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Summary

An extension of the method of maximum likelihood leads to a
natural solution of the problem raised by Stein, the inadmissibility of
the ordinary maximum likelihood estimator for the mean of a multi-
variate normal distribution.

1. Introduction

By explicitly constructing a superior estimator Stein [12] showed
that the ordinary maximum likelihood estimator of the mean of a multi-
variate normal distribution is inadmissible in terms of the sum of the
mean squared errors. James and Stein [8] introduced another estimator
of which improvement over the maximum likelihood estimator could be
quite substantial. These estimators are obtained by multiplying the
maximum likelihood estimator by properly chosen shrinkage factors and
we will call them by a generic name, the Stein estimator. The further
improved estimators obtained by taking the positive parts of the shrink-
age factors (Stein [14]) will be called the positive part estimator.

Since the first paper by Stein [12] it has been customary to moti-
vate the new estimators by a Bayesian reasoning (Stein [13], [14], Demp-
ster [4], Efron and Morris [5], [6]). Lindley [10] even noted that it was
difficult to see how someone who would wish us to use only the likelihood
function could use anything other than the simple maximum likelihood
estimator in the situation treated by Stein. Certainly Bayesian approaches
can be quite useful for the design and assessment of an estimator with
a given loss function but it quickly becomes obvious that they can
not fully explain the nature of the Stein estimator. The explanation
based on an empirical Bayesian approach (Stein [12]) depends heavily
on the asymptotic property of the sequence of the parameters to be

* Part of this paper was presented at an invited session of the Fall Meeting of the
Mathematical Society of Japan, Tokyo, October 1975.
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estimated, while the dimension of the vector of the parameters may be
as small as 3 or 4. As is explained by Lindley [10], subjective Bayes-
ians who are not so bold as to ignore the information obtained through
the observations might accept the concept of the Stein estimator, but
they are, at least at present, in need of what Good [7] calls a Bayes/
non-Bayes compromise in determining a parameter within the prior dis-
tribution. In this paper it is shown that by a careful examination of
the method of maximum likelihood we can develop an estimation pro-
cedure without recourse to the Bayesian argument.

The main idea of this paper is to treat the log likelihood as an
estimate of the expected log likelihood which is, except for an additive
constant, equal to the generalized entropy of the true distribution with
respect to the distribution defined by the assumed density function.
The generalized entropy is equal to the minus of the Kullback infor-
mation quantity which measures the discrepancy between the two dis-
tributions. The value of the log likelihood function at the maximum
likelihood estimates of the parameters is always biased to overestimate
the generalized entropy. Thus if we consider the aim of our estimat-
ing the parameters to be the use of the probability distribution, defined
by the estimates, for the prediction of future observations, then, con-
trary to the common understanding of the unbiasedness of the maximum
likelihood estimator of the mean of a multivariate normal distribution,
the maximum likelihood estimator must be considered to be biased to-
wards the direction to cause the apparent increase of the log likelihood
which is, ignoring the additive constant, a natural estimate of the
generalized entropy. In the case treated by Stein the generalized en-
tropy of the true distribution with respect to the estimated distribution
is identical to a half of the minus of the sum of the squared deviations
~ of the estimated means from the true means. Thus the optimization
with respect to the mean squared error criterion is equivalent to the
optimization with respect to the expected generalized entropy. The
above mentioned overestimating characteristic of the maximum likeli-
hood estimator may be considered as a manifestation of the over sensi-
tivity of the estimator to the variation of the sample values and the
shrinking appears to be a natural countermeasure. In trying to deter-
mine the optimum shrinkage factor we find that the only quantity to
be estimated from the data is the sum of the squares of the true means.
The estimate is obtained by the method of maximum likelihood. Thus
the whole process is closed and complete without calling for any ad hoc
principles. It turns out that the new estimator thus obtained is close
to some of the Stein positive part estimators.
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2. Log likelihood and entropy

For a set of independently and identically distributed random vari-
ables z, (=1, 2,---, N) the average log likelihood (1/N) 3] log f(x:|8) of
a probability density function f(x|8) with respect to a measure dx is
a natural estimate of the expected log likelihood E log f(x|6). If we
denote the probability density function of z; by g(x), Elog f(x|0)=

[ o() log £(z|0)da.

The generalized entropy of the distribution g(x) with respect to the
distribution f(x|6) is defined by

_ S (%) log ( fggf},) )f(xlo)dx :

The probabilistic interpretation of the thermodynamical concept of en-
tropy, developed by Boltzmann [3], as the logarithm of the probability
of getting a sample distribution from a basic distribution provided the
basis for the development of quantum physics at the beginning of this
century and the generalized entropy retains a significant status as a
most natural measure of deviation of g(x) from f(x|8) (see Sanov [11],
Vineze [15]). The minus of this generalized entropy is known as Kull-
back’s information quantity and its analytic properties are extensively
discussed by Kullback [9]. Since the generalized entropy can be ex-
pressed in the form E log f(x|0)—E log g(x), the method of maximum
likelihood may be viewed as a method of finding a @ which will tend
to maximize E log f(x|8), or the generalized entropy, through the ob-
servations of x;. This interpretation of the method of maximum likeli-
hood was first developed by the present author in 1971 and lead to the
introduction of an information criterion (AIC) for the comparison of
statistical models fitted by the method of maximum likelihood (Akaike
(1], [2D).

Now consider the situation treated by Stein. In this case the ob-
servations z, are independently distributed as N(¢;, 1) (¢=1,2,---, p).
Since &’s are not necessarily identical we can not apply the foregoing
discussion of entropy maximizing property of the method of maximum
of likelihood directly to the present situation. Here we consider x to
be a p-dimensional vector (z;, %, -, z,)’ and assume that z=(z;, 2, - -,
z,) is the result of observing x once. We are assuming the situation
where log g(x) =(—1/2){plog 2z+3 (v,—¢,)’} and. log f(z|6)=(—1/2)-
{plog 2r+3) (x,—8,)"}. From the definition the generalized entropy of
g(x) with respect to f(z|0) is given by (—1/2) >3 (f;—&:)*. Thus the sum
of the squared errors appears as a natural criterion of fit of f(x|8) to
g(x).
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One might wish to use B=log f(z]8)—E log g(x) as an estimate of
the generalized entropy. We have

B=(p/2){1-(1/p) X (z.—0.)'} .

Maximizing the log likelihood is equivalent to maximizing B with re-
spect to §; and the maximum p/2 of B is attained at 6,=z, (i=1, 2,-- -, p).
It is well known that Kullback’s information quantity is non-negative,
i.e., the generalized entropy is non-positive. Thus the present estimate
B is definitely an overestimate of the generalized entropy and is obvi-
ously useless as a criterion of fit, since it is completely insensitive to
the deviation of ¢, from ¢;,. The expected generalized entropy of g(z)
with respect to f(x|6) with =z is given by (—1/2) 3 E (2,—&;)?, where
E denotes the expectation with respect to the distribution of 2. This
quantity is equal to —p/2. This shows that the expected lack of fit
of a distribution defined by the ordinary maximum likelihood estimator
is equal to the degree of overfit observed by the value of B.

Through the rest of the present paper we will adopt the convention
to denote a vector of parameters or a random variable by a bold face
letter. The values taken by a random variable x will be denoted by z.

3. Maximizing the entropy

Motivated by the observations of the preceding section we proceed
to the problem of choosing a shrinkage factor p such that the expected
generalized entropy is maximized by replacing the maximum likelihood
estimator z by pz. This is to find a p which minimizes the sum of the
mean squared errors E 3 (§,—pz)!. For a given z the p which minimizes
|6 —pz| is given by p.=(&, 2)/||z]|>, where (&, z) denotes the inner prod-
uct > &2, and ||z]|*=(z, 2). This p,, can be factored into the form

(&2 LI
“Tel-Na el

To get the exact value of p,, the information of both (& z) and
€]l is required. Consider the situation where only ||&| is known. For
this case the best choice of p is given by

3.1 =5_&2 &l
@D == el =l 2l

where E denotes the conditional expectation given ||z|. The joint den-
sity g(u, w) of u=(§, 2)/||&|| and w=||z|® is already given by James and
Stein [8] as

(,w_uz)(p—a)/z _l . _—]:—
=Ty O |~ g eI el — G w]
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if w’<w and 0 elsewhere. Thus the conditional density g(u|w) of
conditional on w=w is given by .
g(u|w)=Clw—u’)*~>" exp (||§]|w)

for w’<w and 0 elsewhere and C is a normalizing constant. With the
change of variable u=tw"* the conditional expectation of (&, z)/(||&|-
llz|) given |z||=w"* is obtained as

|, ta—t)o->" exp (el tdt

(3.2) 1 .
|, @—e)o-> exp (gl eyt

Using the Bessel function I(s) which satisfies the relations (Watson [16],
p. 79)

— ((1/2)s)’ ! 42172
Lo=roripram S_x (18" exp (st)dt

and
d ) _
—L(8)——IL(s)=1L.(8) ,
ds s

the above conditional expectation (3.2) can be expressed in a compact
form

Lo(lel-lzl)
3.3 —
(3.3) (€l T2l

where v=(p—2)/2. Note that we are using |[z|]| for w':. We denote
the above quantity by ANGFTR (||&|-]|z]]). Here ANGFTR stands for
the angle factor, the part of our shrinkage factor which is determined
by the average angular relation between & and z when ||&|| and |z||
are given. Incidentally, from the definition of ANGFTR, its absolute
value cannot be greater than 1 and we get a proof of the fact that
I(s)=1,,s) for s=0. Obviously ANGFTR is non-negative.

ANGFTR (||&]|-||z]l) multiplied by the ratio ||&|//[|z]| gives the best
shrinkage factor under the condition that the factor depends only on
8]l and ||z||. Now the last and the most serious problem is how to get
an estimate of ||&|| which will give a good shrinkage factor when it is
used here in place of ||&||. This corresponds to the stage where the
Bayes/non-Bayes compromise is required in the Bayesian approach and
usually some ad hoc criterion such as unbiasedness is invoked for the
choice of the estimate. Contrary to this conventional approach we con-
sistently apply the method of maximum likelihood for the estimation of
||€]l. This stage of estimation of ||&| necessitates, and is made possible

’
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only by, the aggregate use of the observations z,. The distribution of
w=||z|* is a noncentral chi-squared with p degrees of freedom and non-
centrality parameter [|&]|>. The likelihood function L(2) for an estimate
A of ||&|* is given by

= __2__ e (A2)F W PHER2-1 w
L(2) exp< 2) IE k 29vr0((p+2Kk)[2) exp< 2) ,

where w=||z|® and 2=0. From the definition of the Bessel function
I(s) (Watson [16], p. 77) this likelihood can be expressed in a compact
form

L(3)= exp ( —4.)Gu) " L(w) "y exp (— 2 ) ,

where v=(p—2)/2. By using the relation (d/do){c"I(0)}=0"L,.(0)
(Watson [16], p. 79), the first and second order derivatives of the likeli-
hood function with respect to the variable ¢=(iw)"* (>0) are obtained
as follows:

iLm = % exp < - %) o~ {Im(ﬂ) - % L(a)} w” exp (—- %)

(3.4) “
E‘%L(x) =-;— exp < —%) o’ {I,+2(a)+ (T];— —2%>L+1(d)
S )

These formulas are useful for the maximum likelihood computation.
As will be shown in Section 4, ¢I(0)/I,,,(0) is strictly increasing with ¢
and we can see from the above representation of (d/de)L(1) that the
likelihood equation has a unique solution. The square root of the ratio

of the maximum likelihood estimate i of &> to |lz|* is a function
of w(=||2||*) only and defines that part of our shrinkage factor required
due to the relation between the amplitudes of & and z. We will call
this quantity the amplitude factor and denote it by

A

A
llzll

Given ||z|*=w the product AMPFTR (w)-w gives the maximum likeli-
hood estimate of ||&||-]|z|| and this is used to define the maximum likeli-
hood estimate of ANGFTR (||&]-||z]|) defined by (3.3). The product of
the two factors defines the maximum likelihood estimate of p. of (8.1)
and is used as the shrinkage factor of our estimator. The new esti-
mator thus obtained will be called the entropy maximizing estimator.

(3.5) AMPFTR (w)=
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4. Analysis of the new estimator

From (38.4) we have

=L (222 - 51

where os=(w2)"? and v=(p—2)/2. We have (d/do)(sL(0)/L+i(0))=2(v+1)-
(L%:(0) — L(0)L,x(0))/L}:(0) and as will be shown shortly I7.(s)—1I(s)L.x(s)
is non-negative. This shows that the term ¢I(s)/I .,(¢) is non-decreasing
with ¢ and thus (d/d¢)L(2) can change its sign at most only once. Using
the asymptotic relation I(s)=(s/2)’/v!+0(s*) as s tends to 0, we can show
that (d/de)L(2) can not be positive for w<2(v+1) (=p) and for this case
the maximum likelihood estimate of ||&|* is equal to 0. For the case
where w (=||z||?) is greater than p, the likelihood equation takes the form

w=01(0)/L1(0) .

Hereafter we adopt the convention to denote the solution of the
above equation simply by ¢ and the maximum likelihood estimate of
II&]* by 2. Since i=d*/w we have w—21=o(I}—1%,)/(LL,,), where I, de-
notes I(s). To show that w—A<p (=2(v+1)) holds we have only to
show that 2(v+1)LIL,,—e(I*—12,) is non-negative. By using the rela-
tions (Watson [16], p. 79)

4.1) L-,(s)—LH(s):%L(s)

and

4.2) 2% I(s)=I_(s)—Ls(6)
ds

we can get the equations 2(v+1)LL.,—e(I}—I%)=0(l%,—LL,,) and (d/
ds) (I%.(s)—L(s)L.«(8))=2L(8)L,,x(s). Since I(0)=0 for v>0 and I(s)=20
this completes the desired proof. We can also show that p—1<w—a.
To show this we use (4.1) and (4.2) and get the equations o(I?—I%,)—(p
—1)LL,,=(e/2)(I}—L_.I,,,—L'\+LL,,;) and (L}(8)+1(8)L.(8)—1’1(8)—1,_,(8)
-L,.(8))/(2I%(s))=(d/ds)(I,..(s)/I(s)). This last quantity is the derivative
of ANGFTR (s) with respect to its argument s. From (3.2) ANGFTR (s)
is the mean E (#) of a random variable ¢ with a probability distribution
defined by the density function C(1—t¥)“~ " exp (st) for |t|<1 and 0 else-
where and (d/ds) ANGFTR (s) is equal to the variance of this distribu-
tion and hence non-negative and the desired result follows. We already
know that as w tends to p the maximum likelihood estimate 1 tends to
0, i.e., w—2 tends to p. When w grows indefinitely, using the asymp-
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totic relation I(s)=exp (s)(2rs) "*{1—(4»*—1)/8s} +0(1/s), it can be shown
that w—2 tends to p—1.

Summarizing the above results we can see that our maximum likeli-
hood estimate 2 of ||| lies between {w—(p—1)}* and {w—p}*, where
{ }* denotes the positive part, and that it is close to {w—p}* when w
is close to or smaller than p and close to {w—(p—1)}* when w is large
compared with p'.

The behavior of ANGFTR can be analyzed analogously. First, the
mode of the conditional distribution of (&, 2)/(||&||-||zl), given |z|| and
||&]l, is obtained as

(p—38)’+46")"*—(p—3) ,
2¢

where o=|&||-||z||. For the purpose of comparison, we slightly modify
this mode and define our approximate angle factors by

angftr (¢; 7)= ((p—i)’+4;z)‘”—(p—i) for ©=0,1,2.

We also define the corresponding approximate amplitude factors for i=
0,1, 2 by

ampftr (w; 1)= Hl— p;i }+]1/z .

The product of angftr (¢; ) and ampftr (w; 7) is equal to {1—(p—1)/w}*.
For ANGFTR the following inequalities hold :

angftr (s; 1) ANGFTR (¢) =angftr (s; 0) .

For the proof of the first inequality we note the relation ANGFTR (o)
=1,.(0)/L(e)={o/(2v+1)} {1—E (%)} where ¢ is the random variable de-
fined in the next to the last paragraph with s replaced by ¢. Since
E(#)=(E (#))) and ANGFTR (¢s)=E () we have ANGFTR (o)< {o/(p—1)}
-{1—(ANGFTR (¢))’} and from this inequality follows the first of the
above inequalities. For the proof of the second inequality we have only
to show that (ANGFTR (0))*+ {(2v+2)/c} ANGFTR (¢)=1. The left-hand
side is equal to (I,.:(0)/I(0)){L.1(0)/L(0)+(2v+2)/s}. Form the equality
I_\(8)—1L.(s)=(2v/s)I(s) we get {L.(o)/L(0)}{L+s(0)/L+i(0)+(2v+2)/a}=1.
We have already shown that I ,(¢)=1(0)],,,(c) and thus the desired result
follows. It can further be shown that as ¢ tends to 0 both ANGFTR (o)
and angftr (¢; 0) can be approximated by o/p and as ¢ tends to infinity
both ANGFTR (¢) and angftr (s; 1) can be approximated by 1-(p—-1)/
(20).

Since our shrinkage factor is obtained as the product of AMPFTR
(Ilz[’) and ANGFTR (o) defined with ¢=AMPFTR (||z||*)-||z|* the results
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obtained in this section show that the shrinkage factor always lies be-
tween {1—p/||z|}}* and {1—(p—1)/||z||*}* and that it comes closer to the
former when ||z|* takes small values and to the latter when ||z|* takes
large values. Our factor is always more shrinking than that of the
James-Stein positive part estimator {1—(p—2)/||2||*}*2 (Efron and Morris
[6]) which is obtained by taking the product of ampftr (||z|?;2) and
angftr (¢; 2).

5. Discussions

For the evaluation of the performance characteristics of our new
estimator we follow the Bayesian approach adopted by Efron and Morris
[6]. We assume the situation where &’s are independently identically
distributed as N(0, A%). For this case the Bayes estimator of & is de-
fined by §=(1—C)z with C=1/(1+ A?. For an estimator &* of & the
relative savings loss is defined as RSL (C, &*)={E ||&*—¢|*—E || & —¢&|*}/
{E||z—¢&|*—E||&—¢&|’}. From Lemma 1 of Efron and Morris [5], for
an estimator of the form &*=(1—=(||z]|?)/||2z|]*)z, we have

2 2
RSL (C, e*):E{L(ML—ﬂ ,
Clz|
where E denotes the expectation with respect to the chi-squared vari-
able C]|z||* with the degrees of freedom p+2. We can show the follow-
ing relation for p=3

- ~RSL(C, €)=t B {2 G o= ()
(5.1) 1—-RSL (C, &%) p(p—2)E 27 C,v T Gl
where E is taken with respect to the distribution of a chi-squared vari-
able v with the degrees of freedom p—2. From this result we can see
that when z(||z||*) is a constant, as is in the original estimator of James
and Stein [8], the relative savings loss is independent of C and this al-
lows a uniform comparison of this type of estimators. The situation
changes drastically when z(]|z||*) depends on |z|*. If z(]|z]|*) tends to a
constant as ||z|* grows indefinitely the above result shows that, for C
tending to 0, the performance of the estimator is approximated by the
estimator obtained by replacing z(]|z]|*) by the constant. When C tends
to 1, its upper limit, the performance depends on the details of z(||z|%.
- This is the case where & is almost equal to 0 and a severe reduction of
z by the shrinkage factor is quite desirable. By the present criterion
the shrinkage factor defined by =(||z||®)=p—2 is better than that defined
by z(||z|®)=p—1, but for their positive part versions, defined by =(||z|*
=p—1, for ||z]*=p—1, ||z|*, otherwise, (1=1, 2), the relation is reversed
as C tends to 1. From the analysis of the preceding section we know
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that our new estimator is defined with a z(||z|*) such that its behavior
at ||z]|* close to or less than p is almost identical to the positive part
version of an estimator defined by z(||z||®)=p. While the behavior of
the z(||z|*) is close to that of z(||z||®)=p—1 when ||z|* is large. This
suggests that z(v/C) of our estimator switches to the better choice, at
least at the two extreme values of C=0 and 1. It is easy to show that
for our estimator the right-hand side of (5,1) is positive, i.e., our esti-
mator is better than the maximum likelihood estimator, if C>1/2 or
p=6. Due to the implicit definition of our shrinkage factor, exact
evaluation of the relative savings loss seems rather difficult and exten-
sive Monte Carlo experiments have been performed to check our con-
jecture that the new estimator will be better than the maximum likeli-
hood estimator, in terms of the relative savings loss, for p=3. The
most critical is the case p=3, since from the result of James and Stein
[8] the estimator defined by =(||z|*)=p is already known not to be uni-
formly better than the ordinary maximum likelihood estimator in this
case. One set of numerical results for this case is given in the Table
1. It can be seen that, although the positive part estimator correspond-

Table 1 Comparison of efficiencies for the case p=3

Average sum of squared errors (sample size=1000)

4 Bayes MLE (p—-2)t (p-1)t (p)*+ EME
0.125 0.05 2.99 1.61 0.91 0.53 0.74
0.5 0.59 2.99 1.87 1.31 1.02 1.22
1.0 1.46 2.99 2.27 1.95 1.85 1.98
2.0 2.33 2.99 2.72 2.68 2.77 2.7
5.0 2.84 2.9 2.95 2.96 3.03 2.97

10.0 2.94 2.9 2.98 2.98 3.01 2.9

A: standard deviation of the prior distribution
Bayes: Bayes estimator
MLE: maximum likelihood estimator
(p—i)*t: positive part estimator corresponding to z(||z||?)=p—i
EME: entropy maximizing estimator

ing to z(]|z||*)=p is obviously showing poor performance compared with
the maximum likelihood estimator at large values of A, the sample
means of the sum of squared errors of our estimator are, as was ex-
pected by the above stated switching behavior, uniformly smaller than
those of the ordinary maximum likelihood estimator. In our experi-
ments, for the cases with p=4, our estimator has been almost invari-
ably producing better results than the maximum likelihood estimator.
One typical example is shown in Table 2 for the case p=6. One by-
product of these experiments was the recognition of the practical utility
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of our estimator for the case p=2. Our estimator performed well at
small values of A and the deterioration of the performance at larger
values of A seemed quite tolerable for practical applications. The posi-
tive part estimator corresponding to z(||z||*)=p—1 was also performing
quite well in this case. A numerical result to show this is given in
Table 3. It is interesting to note that in these examples entropy maxi-

Table 2 Comparison of efficiencies for the case p=6

Average sum of squared errors (sample size=1000)

A

Bayes MLE (-2t (p—-D)t (p)*t EME

0.125 0.09 6.10 1.45 1.00 0.69 0.85
0.5 1.20 6.10 2.36 1.99 1.77 1.92
1.0 2.99 6.10 3.83 3.69 3.67 3.76
2.0 4.81 6.10 5.24 5.24 5.32 5.29
5.0 5.82 6.10 5.91 5.91 5.93 5.92
10.0 6.02 6.10 6.04 6.04 6.04 6.04

Table 3 Comparison of efficiencies for the case p=2
4 Average sum of squared errors (sample size=1000)

Bayes MLE (p—2* (p—-1)* (»)* EME

0.125 0.03 2.00 2.00 0.87 0.42 0.67
0.5 0.41 2.00 2.00 1.08 0.74 0.97
1.0 1.01 2.00 2.00 1.51 1.38 1.54
2.0 1.61 2.00 2.00 1.87 1.96 1.94
5.0 1.92 2.00 2.00 2.00 2.12 2.04
10.0 1.98 2.00 2.00 2.01 2.07 2.03

mizing estimator is performing badly compared with the two neighbour-
ing positive part estimators at A=1.0. The maximum likelihood esti-
mates of ||§|* in these examples were obtained by the Newton-Raphson
procedure using {||z|*—p}* as the initial values.

Obviously much remains to be done for the clarification of the char-
acteristics of our estimator. Yet it would be quite safe to say that our
entropy maximizing approach is producing a meaningful result. The
application of the present procedure is not limited to the estimation of
the mean of a multivariate normal distribution. Practically it can be
applied to any ordinary maximum likelihood estimates of multiple param-
eters, if only the asymptotic normality of the distribution of the esti-
mates are assured. The only necessary modification is the transforma-
tion of the estimates so that they will have a unit variance covariance
matrix. It seems that, as an extension of the method of maximum
likelihood, the entropy maximizing approach has opened up the possibility
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of developing a fairly useful closed system of inference which does not
require an ad hoc principle such as Bayes/non-Bayes compromise or un-
biasedness.
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