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Summary

Let (2, ) be a measurable space, let 6 be an open set in R*, and
let {P,; 6 €6} be a family of probability measures defined on 4. Let
¢ be a o-finite measure on 4, and assume that P,&p for each #¢6.
Let us denote a specified version of dP,/dy by f(w;6).

In many large sample problems in statistics, where a study of the
log-likelihood is important, it has been convenient to impose conditions
on f(w;6) similar to those used by Cramér [2] to establish the consist-
ency and asymptotic normality of maximum likelihood estimates. These
are of a purely analytical nature, involving two or three pointwise de-
rivatives of In f(w; ) with respect to 8. Assumptions of this nature do
not have any clear probabilistic or statistical interpretation.

In [10], LeCam introduced the concept of differentially asymptoti-
cally normal (DAN) families of distributions. One of the basic properties
of such a family is the form of the asymptotic expansion, in the prob-
ability sense, of the log-likelihoods. Roussas [14] and LeCam [11] give
conditions under which certain Markov Processes, and sequences of in-
dependent identically distributed random variables, respectively, form
DAN families of distributions. In both of these papers one of the basic
assumptions is the differentiability in quadratic mean of a certain ran-
dom function. This seems to be a more appealing type of assumption
because of its probabilistic nature.

In this paper, we shall prove a theorem involving differentiability
in quadratic mean of random functions. This is done in Section 2.
Then, by confining attention to the special case when the random
function is that considered by LeCam and Roussas, we will be able to
show that the standard conditions of Cramér type are actually stronger
than the conditions of LeCam and Roussas in that they imply the ex-
istence of the necessary quadratic mean derivative. The relevant dis-
cussion is found in Section 3.

* This research was supported by the National Science Foundation, Grant GP-20036.
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1. Introduction

Before stating the theorems, we must introduce the notation to be
used. Let (2, i, P) be a probability space and denote by

Ly(2, P)=Ly(2)= {random variables (r.v.’s), X, on (2, i, P);

EX< 0} .
For X, Y ¢ Ly(Q2), define the inner product (X,Y) as follows
(X, Y)>=£XY).

Denote by ||-||; the L;-norm induced by the inner product (-, :); i.e.,
for X e Ly(Q),

| Xl =X, X3)".

Next, let 6 be a k-dimensional, open subset of R* and let g(6)=g(6,,
sy, 0), 0=(8,,86,,---,6,) be a random function on (2, 4, P), where
the random element » is omitted from the notation for the sake of
simplicity. ‘

DEFINITION 1.1. The random function g(f) is said to be differen-
tiable in quadratic mean (q.m.) at  when P is employed if there exists
a k-dimensional vector of random functions, §(4), such that

|2 |71l g(6+R)—g(6) — 1'§(6)]1:—0

as 0#|h|—0, where |-| denotes the usual Euclidean norm of the vector
k; g(0) is the q.m. derivative of g(¢) at 8. Here, “’” denotes transpose
and h'g(f) is the inner product of the indicated vectors.

2. Statements and proofs of some theorems on quadratic mean
derivatives

The first theorem is essentially a special case of a result of LeCam
[12]. Init, we consider the case where k=1 i.e., @ is a real parameter.

THEOREM 2.1. Assume the motation of Section 1. Let g(w,6) be a
random function defined on 2X6 which 18 jointly measurable in o and
8, and such that
(i) (3g(w, 6)[36)|s=se=gs(w, %) € Ly(R2, P,) for all 6* in some neighborhood
of 6,€86.

Suppose furthermore that

(ii)) guw, 6%) is finite, except possibly at countably many points, in a
neighborhood of 6,, a.s. [Ps].
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Let h*(ﬂ*):Sngg(w, 6%)P,(dw), and assume that
(i) lim ¢! S+ | h(w)—h(Bs) |du=0 as (0%)t—0.
Then, gy, 00)o 18 the q.m. ([P,O]) derivative of g(w, 8) at 0=06,.

PrOOF. It follows from the above hypotheses (i) and (ii) and The-
orem 264 of Kestelman [8], that for every 6,, 6; in a neighborhood of
6, and almost all ([P,]) w€ 2, we have

@1) oo, 6) (@, 8)=|" (o, widu .
Next,

1t [g(w, 8s+8)—g(w, O)1IE
=, to(, 8o+t)—g(, 001'P (dw)

2.2) =SD rlS::” i, u)du‘zP,o(dw)

<t (17 1040, w10 7 10w, v 1dv) Pugdo)
(2.3 =" ([, Lo, w) 1940, )1 Pode |dudo
2.4) S S° h(u)h(v)dudy
2.5) =gt S’ h(u)du‘z

=g S h(w)du—t-h(B)t+h(6y) |

=[ny+¢ [ tha — ool

where (2.2) follows from (2.1), (2.3) results from a double application
of Fubini’s theorem, (2.4) is obtained by Schwarz inequality and (2.5)
by Fubini’s theorem. That is,

I lo(o, 60+t —g(a, 6011 < |0+ (™ (o)~ he@oldu|
and hence, as (0#)t—0, we obtain by means of (iii)
lim sup [[t™'[g(o, Oo+1)—g(w, 01| SR6,) .
On the other hand, by Fatou’s lemma, one has
kY8 <lim inf [|t7g(w, O+t)—g(w, 6)]]7  as (0+#)t—0 .

Combining these last two results, we get
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It g(w, 6s+8)—g(w, O)][3—h*6,)  as (0#)t—0 .
Since also

(7[00, O0+t)—g(@, B~ gi(w, 6) a5 (0%)t—0,
one has
t7[9(@, Oo+t)—g(w, 0)] > gi@, )  in q.m. ([P,]) as (0#)t—0,
which establishes the desired result.

All of the hypotheses of the theorem can be readily checked except,
perhaps, for (iii). The following lemma will be helpful in formulating
an alternative condition.

LEMMA 2.1. Let q: R—R, and let x, be a continuity point of q.
Let |q| be Lebesgue integrable im a mneighborhood of x,. Then, as 0%)
t—0,

tim ¢+ | |q(w)—q(@o | du=0
%o

PROOF. Since ¢ is continuous at z,, for a given ¢>0, there exists

a 6>0 such that

l[g(u)—g(x)|<e  if |[u—m|<5.

If we choose [t|<d, we have

Tott
{7 g — gl du<e

and the lemma is proven.

Using the above lemma we see that (iii) is implied by
(iii)) h(#) is locally integrable and continuous at 6,.

To close this section we state, without proof, a theorem which has
been derived in an earlier paper (Lind and Roussas [13]). It deals with
the case £>1, and will be referred to in Section 3.

THEOREM 2.2. For each 0 € 6, we assume that the partial derivatives
n g.m. ([P)]) of the random function g(0) exist and are continuous (in
0) in Lynorm, |-ll.. Then §(6), the derivative in q.m. of g(6), exists
and is equal to the vector of partial derivatives in q.m. That is, for
each 6 €6 and h+0,

1117 [ate+m)—g0)~ 33 1,3, | 0

as |k|—0, where §,(6) denotes the partial g.m. derivative of g(6) at 6.
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This theorem changes the problem from a search for a vector of
functions and the taking of limits as a vector variable approaches zero
in norm to one of finding the partial derivatives in q.m., which involves
only a single function and a real argument, and then checking to see
that they are continuous in | :||;-norm. Theorem 2.1 may serve as a
way of finding the partial q.m. derivatives.

Further use of these theorems will be demonstrated in a forthcom-
ing paper which will be devoted to the calculation of some asymptoti-
cally optimal tests for certain failure distributions.

3. Comparison of Cramér type conditions with the conditions of
LeCam and Roussas

-In LeCam [12], a set of conditions of the Cramér type is shown to
imply a certain differentiability in quadratic mean assumption of LeCam
and Roussas. This set of conditions is essentially minimal and the proof
is quite involved and makes use of some techniques of functional analysis.
In this section, it will be shown that, if one instead chooses the stronger
conditions usually made, then the conclusion can be arrived at by some
simple arguments.

To facilitate the comparison of the two types of conditions for the
remainder of this section, let (2, A) be (R, B) the Borel real line, let
® be an open subset of R*, and let {P,; # €6} be a family of prob-
ability measures defined on B. Let p be a o-finite measure on B, and
assume that P,<p for each §€ 6. Let us denote a specified version of
dP,jdp by f(x;6). Let X, X,,--- be a sequence of independent, identi-
cally distributed random variables defined on (R, $). Then the assump-
tions of Roussas [14] are the following:

(A1) The set on which f(-;6) is positive is independent of 4.

Set ¢.(0; 6%)=[f(Xi; 6%)/f(X;; 6)]*. Then
(A2) (i) For each #¢€ 6, the random function ¢,(; 6*) is differentiable

in gq.m. with respect to 6* at (@, ) when P, is employed.

Let ¢,(6) be the q.m. derivative of é(0; 6*) with respect to 6* at
6, 6). Then

(ii) ¢4(0) is X;(B)x C-measurable, where B is the Borel o-field
in R’ and C is the o-field of Borel subsets of 6.
(iii) For every 8¢, I'(6)=4E,$,(6)$/(8)] is positive definite.
We now state a set of conditions of Cramér type. These are found in
Davidson and Lever [3].
(Bl) Same as (Al) above.
(B2) For almost all ([¢])x € R and for all 6 €6,

dln flo6,, o In f/06,00, and 9 1n f/36,00,06,
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exist for »,s,t=1,---, k.
(B3) For almost all ([¢])xz € R and for every 6¢6,

|0f /00, | < F.(x) and |8*f/06,00,| < F,,(x) ,

where F.(x) and F,(x) are integrable ovei R, r,s=1,-.-, k.
(B4) For every 8¢ 6, the matrix I(0)=(I,.(8)) with

Lio-e{2aL| 27

is positive definite with finite determinant.
(B5) For almost all ([z])x € R and for all 6 €6,

@lnf L
06,060,060,

where there exists a positive real number M such that
ElH, (X)) <M< 00

for all #¢ 6 and »,s,t=1,---, k.
These assumptions are simply a multi-parameter extension of those
given by Cramér [2].

When one wants to derive more delicate results for a family of
distributions it is convenient to add some further hypotheses on the
density. One purpose of these further restrictions is to insure the con-
tinuity (componentwise) of I(#). (See Kaufman [7], Weiss and Wolfowitz
[20] and LeCam [9] for papers referring to estimation, and Wald [18],
[19], Davidson and Lever [3] and LeCam [9] for papers referring to tests
of hypotheses.) Since the conditions (A), along with the assumption
that I'(#) is continuous, are sufficient to provide results of the same
nature, it is not unreasonable to incorporate a condition which implies
the continuity of I(6) into (B) above. The one we choose to use is
from Davidson and Lever [3] (see also Wald [18], [19]).

(B6) There exist positive real numbers v and T such that whenever

< Hnt(x) ’

k
lo"—e' =3 |0y —0l 1<y, @,0"€8,
r=1

2 2
8.[(%013({ m,>]<T<oo for r,s=1,---, k.
Since the proof that (B6) does, in fact, imply that I(f) is continuous
is quite interesting, and not included in the Davidson and Lever

paper, we include it here. In other words, we establish the following
result

THEOREM 3.1. Under assumptions (B1)-(B6)
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dlnf| alnf L
r0=(e(75 5 %))
©) ’ a6, l a6,

18 continuous in the semse that each component is a continuous function

of 8.
PROOF. It is well known that (B1)-(B5) imply that

w0=(-e{55£])

Therefore,
In(o) - In(ao)
=—{, TS0 fo; ) +{ TS

Sf(x; 6o)dp(x)

90,90, 00,00, lo,
=\, [GaL| s@ 021 fa; 0)|autz)

By Taylor’s theorem, we have for almost all ([¢])z € R,

a’lnfl a’lnfL _ @lnf
96,00, v 36,06, o+§(‘ 0 203690, 30,30,30, I~

where 6* lines on the line segment joining # and 6,. From this, we
have

&lnf &Inf &Inf .
ol @ =201 w0+ 30.-00-2 0L fwi0)

which implies

lnf . @Inf .
Tt Lof(x, 025 Lf(x, 6)

_Inf caN_ R @dInf .
= | @ 00— 5w 1= 5 0= 0) 0L | f(wi0).
Thus,
I Ir,t(o) _Im(ﬂo) I
@lnf C AN .
< ||, Sk s 00— fta: oldute)|
+|2 -0 | 2L f(a: 0)dpia)|
<{, [S5L| 17 00— f; 0171 £ (@ 00— fia3 0) dpta)|
+310-0ul | |20 L | |f(e; 00duta)
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By the Cauchy-Schwarz inequality this is less than or equal to

{S @ln f
B 30,30, L)

| {S" |f e 8u) = F e ﬂ)ld#(x)} "’

+2l 10, — G| Snlsg’r;;‘__‘bf;_‘Llf(x; 8)du(z) .

1@ 60— F(w; 0) dua)]

By assumption (B5), the last sum above is bounded by M||#—6,]. The
first term is bounded by

FInfl |t . S Fln f
.9
{Sn 20,56, | T & 0@ 2
k

o 2] Jae)

f(@; OMp(a)]

%

r=1

where 6** lies on the line segment joining ¢ and 4,. By (B6), the first
factor above is less than (27)* for ||#—46,| sufficiently small (<v). By

(B3), the second factor is less than (K ||6—6,])"%, where K= SR F (x)dp(x).

Therefore |I,,00)—1,,.(6,)|S M| 6—8,||+2Tk||6—6,)", provided |[|0—6,|
<y. From this it follows that lim|Z, ,(8)—1I, (6)|=0, as 6—8,, as was
to be seen. '

Let us now assume that k=1, and prove the following theorem.

THEOREM 3.2. In the motation above, assumptions (B1)-(B6) are
stronger than assumptions (Al)-(A2) in the semse that any density which
satisfies (B1)-(B6) also satisfies (A1)-(A2).

 Before proceeding with the proof of Theorem 3.2, we specialize
Theorem 2.1 to the case where the random function is ¢,. (In the nota-
tion below (i), (ii), and (iii)’ correspond to (i), (ii), and (iii)’ as used in
Theorem 2.1 and the discussion following it.)
Recall that

Bu(x; b, %) =[f(; 0)] [ f (e 6%)]"*.
Therefore,

0p(x; 6y, %) 1 af(“’;a*) . . A\1-1/2
Tr=i—ETi[f(x'0°)f(x'0)] ”.

Thus, we want to have

iy 1 [@f(=; 0)/00) ] £,
(1) 4 SR f(x; 0)f(z; 6) Sf(x; 00)dp(x)
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=10, [22:0) [5w; )] f(a; gtz

=71-I(0') finite for ¢’ in a neighborhood of 6,;

(ii) For z (almost all [¢]) we want
1 . —ip 0f(x; 6) . pNT2
S U@ o 2L E0 Jir(; gy

to be finite as a function of # (except for possibly countably many
values) in a neighborhood of 6,;

(iii)) I(6) is a continuous function of § in a neighborhood of 6, (since
this in addition to (i) above implies the local integrability of h(6)
=(1/2)[L(9)1).

In proving Theorem 3.2 let us note that verification of (i), (ii),

(iii)’ above for each 6, € 6 is sufficient to establish the following

LEMMA 3.1. Conditions (B1)-(B6) imply that (A2)-(i) is satisfied,
with
9
a6

. _ 1 dln f(x; 6%
5k —_— e N T
¢l(x ’ 0; 0 )ll‘=0'—' 2 o06* v =0

?31(37; 0)=

for each 0 € 6.

Proor. Clearly, (i) is satisfied because of (B4). Let us consider
condition (ii). Now,

9¢,(x; 6y, 6*) __l . —1/2[ af(x; 6%) ’ :| . aNT-1/2
BT = s | 2L i fe; e,
By (B2) (dlnf)/a6 exists and it follows that both [(@ln f(x; 6)/36)|,]
and [f(z; ¢')]"* are finite functions of ¢ and hence (ii) is satisfied. For
(iii)’ it suffices to show that I(#) is a continuous function of 4. This
has been done in Theorem 3.1.

PrROOF OF THEOREM 3.2. To complete the proof of Theorem 3.2
we observe that (Bl) and (A1) are identical. It only remains to show
that (A2)-(ii) and (A2)-(iii) are implied by conditions (B). From Lemma
3.1 we have ¢,(6)=(1/2)((@In f(x; 6))/36), and thus (A2)-(ii) and (A2)-(iii)
follow from (B2)-(B4). This completes the proof of Theorem 3.2.

We thus know that for k=1, conditions (B) imply conditions (A).
The above result also shows that the partial derivatives in quadratic
mean are given by the pointwise partial derivatives under conditions
(B). If we could also show that conditions (B) imply the continuity in
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Lynorm of these partial derivatives we would have the existence of ¢,
in the case k>1 upon application of Theorem 2.2.
What we mean by continuity in L,-norm in this case is the following:
Since we have already shown that

b 00 =3 (L2 )i,

where ,51,,(00) denotes the partial q.m. derivative of ¢(z; 6,, 6*) with
respect to 6* at 6*=6,, what we want to show is that

i 3 (2260 ) e on-(229) ) 1]

o0y 4
- f(z; G)dp(z)

equals zero. This is equivalent to

lim SR [alnf(x 0)| alnf(a: O)L]f(x B0)d () =0 .

8*—0,

Since (¢*In f)/06,00, exists s=1,2,--.,k, we have
SInf) OIS | Lo prs,.
a0, o0

0

Thus if we can show

im {, [28L] Tr; apautm={, [22L] ['7@: 0dutz)

the proof will be complete by Vitali’s theorem. (B6) is not quite strong

enough to readily give us the desired result. What is needed is a re-

quirement such as is found in Bahadur [1], Roussas [15], or Schmet-

terer [17].

(B6) For any given 6, in 6, and r=1,..., k, there exists a neighbor-
hood, N, of 6, and a $B-measurable function M,(x) such that

for all xe R

and all 6 € N, and such that
EOoMr’<°° ’ 7':17""’0-

With this condition it is obvious from the dominated convergence the-
orem that

|, [P | s ovduta
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is a continuous function of #* in a neighborhood of 6,.

4. Closing remarks and an example

The results presented in this paper justify earlier assertions that
the assumptions (A) are actually weaker than those commonly occur-
ring in the literature and not just of a different nature. This shows
that the results of Roussas [14], [16] and Johnson and Roussas [4], [5],
[6] extend earlier results in two ways. The regularity conditions are
weaker and the assumption of independence is also dropped. Since there
are examples in which conditions (A) are satisfied when conditions (B)
are not, the results actually have wider application as well.

Erxample. As an example of a density which is, clearly, non-regular
with respect to the usual Cramér type conditions, but is regular with
respect to the (A) conditions, consider

1

(4.1) Sflx; 0)=m

exp {—|x—48)}}, 1/2<2<1.

A discussion of the case i1=1, the Laplace distribution, is found in
Johnson and Roussas [4]. We include here a brief discussion for 1/2<
1<1.

For the density (4.1), we have

*) = —_]_'. — g%\ _];_ Al
#(0, %) =exp | Xt L x, ot} .
Now let
—LA6-X)  Xi<o
_;_z(Xl——o) X,>0.
It is clear that
h~'[¢8, 6+h)—1]—g,() in P,probability
as (0#)h—0. Next,
E{h g0, 0+h)—1]}2 =211 —E,p:(0, 6+1)] .

Thus, if we can show that

(4.2) 2h71—Ei(8, 0+ h)]— E[g:(0)] as (0#)r—0,
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we will have verified (A2)-(i), and the remaining (A) conditions are

obviously satisfied for ¢,(6)=g,(6).
A straightforward computation gives

1 A0(2—1/2)
80[,01(0)] -‘m .

To verify (4.2), we first form the expression 2k} [1—E4,(6, 6+h)]. This
is equal to (after some simplification)

2~y |, oo [~y — vy
i [ exp [~ Ly~ 2(—y}dy .

Evaluation of the limit, as (0#) h approaches zero, can be accomplished
by two successive applications of L’Hospital’s rule (which is easily justi-
fiable by the Dominated convergence theorem, differentiation of the
second integral in the expression immediately above following by Lei-
bowitz’s rule). The result of these operations yields (AI'(2—1/2))/(4I"(1+
1/2)) and the example is completed.
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