[ ( ) ( M+1>]
Hel % >’< )]
#2{ulo— L) -alo- 272

From the definition of the quantities I, by means of (4.6), and Corol-
lary 3.1, it follows that all I,’s which appear on the right-hand side of
relations (4.12) and (4.18) converge to —d*(4) a.s.[P,]. On the other
hand,

N

in P,-probability by Assumption (A4)-(i). Next, from Assumption (A4)-
(i),

(4.15) E01(0)=0, a[D,(6)]=0%0) (0<a(d)<o0).

Setting now C, for the o-field induced by the r.v.’s @,6), j=1,---,n,
it can be shown that the process {jé(b,(ﬂ)}, n=1, is a martingale with

respect to the o-fields {C,}, n=1. (For details, see Lemma 1 in [4].)
This result, along with (4.15), implies that the Central limit theorem
for martingales (see, for example, Theorem 2.2A, p. 205, in [5]) applies
and gives

(4.16) L[4,(6)| P))= N(0, *(6)) .

Now, combining the convergence to —g*@#) in P,-probability of the I,-
quantities appearing on the right-hand side of (4.12) and (4.18), rela-
tions (4.14) and (4.16), as well as standard Slutsky type theorems (see,
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for example, Theorem 8, p. 152, in [6]), the r.v.’s ¢, (8+M/y/n) con-
verge as follows

1 o+ 25)

P,] = N(—4Mo*(6), 165%(6))

and

(o2

Therefore, for ¢>0 and all sufficiently large n,

P,] — N(4Mo(6), 165°(6)) .

P-[wn(0+%)<o]>1—_;_

and

M €
Pa[¢n<0_—ﬁ)>0]>1 "é—’
provided, of course, M is sufficiently large. To be more precise, for
every ¢>0, there exists an M=M(c)>0 sufficiently large, a set A,=
A, (e, M) and N=N(e, M)>0 such that for n=N, PJ(A,)>1—¢, and on
A,,

(4.17) ¢,(0+7M7)<0 , go,(a—vl‘%-) >0.

But this is relation (4.11). The proof of the lemma is completed.
We may now proceed with the proof of the proposition. Namely,

PrROOF OF PROPOSITION 4.1. By Assumptions (A4) and (A5), the
Dominated convergence theorem (see, for example, [3], pp. 125-126)
applies in an obvious manner and provides continuity, with respect to
d, of It’s as they are defined by relation (4.6). Also, by Assumption
(A4)-(i), the r.v.’s g(d+1/¢/ ) are continuous in d. Then the r.v. ¢,(d),
defined by the left-hand side of relation (4.5), is continuous in d with
P,-probability one for all #¢ 6. This result, along with (4.17), implies

that (for n=N) there exists at least one quantity J,.:J,,( Y,) such that
on A,,

o+ L], ad)=o0.

(4.18) d, e [o—ﬁ, 0+
Relation (4.18), in conjunction with Lemma 4.1, implies that, for n=N,
there exists at least one root of (4.2) which is a 4/ n-consistent esti-
mate of # in the probability sense. This completes the proof of the
proposition.
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5. Existence of maximum probability estimates

In this section, it is shown that there exists at least one root of
the equation

d _
(5.1) == Z:(6)=0

which is a 4/ 7 -consistent, in the probability sense, MPE of 4. In other
words, the following result is established.

THEOREM b5.1. Let Assumptions (A1)-(A6) hold. Then, for all suf-
ficiently large n and with P,-probability—1, equation (5.1) has at least
one root d,=d.(Y,) which is a T -consistent (in the probability sense)
MPE of 6.

PROOF. Let d, be as described in Proposition 4.1. Then, by Prop-
osition 5.1 below, any such d, is also an MPE of 4. Then, employing

the more conventional notation d, for an estimate of #, and utilizing
the two properties just mentioned, the proof of the theorem is im-
mediate.

Thus, it suffices to establish the following result, namely,

PROPOSITION 5.1. Let Assumptions (A1)-(A6) hold and let d, be
an estimate of # as described in Proposition 4.1. Then, for all suffi-
ciently large n and with P,-probability—1,

(5.2) 2 ZOh-3,<0.

For the proof of this proposition, an auxiliary result is required.
This will be formulated and proved below.

LEMMA 5.1. Let Assumptions (A1)-(A6) hold and let d, be an esti-
mate of 6 as described in Proposition 4.1. Then, for all sufficiently large

n and with P,probability—1, the r.v.’s Wy(d,+2/¥7), 2€[0,1], given

by (3.3), are well-defined and
S: W, <d,,i—1/—_—.—>|dl(x)——>0 in Prprobability .

PROOF. Since 6 is open and d,—8 €6 in P,-probability, it follows
that, for every ¢>0, there exists a set A,=A,(¢) and N=N(¢)>0 such
that, for all n=N, P,(A4,)>1—¢, and on A4,,
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(d +7_=) efe), 2¢[0,1].
At this point, recall that I(6) is the closed interval, centered at ¢ and
belonging in 6, employed in Lemma 3.1. Therefore, for » and A, as

above, the r.v.’s W,(d,+2/y®), 2€[0, 1], are well-defined and

B[}, {7 ) |@@><|na

<P[{sup [|W(t)]; t e IO ><} N A,]
< P,{sup [| W,(t)|; ¢ € I(6)]>¢}

and this last expression—0 by Lemma 3.1.

The previous lemma has the following immediate corollary. This
is used in the proof of Proposition 5.1.

COROLLARY 5.1. Let Assumptions (A1)-(A6) hold and let d, be an
estimate of 6 as described in Proposition 4.1. Then, for all sufficiently
large n and with P,-probability—1, the r.v.’s

(5.3) ; jz ur,<d +~/——> 2€[0,1],

given by (2.2), are well-defined and, with P,probability—1,

Sl [“1' =Y <d +——>]dl(1)—> —a%0) .

olm i3 "TYn

ProoF. That the r.v.’s in (5.3) are well-defined follows as in the

proof of the lemma in connection with the r.v.’s Wy(d,+/y®), i€
[0,1]. Next, by relations (3.1), (3.3) and the lemma,

e

with P,probability—1. Finally, it is seen, as in the proof of Corol-
lary 8.1, that

(5.5) S: [S,?lﬁ(dni—‘/——)]dl(l)—’ —a%(6)

with P,-probability—1. Then relations (5.4) and (5.5) provide the de-
sired result.

The proof of the proposition can now be presented.

PROOF OF PROPOSITION 5.1. On the basis of (4.1), it will have to
be shown that, for sufficiently large n and P,-probability—1,
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b0 Gulei)] Sl

A differentiation (with respect to #) of the likelihood function

L.(6)=a,(6) ﬁ 0
gives
2 LO=L0)]p®)+319,0)]
0 " " Pk I

where the @,(0)’s are given by (4.3) and ¢(8)=¢(X; 6) is given by (2.1).
Thus,

61 llorpr)=Llor ) el )+ S0, 0= )|

Now, expanding &,(0+1/y/n) around d, according to Taylor’s formula
and up to terms of first order, one has

¢,<0+‘/—__> 0@+ (0 diJ—n)S v,[d,+1(6 —J,.iv—lﬁ—)]dl(l).

Upon replacing 6 by d, in this last expression and then summing over
7, from 1 to n, the following relation results

(5.8) §1¢,<dnif):§ 0,d) VT Sl[% jz w,(&,,iLﬂdz(z).

On the basis of (5.7) (with 0 replaced by d,) and (5.8) and the fact that

]

as follows from the definition of d,, inequality (5.6) becomes (for all
sufficiently large n and with P,-probability—1)

9 il i)l o

<[ (oo

ol T\ Y

But d,—6 in P,probability. By this result, Assumption (A4)-(i) and
Corollary 5.1, relation (5.9) gives then the desired result.

6. Asymptotic normality of maximum probability estimates

In this section, it is shown that any ./%-consistent MPE of ¢ is
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also asymptotically normal. More precisely, the following result is true.

THEOREM 6.1. Let Assumptions (A1)—(A6) hold and let the estimate
of0 be as in Theorem 5.1. Then,

LIy7(d,—6)| P,]= N(©, ¢7%6)) .
The following lemma will facilitate the proof of the theorem.

LEMMA 6.1. Let Assumptions (A1)-(A6) hold and let the estimate
of 0 be as in Theorem 5.1. Then, for all sufficiently large n and with
P,—probabzlzty—»l the r.v.’s

L35y oaldi—ox—)] . 2l

given by (2.2), are well-defined and

6.1) i,.*:S {li [e+z(¢i 717)]}&(1)—»—&(0)

n =
wn P,-probability.
PRrROOF. It is done as in Corollary 5.1.
We may now proceed with the proof of the theorem.
PROOF OF THEOREM 6.1. From the definition of d,, it follows that,
for sufficiently large » and with P,-probability—1,
_a% (0 l0=,=0

(see also (4.2)). By Lemma 4.1, however, this equation is equivalent

to relation (4.5) with d replaced by d,. Thus, for sufficiently large n
and P,-probability—1,

Ut + B da—0)=—24,0)— 3 VB du— 0T — 1)
—%(I‘:—f;)—[go(d,.+%)—g.,(&n—%)] .

By (6.1), one may divide through in the above equation by the r.v.
Ir+I7. Thus, for sufficiently large » and P,—probability—» 1,
2 Iy—

. n(d,—0)= ———2—4, et N
(6.2) +m(d.—6) = 0)— Y I)

)
SR et SN A1) —g(d—L)] .
ol +1) L@ L\ T Ty

V7 (d.— o)
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By (4.18), JW(&,.—ﬂ) is bounded in P,-probability. Then, by (6.1) and
Assumption (A4)-(i), the second, third and fourth term on the right-
hand side of (6.2) tend to zero in P,-probability. Finally, by (4.16)
and (6.1) again, the desired result follows.

7. Asymptotic efficiency of maximum probability estimates

In this section, it is shown that, under certain regularity conditions,
an MPE is asymptotically efficient in the sense of Weiss-Wolfowitz.
For the precise formulation of this result, some additional notation is
required. To this end, define the following sequences of parameter
points, namely,

h

(7.1) {6,}c6, where 0"=0+77’ n=l, heR.

Now, let W, be an MPE satisfying the following two conditions:

(C1) For any he€ R, let 6, be given by (7.1). Then, there exists B(9)
>0 such that,

lim Paﬂ[‘J%-(Wn'—on) € (_11 1)]:‘.3(0) .

(C2) Let 6, be as above and let ¢, 6 be arbitrary >0 numbers. Then,
for sufficiently large |k|,

lim inf P, [| V' (W,—6,)|<d|h|]=1—¢ .
Next, let T, be any (competing) estimate of # € ® such that
(7.2) lm{P, [vn(T.—0,) € (—1, D]-Plyn(T,—6) € (—1, 1)]} =0

for any h € R and any 4, as above. With the above notation, the asymp-
totic efficiency of the MPE W, is defined as follows

DEFINITION 7.1. Let {W,} and {T,}, m=1, be as above. Then
{W,} is said to be asymptotically efficient (in the sense of Weiss-Wolfo-
witz), if

(7.3) lim sup P[vn(T,—0) € (—1, 1)]<8(6) .
The main result of this section is then

THEOREM 7.1. Let Assumptions (A1)~(AT) hold and let the MPE d,
given by Theorem 5.1. Then the sequence {&,.} 18 asymptotically efficient
wn the sense of Definition T.1.

Proor. It follows immediately by Theorem 3.1 in [9], provided the
following proposition is established, namely,
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PROPOSITION 7.1. Under Assumptions (A1)-(A7), the MPE d, satis-
fies conditions (C1) and (C2) in this section.

The proof of this proposition will be facilitated by the following
lemma.

LEMMA 7.1. Let Assumptions (A1)-(A7) hold and let {6,} be given
by (7.1) for he R. Then:
(i) The sequences of probability measures {P,} and {P, } are contiguous,
and
(ii) For any O0+£heR,

L[4.(0)| P, )= N(ha'(6), 5°(6)) .

ProoF. (i) For {6,} as above and A4,()=log (dP,,[dP,,), recall
that, by Assumption (A7),

(1.4) A(6)—hd,(0)— —%h’a’(o) in P,-probability ,

where, we recall, that

40)=— 3 0,0) .
By (4.16),
L{4.(6)| Ps]= N(0, 6*(9)) ,
so that
(7.5) Lk4,(6)| = N(O, ha*(6)) .

Relations (7.4) and (7.5) give

(7.6) L{4,(6)| P]= N( —%W(o), h%f(o)) =L,
and, as is easily seen by integration,
a.m SR exp dL()=1.
Then relations (7.6) and (7.7) imply the contiguity of the sequences
{P,,} and {P,,} by Theorem 6.1-(iv), p. 83, in [5].
(i) The contiguity established above and Corollary 7.2, p. 35, in [5]
imply that
A0)~hd ()~ —3K'0)  in P, probability

and
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LI4(0) | P,]= N( - Ka'(0), Ko'(6))

From these last two relationships the desired result follows in an ob-
vious manner.

We may now proceed with the proof of the pi'oposition, namely,

PROOF OF PROPOSITION 7.1. By the contiguity established in Lem-
ma 7.1-(i) and relation (6.1), it follows that

(7.8) [f——d(6) in P, -probability. .

Also, by said contiguity and Assumption (A4)-(i),

A 1 A 1 . k2 B
(7.9) go(':l,.-i—ﬁ) —go(dﬂ—J—W>HO in P, -probability .
Next, the sequence {\/717(&,.—0)} is bounded in P,-probability, as follows
from (4.18). This fact, along with the above mentioned contiguity and
Proposition 6.1, p. 31, in [5], implies that {4/71,—((2,,-—0)} is also bounded

in P,-probability. Now, this result and relations (7.8), (7.9) and (6.2)
imply, by means of Lemma 7.1-(ii), that

LIy (d.—0)| P, 1= N(h, a%(0)) .

Therefore, letting @ stand for the distribution function of the standard
normal distribution,

P, [vn(d.—0,) € (—1,1)]

=P, [-1<y7(d,—0)—h<1]—>20[c(6)]—1 .
It follows that (C1l) holds true with B(8)=20[¢(6)]—1. For the proof
of (C2), it is seen that
P, [V (d.—0,)|<5|h]]

=P, [-d|h|<yn(d—0)—h<5|h|]—>20[5|h|a(d)] -1 .

Since 20[6|h|a(8)]—1 can be made =1—¢, by choosing |h| sufficiently

large, Condition (C2) is also true and, in fact, with the lim inf being
replaced by lim.
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