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1. Introduction

Let (2, A) be a measurable space and 6 be a subset of a k-dimen-
sional Euclidean space. For each 6 €6 let P, be a probability measure
on (2, A). We assume that for every 6e¢6 {X,: n=0} is a stationary
Markov process defined on (2, %, P,) into (¥, B) where (X, B) denotes
some-dimensional Euclidean space with the Borel s-algebra. For each
0€6, xreX and BeB let Qx, B) be a transition probability of the
stationary Markov process {X,: »=0}. Suppose that for each 6¢6
there exists a uniquely determined invariant probability measure g¢,(-)
on B. Without loss of generality we assume that (2, 2) is the infinite

Cartesian product ﬁ (X,B), and that P, is the probability measure
i=1

induced in A by q,(-) and Q4+, -). Suppose further that there is a o-
finite measure g on B such that ¢,-) and Q,(z, ) for each x ¢ X are
absolutely continuous with respect to g. That is,

) wB= f@oudy), Q= B=| f@ v;0ud)

hold for any Be® and z € 2.
Denote the likelihood ratio statistic by

(1.2) ZW)=Z,(k, 0) =TT {F (Xc(), X0); b0t-h[y/ )]
F XK@}, Xdw); 09}

for we 2 and 6,, 6,+h/y/n €6, where 6, is the true parameter (which
is any one of 6 but fixed). We shall regard A2 Z,(h) as a random field
with multi-dimensional parameter h, 6,+h/¢y™n € 6.

In this paper we shall study asymptotic behaviors of the likelihood
ratio statistic for Markov processes from the view of the weak conver-
gence of the random field. LeCam [9] and Ibragimov-Khas’minskii [6]
investigate those in the case of one-dimensional parameter and i.i.d.
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observations under assumptions essentially different from those in the
present paper. The authors of the present paper [7] discuss asymptotic
behaviors of the likelihood ratio random field and functionals on it in
the case of multi-dimensional parameter but i.i.d. observations.

In Section 2 notations, assumptions and some remarks are stated.
In Section 3 we collect the main results in the present paper and con-
clude the weak convergence of likelihood ratio random fields to some
degenerated Gaussian random field. In Section 4 we give those proofs
and several lemmas. Finally in Section 5 we discuss a certain statis-
tical Markovian model and mixing condition of Assumption (A6) (below).
Several examples are given which are valuable for the analysis of time
series. See [10] for the discussions about the same applications as in
Inagaki and Ogata [7].

2. Assumptions and some remarks

In this section we state three groups of assumptions and give some
remarks. Assumptions A are primitive, B are local at the true param-
eter, and C are grobal with respect to 8. Denote the true parameter
by 6, which is supposed to be any interior point of 6 but fixed. Let
|-] be the maximum norm, i.e. for 6 ¢ R', |§°|=the absolute value of
6% and for 8=(6,---, )7, |@|=max {|6¥],---, |§¥]}.

ASSUMPTIONS A.

(A1) The parameter space 6 is a subset of R*.
(A2) For each #€¢6, Q, has a derivative with respect to a o-finite
measure p:

f(z, y; 0)=Qu(x, dy)/p(dy) .

(A3) For each #¢6, f(x,y;0) has a common support.
(Ad) f(x,y;0) is BXxB-measurable for every 6 ¢ 6 and continuous in 6

for a.s. [pXxpl(z, ).
(A5) For any 6y, 6,€ 6, 6,#+6, implies

17 43 60— £, 4 6] ud)>0
for a.s. [p]x.

Denote the m-step transition probability and its derivative with
respect to p by Q(x, B) and f™(z, y; 6), respectively :

QP(x, B)= SB f7(x, y; Opdy) ,
2.1) n-1

———

Fx, y; 0)= S : S F(@, 25 60)- - f @y, Y3 O)pe(dety) - - - (A, y)
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for x,ye X, Be®B and n=1. Set

@2 sm=\| £@ 01/ v 0)— Fw; )| dz)uddy)

(A6) There exists a positive constant p>1 such that
3} glm)/P< oo .
m=1

There is a neighborhood of 6,,
Ui=U,(0:) =1{0; |0—6,|<ds} (say)c6
satisfying the following conditions.

ASSUMPTIONS B.

(Bl) log f(x, y; 6) is continuously differentiable in U, for a.s. [pgXp]
(x, y): set
2.3) (= v; 0)=i log f(=, ¥; 0)=<L,~ xR —-—a——)‘ log f(z,y;6) .
a6 g ag®
(B2) For each 0¢U,, n(x,y;0) is BXB-measurable.
(B3) For each #€¢U,,

(2.4) A0)=E, 7(X, X;; 0) (say),  exists.
(B4) For every 6 € U;, the matrix
(2.5) I'O)=E, {n(X, X;; 0)n(X,, Xi; 6)°} (say)

exists and is continuous at 4,. I'(8,) is positive definite. (I'(#) is so
called Fisher’s Information matrix.)
(B5) (#) is continuously differentiable at 6,:

=_9 )= [ 9%°(6)
a0y="2-0)=(20)  (say),
(2.6)
—A(00)=F (00) .

Set
2.7 w(®, y; 0, d)=sup {|n(z, ¥; ) —9(x, y; O)|; |r—6|<d}
for every 6 €U, and let ¢ be such that
(2.8) 1/p+1/g=1

for p>1 in Assumption (A6).
(B6) There are positive constants H,, s=1, 2 and 2q, such that
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an u(Xo’ X;6,d)<Hd
for |6—6,|+d<d,, d>0.
(B7) E,, (| 7(Xo, Xi; 6)[*)=H, (say)<oo.

AssuMPTIONS C.
Let (8, 6) be a metric space with the metric

(2.9) 5(01102)=|01—0z|/{1+l01—0z|}

for 6,, 6, € 8, satisfying the followings.

(C1) (6, ) is the Bahadur compactification of 6 (see Bahadur [1], p.
21) such that

(i) 6 is compact.
(ii) 6c6 and 6 is everywhere dense in 6.
Put
9(x, y; 6, d)=sup (f(x, y; 0): 0¢86, &0, 6)<d},
9(2, ¥; 0, d)=sup {f(z, y; 6): €6, &6, 6)>1—d}

for 6 €8 with 6(6,, 0)<1 and 6. € 6 with 5(6,, 6.)=1, respectively.

(iii) For each #¢6, there exists d,=d,()>0 such that for each d,
0<d=<d,, g(x,y;0,d) is BxB-measurable, 0<g<oco.

(iv) For each #¢ 6 and a.s. [y,

(2.10)

| ot 43 6, O =1

where

(2.11) 9(z, y; 6, 0)=lim g(x, y; 6,d).
(C2) If 6+6,, then

[ 19, 38,0~ £z, y; 801 () >0
for a.s. [p]x.
(C3) For every 6¢6, there exists d=d(9), 0<d<d,, such that
E,, [llog {f(X,, Xi; 6)/9(Xs, Xi; 6, d)} 1] < o0

where ¢ is such as in (2.9).
(C4) For 6, €6 with 6(6., 6)=1,

lim d* E,, log {f(X,, Xi; 60)/9(Xs, X5 6, d)} >0,
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}E} d’[E |log {f(X,, Xi; 60)/9(Xs, Xi; 0., d)}
—E,, log {f(X,, Xi; 60/ 9(Xo, X150, d)} ]9 < 00
From now on let us agree to write

E(), P(), q() and Q(,-)

simply, instead of

Evo(')r Poo(')r Qoo(') and Qﬂo(') ')’
respectively, unless especially mentioned.

Remarks.
(a) Set

Y(h)=Y(X,, Xo; )= (Xo, Xi; 60+ h)") (X, X3 0" —1 .

Then it is proved in the same way as in Lemma 2.1 of Inagaki and
Ogata [7] that for a.s.

2.12) lY(eh)—»%h‘r;(Xo, X.;8), in probability
&

and

@13)  lmE| 12 Y|

X =E[ [T ruX, X 00]

Thus we have the same results as in LeCam [9], p.807 that Y(h) is
differentiable in quadratic mean at 0 for a.s.:

@14 E[{2¥En)-FhnX, X))

Xo]—+0 , as ¢e—0,

and hence that
E[9(X,, X;; 6)| X)]=0  for a.s.,
A(6)=E 9(X,, Xi; 6)=0 .

(b) From Assumption (B6), for |r—8|<d and |0—6,|+d=d,
|46)—X0)|SE w(X,, X;; 0, ) Hd ,

(2.15)

that is, () is uniformly continuous on Uj.

(c) Since ¢(n) is the expectation of the conditional total variation
measure of the signed measure Q™(z, dy)—q(dy), we can easily see that
the stationary Markov process {X,} is strongly mixing with the mixing
coefficient ¢(n) and hence ergodic. (See Proposition 1 in Davydov [4],
for example.) Denote the Kullback-Leibler information by
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(2.16) K(6)=—Elog {f(X,, Xi; 0)/f(X,, X1;60)}, 6€6
and let
(2.17)  K(6)=—Elog{g(X;, Xi; 6, 0)/f(X,, X560}, 0€6.

(d) From Assumption (A4) and the definition (2.11) of g(z, y; 6, 0),
we see that

9(x, y; 0, 0)=f(x, y; 6) for €6

and so that g(x,y;6,0) is an extension of f(x,¥;6) on XXX XO

to a function on XXX x6. Thus, K(6) on 6 is regarded as an exten-
sion of K(6) on 6.
(e) From Assumption (C1)-(iv) and (C2), it follows that

0<K(@)<oo, for 0(+£06)¢€6.

(f) From Assumption (C3) and Lebesgue’s dominated convergence theo-
rem, it follows that

lim E log {g(X,, X; 8, d)/f(Xo, Xi; 00} =—K(6), for 6¢86,
d—0

and hence from Remark (e) that for #¢ 6 there is d=d(6), 0<d<d,
satisfying

2.18) —oo<Elog{g(X, Xi; 0, d)/f(Xe, Xi; 0)} < ——‘}I?(o)<o :

The following lemmas are fundamental in this paper.

LEMMA 2.1. Let o(x,y) and PB(x,y) be BXB-measurable real
valued fumctions such that E {|a(X,, X;)|4} <oo and E {|8(X,, X1)|1} < oo
for some p, q,, r,>1 with

(2.19) 1/p+1/g+1/r=1.
Then, for i=1

(2.20)  |E{a«(X,, X)B(X:, Xi11)} —E {a(X,, X))} E {B(X,, X))}
=24(1— 1) {E|a( Xy, X)) [}V {E|A(X,, X,) |71},

where ¢(k), k=1 are those defined in (2.2) and
(2.21) #(0)=1 (say) .

ProoF. Since |E {a(X,, X)B(X;, X;11)}| and |E{«X,, X))} E {8(X,,
X))}| are dominated by {E|a(X,, X;)|2}V{E|B8(X,, X;)|1}"¥"1, the inequal-
ity (2.20) holds if ¢(¢—1)=1. Thus, it is sufficient to show that the
inequality holds for ¢=2. '
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Consider the total variation measure V(x, B) of the signed measure
Q¥(x, B)—q(B). Then,

(2.22) Vi@ B=| 15°@, v 00— Fw; 00| )
and
(2.23) Vi(z, B)=Q“(x, B)+q(B)

for every x € X and Be®B. By Markov property and (2.22), it holds that
(2.24) IL=|E{a(X,, X)B(X;, X; 1)} —E {a Xy, X))} E {B(X,, X))}
=| | ate, 8w, MDA, d) (@, dw)—q(du)}Qu, dv)

ég |z, Y)Bw, v)|¢(d2)Q, dy) Vi_i(y, du)Qu, dv) .

Set

(2.25) W(dzx, dy, du, dv)=q(dz)Q(z, dy) V(y, du)Q(u, dv) .
Then, it follows from (2.23) that

(2.26) AW, =q(d2)Q(=, dy){Q“(y, du)+q(dw)} Q(u, dv) .

Applying Holder’s inequality in (2.24), we have that

L {{ aWoesf [ late, wInaWi ] (LBl 9 W

and from the definitions #(7) and (2.26) that

L=¢(i—1)""{2E|a(X,, X)) [2}"2{2 E|A(X,, X)) [n}'"
<2¢(i—1)""{E|a(X;, X) |4} {E|8(X,, X)) |}

Hence, the proof is complete.

LEMMA 2.2. Let alz,y) be a k-dimensional vector valued and B X
B-measurable function such that E{|a(X,, X)|"} <o for p and q n
Assumption (A6) and (2.8). Then,

n 2
E[|£ faXes, X)—E (X, X0} | |
<nk(E|a(X,, X;)[*}V {1+4 b5 ¢(i—1)w} .
i=1

PrOOF. Put a(x, y)=(a®(x, ¥),---, a®(x, y)), then by the station-
ary property, we have

@.27) E H 3 el Xty X)—E (X, X)) H
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<3 E[3 (X, X)—E (X, X)} |

3 [” E {a”(X, X)) —n(E a”(X, X))’
+2 5] (1—1) (B (Ko, K)o (Xiy Xow)—(E aXey X)) ]

Taking p,=p, ¢,=7r,=2¢ and B(z, y)=a(z, Y)=a(z,y) in Lemma 2.1,
we have

(2.28) IE aﬁ')(Xo’ )(I)a(r)(X“ ~X¢+1)—(E a(”(){o, Xl))2|
=240 —1){E|a(X,, X;) |} Ve
=28(i—1){E|a(X,, X;) [} Ve

for 1<r<k and 121. Thus, we conclude from (2.27) and (2.28) that
E | (a(Xes, X)—Ea(X,, X0} ||
<k 1 Ela(X,, X)+4{Ela(X, )} S (o—i)pli—1)]
<nk(Bla(X,, X)) {1+4 5] gli—1)"] |

The proof of this lemma is complete.

Set
_ 1 3 .
(2'29) én(a)—ﬁ E 77(Xi—l’ AXi ’ 0) .
From (2.15) of Remark (a) and Markov property, we have that &,(6,),
n=1,2,.-.-. form a martingale and hence, obtain the following theorem

by Billingsley’s Theorem ([2], p. 788) and Assumption (B4).

THEOREM 2.1. £,(6,) is asymptotically distributed according to the
normal law N0, I"(6,)).

3. Results

Let Cy(R*) be a family of functions which are continuous on R* and
satisfy

lim f(h)=0.

|| o0

Consider the uniform metric

o(f, g)=sup {| f(h)—g(R)|; h € R*} .
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Then, the metric space (Cy(R*), p) is complete and separable. Now, we
define an extension of the likelihood ratio Z,(2) in (1.2) such that

(Z(h) , if 6+ J_ €0,
T {o(%csr X 0, 0) £ (X, X 00}
B.1) Zh)= if 60+ —r—¢€8,
1/
. h 3 h
O ’ lf 6(00+ J-ﬁ—, 6>g:¢_—lrz‘ ’
continuous and 0=|Z,(k)|<|Z.(R)], otherwise .

The results of this paper are the following theorems. Suppose that
Assumptions A, B and C hold.

THEOREM 3.1. The finite-dimensional distributions of h=Z,(h) con-
verge to the corresponding those of h=Z(h) where

(3.2) Z(h)=exp {h‘r(a.,)‘”s-%h‘l’(oo)h} ,

and & is the k-dimensional standard mormal random vector N0, I).

THEOREM 3.2. Under Assumptions A, B and C, there exist positive
constants ¢y and cy>0 such that

3.3) P{ sup Z.h)>ew"}<cu/l® (integer I1=1),
Is|h|si+1

(3.4) P {Isup Z(h)>e ¥} <cp/M  (integer M=1).
hl2M

THEOREM 3.3. The sample function of Z.(h) belongs to Cy(R*) with
probability one.

THEOREM 3.4. For any ¢>0
limim P { sup_ [Z,,(hl)—Z,.(hz) |>e}=0

d—0 n—oo 1Ry =Ryl <

Since Z,(h) € C(R*) with probability one (by Theorem 3.3), we can
regard {Z,(h)} to be continuous functions on a compact metric space
(R, 5). Thus, on account of Ascoli-Alzera’s Theorem tightness of {Z,(k)}

is equivalent to the assertion of Theorem 3.4 together with Z,(0)=1.
(For example, see Billingsley [3] and Straf [11].) That is:

THEOREM 3.5. The family of random fields, {Z,(h)}u-r,,... 18 tight.
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Theorems 3.1 and 3.5 immediately conclude the following two the-
orems. (See Billingsley [3], Section 5 for the proofs.)

THEOREM 3.6. The likelihood ratio random fields h=2Z.(h) weakly
converge to the random field h=Z(h) defined in (3.2), as n— oo.

THEOREM 3.7. For any measurable functionals {¢,} on Cy(R*) which

continuously converge to ¢, random variable ¢.(Z,) converges in distribu-
tion to ¢(Z), as n— oo.

4. The proofs of theorems

The following two lemmas are provided for the sake of the proof
of Theorem 3.1.

LEMMA 4.1. Suppose that Assumptions A and B hold. Consider
£u(0) defined in (2.29). Then, for any positive M >0,

Igg}; [6a(O0+h/y 0 ) —En(60)+T(B0)h | — 0,
in probability, as n— oo.

PROOF. For any ¢ with 0<e<1, we can choose a positive integer
m, and a positive number d such that

M|yn, <d, ,

| V7 4B+ h|vn)+T(0)h|<e/4  for |h|<M and n2n,
0<Hd*<e/4,

[I°(60) | d<e/4 ,

4.1)

because of Assumptions (B5) and (B6). The region {|k|<M} is covered
by finite open sets

W(hl)={h; |h—h,|<d}, s:l,-..,m'
Then, we obtain the following inequalities.

(42) 5D |£(00-+h/y )~ .00+ T O)h]

<max [7'%_,7 >3 (XKoot X Ot hofy T, dfy/T)

1sssm

—-E u(X,_l, Xt; 00+ha/\/_17’ d/ﬂ/i)}
+ |~,% 2 (n(Xicsy X O+ M) (Ko, X 00)
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— Ao+ o))} ”-}-35/4 . for n=m,.

Therefore by Chebyshev’s inequality and Lemma 2.2 together with
Assumptions (A6), (B6), (B7) and (2.8), we have that

(4.3)  P{sup |&.0+h/V1)—E(60)+T (k| >e}
n-trom {144 3 §(i—1)"7] (8Ye) (BLp)o{d e+ M¥e) >0,
) as n—oo .
This completes the proof.

Set
(4.4) L.(h)= Z:.} log {f(Xi_1, Xi5 O+h/v/n) [ F( Xy, Xis 60)} -

From (1.2), L,(h)=log {Z.,(h)}. The following lemma is proved in the
same way as the proof of Lemma 2.2 in Inagaki and Ogata [7].

LEMMA 4.2. Under the same assumptions in Lemma 4.1, for any
M>0,

sup L,,(h)—we,,(oo)%htr(oo)h —0

lhlsM
in probability, as n— oo.
THE PROOF OoF THEOREM 3.1. By Theorem 2.1,
(4.5) £.(00) > I'(0:)' "¢
in law, where ¢ is distributed to the k-dimensional standard normal
distribution N, (0, I). Let
L;*(h)=L,,(h)+_:12_h¢r(oo)h=1og {Z,.(h) exp —;—h‘l"(()o)h} :

Then, by Lemma 4.2, we have that for any h,,---, h, with 6,+h,/v7n
€6, t=1,-.--, m and any real numbers a,,:--, @,

(4-6) a'lL:(hl)+ te. +amL:(hm)—(a’lh1+ b +amhm)l$n(00)_)0
in probability .

Thus, from (4.5) and (4.6) we complete the proof of Theorem 3.1.

The following four lemmas are provided for the sake of the proof
of Theorem 3.2.
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LEMMA 4.3. Under Assumptions A and B, there exist positive num-
bers, d,, 0<d,=d,, ¢, and ¢,>0 such that for any h, |h/y7|<d,

P{Z.(h)>exp (—ci|hP)} S cf|R[*.
ProOF. It follows from Assumptions B and Remark (a) that
nK(00+5h)=6’h‘[S: du So —A(o,,+vah)dv]h

and hence, that there exists a positive number d, 0<d<d,, such that
for h, |h/v 7 |<d,

4.7 nK@o+hIVT )—%h‘l’(ﬂo)h| <%n |t

where 7, is a positive number satisfying
(4.8) 7ol RIPShT(60)h .

Similarly, it follows from Assumptions B that

E |7l__h S‘,)(Xo, X,; O+ uh /v )du "
n 0
(k| )YHE w(X,, Xi; 65, |h][v7 ) +E| (X, X1 60) [},
and hence, that for any h, |h|/vV7 <d,,

4.9) Ellog {f(Xo, Xi; 60+h/y W) f(X,, Xi; O)} M
S(|k|/V 7 ) {Hydo+ Hy} .

Recall L.(h)=log Z,(h) and E L.(h)=—nK(6,+h/y7). From (4.7) and
(4.8), we have that for h, |h/y7 |<d,

(4.10) nK(Outhy/B)> Ll k=2 rol k= ol
Thus, we have from (4.10) and by Chebyshev’s Inequality that
(4.11) P {Zn(h)>exp <—%To|h|2>}

<P (L) —E L(hy> 7| h]

1
S B|L,(h)—E L,(h) .
{(1/8)ro] R['}? |

By Lemma 2.2 and (4.9), we have that
(4.12)  E|L,(h)—E L,(h)|*
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<n[E|log {f(X,, Xi; 0+h/vVn) [ f( Xy, Xi; 65)} 2]V
x [1+4 bS] ¢(i—1)vv]
i=1
<|h[*{Hydo+ Hy) 1/«[1+4 5 ¢(i—1)‘/"] .
=1

Thus, from (4.11) and (4.12) we have that

P{Z®W>exp (—Lninr)]

s Lo g By 144 S g1y
hF 7

Choose cl=%ro and czzﬁé{qudo+Ho}”q[1+4i(ﬁ(i—l)‘/"]. Then the
To i=1
proof of this lemma is complete.

LEMMA 4.4. Suppose the same assumptions as in Lemma 4.3. For
¢, and d, chosen in Lemma 4.3, there exists a positive constant c;>0
such that for any integer 1, 1<, I+1<5d,/n,

P { sup Z,(h)>exp (—%v)} <e it

lslrisi+l

Proof of the lemma is performed in parallel to that of Lemma 3.2 in
[7] by applying Lemma 2.2. See [8] for the detail.

LEMMA 4.5. Suppose Assumptions A and C hold. Then, for any
d and M >0, there exist positive numbers ¢, and ¢;>0 such that for any
integer | with dyn S<ISMyn

P{ sup Z(h)>e ¥} <clt.

IslhlsMyn

PROOF. Set 6,={0€6; d<|6—6,|<M}. Then, 6, is compact be-
cause of the compactness of 6. It follows from (2.18) of Remark @)
that for # € 6, there is d(6)>0 satisfying

4.13)  Elog {g(X., Xi; 6, d(6))/f(Xe, Xi; 6)} < —%K<o)<o .

According to the compactness of ©,, there are finite numbers of points
6,---, 6, such that 6,c L"J Uio,(0,). This and (4.13) imply that
i=1

I?__‘min {K(al); 8=11"'! m} (SaY) >0
and hence that
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—Elog {g(X:, Xi; 6., d6.))[F (%o, Xi; 00)) —i—l?>-i-f{>0 ,

Choose ¢,=K/(4M?). Since for dymw <I<My7n
(4.14) c4l2§c4M’n=%-I_(n :

We have that for dyn <ISMyn

P{ sup Z,(h)=e '}

IslhlsMyT
<P sup $log (o(Xics, Xii 0, dON/S(Xics, Xii 00} 2+ K]

1
((1/4)Kny*

x {1+4 53 ¢(i—1)'/v}
(by Chebyshev’s Inequality and Lemma 2.2)

S Am R)e[1+4 3 960-1]  (from (4.16)
aK =1

<3 n(E|log (9(Xe, Xi; 6,, d(6.)/f(Xo, Xi; 0} %)

where

I?1=8 max Ellog {9(X,, Xi; 0,, d(6,) f(Xo, Xi5 0} (say)

and Assumption (C3) means 0<K,<oo. This completes the lemma.

LEMMA 4.6. There exist positive constants M,, ¢, and ¢;>0 such
that for any integer =M/ n

P {sup Z,(h)>e" "'} S cfl".
izt

ProoF. Since from (2.9) and (2.10)

9(xy, @15 0, d)=sup {f (%, 2, 6); |0—6,|>(1—d)/d}
=sup {f(x,, x,; 0); |6—6,|>1/d} , for 0<d<1,

we see that

(4.15) sup Zn(h)éi[ {0(Xio1s Xi5 0w, V) [ f( Xy, X5 60)}

From Assumption (C4) it follows that there exist positive numbers M,,
K, and ¢;>0 such that for any integer |=M,y/7,
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Elog {f(Xy, Xi; 00) [9(Xs, Xy 0y Y R[1)} > 2¢di[n

Ellog {9(Xy, Xi; 0., ¥y D) f( Xy, X;; 60)} ~
—Elog {9(X;, Xi; 0, V1) f( X0, X5 60)} < Ky(l/v/ 7 )} .

Thus, using Chebyshev’s Inequality and Lemma 2.2 we have from (4.15)
and (4.16) that for any integer I=ZM,y/ 7,

P {sup Z,(h)ze™")
<P [ 3 llog {0(Xirs, X3 0, VA [F(Kics, i3 00)
—E log {0(Xe-s, Xii 0uy B/ [F(Xis, Xii 0] 208

<5 e 3 -1y

This completes the lemma.

THE PROOF OF THEOREM 3.2. The inequality (8.3) is an immediate
result of Lemmas 4.4, 4.5 and 4.6. Since

P (sup Z,(h)>e ¥} < P {S“p Z,()> 3} e}
=

< 2 P{ sup Z,.(h)>e'°01"} ,

is(rlsi+1

it follows from (3.3) that

for M=1.

P {sup Z,(h)>e"o*"} Scy 3} 1o
|nl>M =x 2

"
M ’
This leads Theorem 3.2.

THE PROOF OF THEOREM 3.3. (3.4) in Theorem 3.2 and the defini-
tion (8.1) of Z,(h) imply Theorem 3.3.

THE PROOF OF THEOREM 3.4. By the definition (3.1) of Z, it is
sufficient to show that the assertion of Theorem 3.4 holds with respect

to Z, (in the place of Z,).
Choose ¢, and ¢, >0 such as in Theorem 3.2 and M;>0 such that

(4.17) eu’<e and  cu/Mi<e.
Then, it follows from (3.4) in Theorem 3.2 and (4.19) that

(4.18) P [sup {| Zu(h)— Z,(hs)|; |mi—ha|<d and |hy], |hs|Z M} > €]
=P [sup {|Z.(R)[; |R|2M}>€]<e.
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Now, let M;=M,+1 (and d<1). Since ez—ev=g’ ¢dt and Z(h)=e",
- v
we have that '

(4.19) sup {| Z,(h)—Z.(hs)|; |hi—hs|<d and |hy|, | k| < M}
ssup {Z,(h); |h|S M}
XSUp {| Ln(hy) — La(hs) |; |hi—hy|<d and |hy], | k| S M} .

Further we have that
(4.20) sup {Z.(h); |h|< M}
Lu()—=R.(0)+-5 T O

sex |gup
2
R ACOIEE SN

and
4.21)  sup {| Lo(h)— Luo(hs)|; |hu—hs|<d and [hy], | ke < M)
<2 sup | L(h)—h€.(6)+ =K T(B)h

E9 A 2

+d|&.60) | +d M, | T (6,)] -
It follows from (4.19), (4.20) and (4.21) that
(4.22) sup {| Z,(h1) — Za(ho) |5 |hi—hs|<d and |hy|, || < M)
L.(h) —KT(8)) +% Rt (G)h |

= [exp { sup
hls M,
1,0
+ M1 600 |+ M2 T}
x[2 sup | Lo(h)—h*6,(60)+h' " (Bo)h |
+d|&.(6) | +dM, | (6,)]]
Therefore it follows that
(4.28) P [sup {| Z.(h))—Zu(ho) | >e; |hy—hs|<d and [, |hes| =M} > ¢']
<P { sup | L.(h) —h'é.(6,) +% W)k | > s'}

Ihls My

+P {260 >a)
+P[2 sup L,.(h)—h'e,.(oo)%h‘r(oo)hl

> —d(a+ M| T0)))+¢ exp |~ (¢ +Mat+-Laziron)}]

By Chebyshev’s Inequality and Lemma 2.2 together with Assumption



WEAK CONVERGENCE OF THE LIKELIHOOD RATIO RANDOM FIELDS 181

(B7), (2.15) and (2.29), we have that

(428)  P(&0O)>a)=P |2 oXs, X 00

>vn a}

é—al? kHs {1+4 S ¢(i—1)} <e
choosing a>0 so large for ¢>0. By Lemma 4.2 we have that
(4.25) P {lfﬂﬂ, | L)~ ke~ L wroom|> ) <

choosing n so large for ¢’ and ¢>0. Now for sufficiently small d>0,
let

(4.26) ¢’=min [e', —d(a+M,|T6y))
+¢’ exp {_—<€'+Ma+%ﬂﬂ|r(ﬂo)|>}] .

Then we can take ¢’>0. After all, it follows from (4.23)-(4.26) that
for any ¢ and ¢ >0 there exist #n, and d;>0 such that for any n=n,
and d, 0<d<d},

(4.27) P[sup{|Z(h)—Z,(h)|; |l—he|<d and |hy], |h| S M;}>e1<8e .
Thus from (4.18) and (4.27) we have the conclusion of Theorem 3.4.

5. Statistical Markovian models
Let a sequence of random vectors {X,} be generated by the relation
(5.1) X,=AX, +Y,, n=1,2,.--,

where the elements of the pXxp-matrix A=(a,) are dominated by g¢-
dimensional parameter 6=(4,,---,4,), that is «,=a;(6,,---,6,), such
that all the eigenvalues of the matrix are within a unit circle. Random
vectors {Y,} are identically independent distributed according to a prob-
ability density function f(y,,---, y,) with respect to some ¢-finite meas-
ure p(dyi,---, dy,), and further Y, is independent of X,, for all m<n—1.
Then the density function of the transition probability with respect to
the o-finite measure g is given for vectors &, 7,

(5.2) & 9; 0=f(n—AS§) .

Therefore the Fisher’s information matrix (2.5) is given with the ele-
ments for 4, j=1,---,4q.
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0A [0A\!
(5.3) 1,(6)=trace {AaT‘Z%oj) } ,
where J is the solution of the equation
I=X,+AJA

for a given covariance matrix X, of the random vector Y,, and matrix

4=G)=(B [2-10g (%) - 10g 7 (¥,

i, j=1,e00,p ‘
Now we have the following result about the mixing coefficient (2.2).

THEOREM 5.1. Suppose the density function of the random vector
Y, satisfies

(5.4) 51=Sﬂ ly| f@y)dy<oo, °‘1=S,zp

d
ﬁf(y)|dy<oo ,

where y=Y,--+,Y,), and further the characteristic function o), t=
(tys- -+, t,), of the random vector Y, satisfies

(5.5) cz=SRp |tg(t) | dE < oo .
Then ¢(n) tends to zero with expomential order.

PrROOF. The m-step transition density function of (5.1) is given by
(5.6) F™(E 7; 0)=Fa(n—A"¢; 0)
where f,, (p; 6) is a density function of a random vector
(5.7) Va=A""Y+ - +AY 1+ Y, .

Let ¢.(t) be a characteristic function of the random vector V,. Then
we obtain ‘

(5.8)  ¢u®)=E [exp {i(t, V.)}=11 E [exp {it, A7) 1= ] 4(t4") .

Since the absolute value of characteristic function is uniformly not
larger than 1, we have

(5.9) 1z]9@) =@ 2] g@) 2 - - Z|gn®) |2 -
Thus for any n=1

(5.10) S |t¢,.(t>|dtg§ ltg(t) | dt < oo .
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By virture of (5.10) we have the inverse formula
(5.11) Fuln; 0)=LS Sut)eerdt,  m=1,2,---,
2r JrP

here f.(y;0) is the density function of the random vector of (5.7).
Since all the eigenvalues of the matrix A are within a unit circle, there
is a constant 0<p<1 such that

(5.12) |Ag|<pl€], |&A|<p|€|

for all ¢ € R* and therefore the stationary initial density function is
given

(5.13) - S, O)=lim f.(7; O)=lim f.(7—A"¢;6)  (say).

Thus we have

(5.14) #(m)=\| | falr— 4¢3 6)— fln; )| £¢: )ity
| 1atr: 00— F 2 0)ldy

+{{ 15— ame; 00— 7073 0)1 766 o)y
=L+,

By the assumption (5.4) we obtain

(5.15) wo-11={1¢, 176 odesalel .
Thus by (5.8), (5.10) and (5.12)

(5.16) |fu(7; O)—Fasi(2; O)]
<o | 190 gmri®dts o | 19a®) 11— g247) de
3 2r

<2 {41 gut) dt <2 o [ 161 gult) dt =200 pm.
2r 2r 2r
Therefore for N,,=p ™? we have

617 L= 2 105 O~ fenlr; Oldy

s 5 O feuls Oldy

{I2]S Np}

1£03 0)— Funr; 0) )

S(|7|>Nm
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‘; {""" N,p +T2m'glﬂlfk(ﬂ;0)d”}

had 0251 m/2 25[ m/t} < 5[ ( Cs L) m/2
g{Zﬂ: +1—pp T 1—p 2n'+1 pp )

On the other hand from the assumption (5.5) we see that f(y) has
a bounded continuous derivative (3/dy)f(y) such that

JA

(5.18) F@|=0  as lyl—oo.

o
By (5.7) and (5.13) we have
(5.19) 1€ 0=\ Fe—vow; oty

for some probability density g(y; #). Thus by virture of Fubini’s the-
orem we obtain

(5.20) S|a%f($;0)|d$§“|a%f(e—y)|g(y;0)dedy
|

3

@) de=e<oo .

Therefore we have

620 L=([se 0| L r—pame; oyip|acay
{1415 0) So || 52 r—843 0)|dndpaz
<1617 0 || s )| ars 20 pm.

This and (5.17) complete the proof.

We present several examples of Markovian statistical model where
Theorem 5.1 can be applied.

Example 1 (Doeblin’s condition). Let {X,} be ergodic and satisfy
well-known Doeblin’s condition (see Doob [5], p. 192, for example). Then

(5.22) sup |Q™(z, B)—q¢(B)|=Cp",  (o<1),

for any Be®B. This implies Assumption (A6) directly. It is also well-
known that ergodic finite state Markov chain satisfies (5.22).

Ezample 2 (Gaussian simple autoregressive process). Let the chain
be defined by the recurrence relation
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(5.23) X,=0X,_+e,, n=1,2,...,

where ¢, ,--- are i.i.d. N(0, ¢* random variables and @ is a real num-
ber with

(5.24) |6]<1.

Then the density of transition probability is given by

(5.25) f@, u; O)=——exp [~ L (y—0a)} .

It is easily seen that the n-step transition probability density is given by

626 f@v;0)=—m— (10 ) " exp {— L (10 )y—eray] .

Vorg \1—g 25\ 1—g*
Thus, the density of the stationary initial distribution is as follows:
v1—¢* ( 1-¢ >
5.27 , )= —— ).
(5.27) f(z, 0) Ton. °XP 5or ©

Now, we have that
6.28) ¢m={ @ 017, v; 00— 3 0)ldsdy
<2{|| 7@ O (r~@ v - oyydady) "

1/2

=2vZ {1-{{ £, (7", v; 07w 0))"dade]

From (5.26) and (5.27) we see that

629 ([ r@ o0 v 0 w; o) rdedy
=1—")"[{(1—6"[2)'—6™[4} " .
Therefore we obtain from (5.8) and (5.9) that
(5.30) $(n)<2v 2 [1— {(1— ") /((1—6™[2)} — 6™ 4)} 4]
On account of the following inequality :
{1—a)’/1—5a/4+a’[4)*}*=1—8a , for 0<ax1/3,
we obtain from (5.28) and (5.29) that
HM)<2V6 6"
for so large n that #"<1/3. '
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The last example does not, however, satisfy the Doeblin’s condition
in Example 1.

Example 3 (simple autoregressive process with stable distribution).
Let the chain also be defined by the relation (5.23) where ¢, ¢, -,
are i.i.d. random variables whose characteristic function is

(5.31) gt)y=exp[—c|t|], ¢>0, 1<a<2.

Though the random variables do not have a finite variance, the auto-
regressive process satisfies the assumption of Theorem 5.1.

Ezample 4 (simple autoregressive process with general distribution).
Let the chain also be defined by the relation (5.23) where ¢,,¢,,- -,
are i.i.d. random variables whose probability density function with re-
spect to some o-finite measure p is given by f(x). If f(x) is three
times differentiable in a real line, and

o f@=ln F@=0,
(5.32) i
a=|"_ 1@ udn)<oo ,

then this implies (5.5) for 1-dimensional case. In fact repeating the
partial integration we obtain for the characteristic function

wtty=—{"_ (@it} pda) .
Thus we have
|¢(t)|<min {1, ¢,/t*} .

(5.4) and (5.32) implies the results of Theorem 5.1. Furthermore if e,
has a finite variance a":r 2 f(x)p(dxr)< oo, and then set

(5.33) I=|" (@@ uda

thus Fisher’s information is given by
(5.34) rey=d4¢J/1-¢* .

Erxample 5 (General autoregressive process). Let {X,} be an m-
variate stationary autoregressive process generated by the relation

(5.35) S AX, =Y.,

where the coefficients A,=(a{}’) are m X m-matrices with A,=1I, (identity).
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The i.i.d. random vector Y, has a density function g(y,) with respect
to a o-finite measure »(dy;). Consider the mp-dimensional vector {,=
(X Xotyo ooy Xopst)s &a=(¥,,0,---,0) and mpX mp-matrix

'—Al! '—AZy Sty —Ap-ly _Ap

I 0,-, 0 0
(5.36) C=

Then the relation (5.35) is reduced to the relation (5.1), and the prob-
ability density function of ¢, is given f(y,---, ¥,)=9g(¥) with respect
to o-finite measure p(dy,,- - -, dy,)=v(dy,). Thus by virture of (5.3) and
(5.86) Fisher’s information matrix is given in the form of tensor pro-
duct, that is,

(5.37) re)=KQ3 ,

where Y=E[{,{/] and K=(x;;) is m X m-matrix such that

(5.38)  r,=E {_a_ log £(¥;)-> 1ogf(y,,)} R N
0Y: ayj
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