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1. Introduction

Almost all methods of statistical estimation are carried out under
the assumption that the number of parameters to be estimated is fixed
and known although their values are unknown. However, in problems
of statistical model fitting, it is one of the most important and difficult
problems to suitably determine the number of unknown parameters.
Generally, problems of statistical model fitting are treated as those of
statistical test of goodness of fit and not discussed enough from the
point of view of statistical estimation. That is, it is, first, tested
whether or not the unknown parameters satisfy certain restrictions and
next properties of estimation are discussed under either one of the null
hypothesis and the alternative. (For example, Aitchison and Silvey [1]).

Recently Akaike [2] investigates problems of model fitting in the
time series analysis from the point of view of statistical prediction and
obtains a marvellous and reasonable criterion for deciding the num-
bers of unknown parameters. This criterion is based on the expectation
of the Kullback-Leibler (K-L) information measure of an estimated den-
sity and the true density. Therefore we shall call it “Akaike’s Infor-
mation Criterion (AIC)”. It is very interesting that the AIC statistic
is equal to the C, statistic due to Mallows [11] in the case of linear
regression models. But it is noted that the latter is applied only in
the case of linear regression models although the former is done in
more general cases. Lindley [9] shows that the C, statistic is obtained
as a Bayes solution under a cost given by the number of explaining
vectors to be utilized and a uniform prior distribution. But we should,
indeed, discuss what cost to be adopted.

In the present paper we shall introduce two errors, one of which,
K* (say), is caused on account of “modelling” and the other, KZ (say),
is done on account of “estimation”. Those are based on K-L informa-
tion measures and so, may be regarded to be equivalent. With this
reason we shall define the risk of a pair of modelling and estimation
by the sum of the above two errors: R=K*+KZ (say). (See Section

131



132 NOBUO INAGAKI

2.) In the normal linear regression case, the AIC statistic (which is
equal to the C, statistic, there,) is shown in Section 3 to be an esti-
mator of the above risk of model of the number of parameters and
estimation of their values, and furthermore a “ridge estimator” (see
Hoerl and Kennard [3] and Lindley and Smith [11]) is, also, shown in
Section 4 to be derived from the risk of model of the norm of param-
eters and estimation of their values. In Section 5 we shall propose a
definition of statistical model fitting and its loss function, and obtain
that the AIC statistic and a ridge estimator are Bayes solutions under
the loss functions of the corresponding models and estimations stated
in Sections 3 and 4, respectively. It is remarkable that this definition
of statistical model fitting and its loss function are intended to enable
us to test goodness of model fitting, and at the same time to estimate
of parameters.

Asymptotic properties of the AIC statistic are discussed by Inagaki
and Ogata [7]. The theory of the weak convergence of likelihood ratio
random fields is very useful for this sake. (See LeCam [8], Ibragimov
and Khas’minskii [4], [6], and Inagaki and Ogata [6], [7].)

2. Errors of modelling and estimation based on modelling
Let 6 be a parameter space and
2.1) F={f(y,0): 0¢6}

be a family of probability density functions (p.d.f.’s) indexed by the
elements of 6. Let observation Y be distributed according to a p.d.f.
Sy, 6,) € F (that is, 6,€6).

Let .4 be an index space and C, be a parameter space for each
a€ A Let

(2.2) G.=1{9.y,0): LeC.}

be a family of p.d.f.’s for every a€ 4 and let’s call it a “model” for
. Suppose that for each €6 and a € ] there exists an element {.(0)
€ C, satisfying the following:

(2.3) | log (£, Ofo.w, C.OD} £ (w, O)dy
= min S log {f(y, 6)/9.(y, O} f(y, O)dy .
{eCa
Then we define the error of model &, for the true state f(y, 6), K*(«|6)

(say), by the Kullback-Leibler (K-L) information of g.(y, £.(6)) (€ G.) un-
der f(y,0) (€ F):
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@.4) K*(a|0)= log (£, 0)l0.(v. C.ON} fw, O)dy -

Hence it follows that the above definition of the error of model &,
K*(«|6), depends only on a subset G, of &, such that

(2.5) G.={9.(y, L(0)): 06}  (say)

which has the common parameter space 6 for every ac€  A.

Now, letting T=T(Y) be any estimator for #€6, we shall call
L.T=C(T(Y)) (say) an estimator for {.(#) based on model &G, and define
the error of {,T by the expectation of the K-L information of g.(z,
C.T(Y)) under g.(z, .(0)):

(26) KT, 0la)=E | log (0.2, C.ONau(z &T()a.(z, CO)Mz]
(say)
={[[ 108 t0.2. Mg C.TON0.2, 0 ]
X f(y, 6)dy .

That is, K*(T, 6|a) does not mean a usual risk of estimator T of # but
a measurement of the effect of T based on modelling.

In the present paper we intend to approximate the family & (which
includes the true p.d.f. f(y, &)) by a model & (one of given models {&,}
a€ ) and at the same time, to estimate the true parameter 6, based
on G. In general we may face the following contradiction in model
fitting :

(2.7 The larger is a fitting model &, the smaller is the error
of modelling, K%, but the larger is the error of estima-
tion based on &, K%, (because the vaguer is the infor-
mation based on & with respect to parameter). The re-
verse is also true.

Note that two errors, K* and K%, can be regarded to be equivalent
in the sense of the K-L information measure. Therefore we shall de-
fine the risk of model and estimator (&., T) (simply, denote it by (a, T)

the true state
f(z,0)eF
Kx K*
[ === [T

a fitting model an estimator based on &
Fig. 2.1,
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unless confused) by
(2.8) R(a, T|0)=K*(a|0)+K*5(T,0|a) (say)

when @ is true. Thus, the problem in modelling and estimation based
on modelling becomes to choose model and estimator (a, T) that mini-
mize the risk R(a, T'|6). Section 3 is related to AIC statistic and C,
statistic which are decision functions for dimension of parameter. Sec-
tion 4 is related to ridge estimation which can be regarded as a decision
function for norm of parameter.

3. Dimension and values of parameter

Let the parameter space 6 be a subset of the k-dimensional Euclidean
space R*. Suppose that we are given such a prior information that &
in (2.1) is known and the true parameter vector 6,=(65",- - -, ) (say)
satisfies

k
00=(0(()1)1 Ty 05"0), 0&’;0*‘1), crty 0(()0))t

where 0y,=(0%,- - -, 6)* (say) is a given interior point of 6 but r, is
unknown except that 1<r,<k. Without any loss of generality we
may assume that

Ow=0=(0,---, 0y €86 .

For 0:(0(1), ceey 0(1-)’ 0(r+1), cee, 0(&))t € 6, set
k—r
(3'1) ra.._'_(o(l)’ ct 0‘”1 0: tt Sty O)‘ ]

and assume

(3.2) 0e6, 1=sr<k.

Then the prior information is restated as follows:

k—ro
—

00=r000=(0(()‘)’ M) 0870)’ 09 tt Yy O)t y
(3.3) 60 £0,
1<r<k, but unknown .

In this case, what matters is how to estimate 7, and 6, - ., @, so
called “dimension and values” of parameter #,, respectively. Applying
the concepts in Section 2, we shall, reasonably, make modelling in the
following forms:
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A= {r integer: 1<r=<k},
(8.4) C,=.0={L: {6} (say),
G,=.9={f(y, ,£): L6} (say) .

The error of model ,, K*(r|6) becomes to be

(8.5) K*(ri6)= log (£, 6)/ W, 6D} £ (v, O)dy
=min | log (#(s, 0)/f ¥, O} W, O}y -

Note

(3.6) FoFC--CF=F .

The error of estimator T based on ,< is given by

@1 KXT,0im)=| || log (/G 0D 1/ @ LT (2 L0z

X f(y, O)dy .
3.1. Normal linear regression case
Let
x,=(m1,,'°-, xm')t ’ 1§T§k

be explaining vectors and set
X.=(x,+-+, 2,), n X r-matrix, 1=r=<k,

X=X,=(21, -+, ) .

(3.8)

Suppose that observations Y=(Y;,---,Y,)" are distributed according to
n-dimensional normal distribution N,(X®, ¢*I) where ¢*>0 is known, I=

1 0
( . ), the n-dimensional unit matrix, and =(6<,---, %) € R* is the
0 1

unknown parameter. The problem of choosing the first » explaining

vectors, z,,-:-,2, (but 7 is unknown) in the normal linear regression
model may be regarded as a special case of modelling (3.4) with
1 \ 1
3.9 ,o=< 1 > {—_ — X8)" —Xo}
(3.9) f(y, 6) Toog) &P 202(11 )(y )

for y=(y:, -+, ¥,)'. Since

(3.10) | log (£, 0)/f @, D}, My = 5oy (X0— X- D XO—X-,0)
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we obtain

(8.11) .(0)=P,-X6  X-L(9)=P,-X0
where

3.12) P=X(X!X) X}, n X n-matrix ,

B,= [(X't ()')—X"] ,  kXxXm-matrix,

and (X/X,)” is a generalized inverse matrix of X, 'X,. Then, P, is the
projection matrix from the n-dimensional Euclidean space R* to the
vector space generated by {z,---,x,}, V(x,---,2,) (say). Thus we
have the following lemma.

LEMMA 3.1.
(i) ¢(6)=P,X0 and Xz,(6)=P,X6.
(i) K*(r|6)=(1/2¢")(X0)"(P,—P,)(X6), and

(3.13) KX(T,6|r)=E _Z%(T— 6)'X*P,X(T—0)
=| 50— T X*P.X0O— TG) W, o)y

Now, we obtain from (3.9) that the maximum likelihood estimator of
8, 6 (say), is given by

(3.14) 6=Py,

and hence from (3.11) and (8.14) that

(3.15) LO)=P.Xo=P,Py=Py, X(O)=Py.

Note that ¢,(6)=P,y is the maximum likelihood estimator of Z,(6). Fur-
ther we have from (8.13) that

(3.16) K*(@, 0|r)=FE {é(XB—P,‘y)‘P,(XO—P,‘y)}

I

1 epya 1
E {_2-07 (X0—y)P(X0 y)} =1 trace P,

R if rank X, =r.

Il
)=

LEMMA 38.2. The risk of model ,F under the maximum likelthood
estimation is as follows:

I
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8.17) R(r, é|o)=_23_(xo)‘(Pk—P,) (X0)+—;— trace P,

=+ [ (XOF(P—P)(X0)+r} ,  if rank X,=r.

THEOREM 3.1. The C, statistic due to Mallows [11],

(3.18) C('r)=%y‘(P.—P,)y+2 trace P,—trace P,  (say)

is an unbiased estimator of 2R(r, §|6).
Thus,
(3.19) C(r*)=min {C(r): 1=r<k} (say)
can be regarded as an estimator of
(3.20) 2R(r,, 6|6)=min {2R(r, 6]6): 1<Sr<k} (say).

That is, we shall be able to consider that »* is an estimator of »; (i.e.

model , &) which minimizes R(r, 5]0), the risk of modelling under the
maximum likelihood estimation. Set

oA X0)=5 (XoY(P,~P,)(X0),  2srsk
(3.21)
v,(xo)=%(xo)'ﬂ(xo) :

Then,

(3.22)  2R(r, §|0)=(1—v(X8))+ - - +(1—v,(X0))+%(X0)‘(X0) .

A 2R(r, 616
2R(r,8160) ' (r 016 k

L (x0)t (xe)

,_-_______

Fig. 2.2. Fig. 2.3.
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From the definition, (3.12), of projection P,,
(3.23) v,(X6,)=0, for rzr, with ,6,=6,.

See Fig. 2.2. Further, if v.(X8,)<1, for all » such that 2<r=<r,, we
have r,=r7, in (3.20). See Fig. 2.3.

3.2. Large sample (i.1.d.) case
Let & be a family of n-product densities such that

£, 0=T /@ 0 @89, Y=, w) -
Then

F={fuly, 0): {eb}.

Inagaki and Ogata [6] obtain the following results about the likelihood
ratio random field and its related statistics.

LEMMA 3.3 (Theorem 3.4 in [6]). The likelihood ratio random field

(3.24) h=2Z,(R)=1y, O+h[V7)[f(y, 6)  (say)
converges weakly to a degenerated normal random field

(3.25) h= Z(h)=exp {h‘l’”’e———;—h‘l’h} (sa)

as n— oo, where I'=1'(6,) is the Fisher information matrixz at 6, and &
18 a k-dimensional standard normal random vector N,(0, I).

This lemma suggests that asymptotic properties of the likelihood
ratio, Z,, and its related statistics are ascribable to properties of Z and
functionals on it which are functions of a %-dimensional normal random
vector £. Now, let

Flﬂ:(ﬁ/‘v Tty Tin) ’

k—r
P W

’_Fl/z:(T}/’, cee, r:./’, 0, ey 0) ]
(3.26)
CY(,I"*)=the vector space generated with vector 7i72,---, 7/

of . I,
P,: R*—CY(I*) , projection .
Since ,(6+h/yn)=0,+,h/yn for r=r, with ,0,=6,, we may define
(3.27) LO+hIVw)=0+.Cih) [V (say)
for r=r, in (3.5):
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(3.28) KX(r|k)= S log {fu(y, 6+hv ) [fo(y, 6o+, La(R)/ v/ )}
Xy, b+hym)dy  (say).
Denote the distribution of a random variable Z under P, by .L[Z]6].

LEMMA 3.4 (Lemma 5.5 in [6]). For r=n,

(3.29) K,;"(r|h)-»_;_hcrlﬂ(I—P,)F“’h . L) L)

as n— oo, where convergences are uniform on |h|<M and ,[(h) satisfies
(3.30) I (h)y=P,I"h .

LEMMA 3.5 (see (i) of Theorem 2.1 and Application 4.3 in [6]). For

maximum likelihood estimators ék,,zé,,,,(y) for 6 and ém=(5,,.(y) for L and
under r=71,

(3.31) L1og { £y, bi) [1oY, b)) Iﬂo]—'—;—f‘(l —P),
and hence by the contiguity of {Pu} and {Pen sz}

(3.32) .f[log U, B [£:0s 6,2}

—%h‘F‘/’(I— P,)F‘/’h|0°+h/fﬁ]—+_;_e‘(I—P,)e :

In the same way we can see by Lemma 5.5 in [6] that, for esti-
mators T,=T,(y) such that {_L(+n(T,—6,)]6,)} are relatively compact,

S 10g {2, B0+ LR/ ) [£:l2, B0+ LoV T (To—60))/ /70 )}
X ful#, G0+ Lolh) VT )2
——%—(«/W(T,.—00)—h)‘I’"’PfF"’(x/W(T,.—ﬂo)—h)—'O

in P,. Hence we have the following lemma for the maximum likeli-
hood estimator 8,=6,.(y) (say) of 6,.

LEMMA 3.6. For r=7n,,
(3.33) KZ@,, O+h/v7|7) \
={ [ rog thutz 60+ 201y )
11z, 60+ (¥ (0.(1)—00)) v )}
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X £z, ok LWV £y, 0+ RIVTHY  (say)
—r[2.
After all, we conclude that the AIC statistic due to Akaike [2],
(3.34)  AIC, (r)=2log { £y, 0u®))/Fly, 6 W)} +2r—k  (say)
is an estimator of
(3.35)  2R(r, 6| h)=2(KX(r|h)+KF (8., b+h/yT|r)}  (say)

where R,(r, énlh) is the risk of model ,& under the maximum likelihood
estimation and further, have the following.

THEOREM 3.2 (See 4.3 of Section 4 in [6]).
(8.36) AIC, (r)—>C(r)=¢{I—P)e+2r—k , as n— oo for r=r,
where C(r) is the Mallow’s C, statistic in (3.18), and for 1=r<ry,
(3.37) AIC, (r)— o0, as n—oo .

Note that R,(r, 5,,|h)—>oo for 1<r<r,. Therefore, for all suffi-
ciently large m, r* such that

(3.38) - AIC, (r¥)=min {AIC, (r): 1<r<k}

can be regarded as an estimator 7, in (3.3) which minimizes R.(r, 6,|k)
for all sufficiently large n (in the same way as in (3.23)).

It is very interesting that the AIC is exactly equal to the C, sta-
tistic in the case of linear regression models. But it is remarkable that
the latter applied only in the case of linear regression models although
the former is done in more general cases.

4. Norm and values of parameter

We return to the normal linear regression case discussed in 3.1.
For symmetric matrix X‘X, there is an orthogonal matrix S satisfying

A 0

4.1) S(X'X)S=A= - (say)
0 A

where 4,,--+, 2,=0. Assume

(4.2) 21,"', 2k>0 y i.e- I‘ank X=k-

We shall consider another modelling in the normal linear regression case
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such that
A=R*={a: real and positive} ,
(4.3) C.=6.={{€6: [{|sa}, (say)
G.=F.={f 0): [{|=a},
where |{| is a norm of { so that
[Clo=max {|C®],---, [C®]},
IClF=¢¢,
[Clz=0(X"X),
ICla=CAL,  (say)

for a positive definite matrix A. However, we shall discuss the case
of Euclidean norm |{|; in the present paper. Remark

(4.5) g.c9.,, if e, <a; .

(4.4)

By (3.10), £.(0) (defined in (2.3)) is given as the solution of { that min-
imizes

(4.6) 60X X(—9), subject to {'{<Za?.

Set

(4.7 F(@G»)=C-0)X'X({—0)+u({{—a) .

Kuhn-Tucker condition is as follows: there exist »"=0 and ¢’ such that
That is,

Q=0 X' X+0"=0,
(4.9) r—at=0, if |0]>a,
V=0, if |0|=Za.
Now, we define mappings as follows:
Q.=(X*X+vJI)'X*,  kXn-matrix,
(4.10)
Q.=XQ,=X(X*X+v.I)'X*, n X n-matrix

where v,=u(a, 6) is a positive number satisfying
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(XOyQQ.X0)=*  if |0]>a,
(4.11)

v,=0 if |0]|Za,
for a>0 and ¢ 6. Hence, we see from (4.6) and (4.9)-(4.11) that
(4.12) L0)=Q.X0 .

Given and fixed # in (4.11). According to

=840 t(0) = S ﬂ
@ =0(Q.X)(Q.X)=3] (A+vy

where
(4.18) B=(Bi,+ -+, B)'=8'6,  say, (see (4.1)).

v=v,=v(a, #) has such a derivative that

S _ /{" Bii >
(4.14) L §(2‘+u),}<0, for »>0.

That is, v=v,=u(a, ) is a decreasing function of a« with

y v—0 as a—|0|,
(4.15)
y—» 0o as a—0+ .
See Fig. 4.1.

For an estimator T=T(Y) for 4,
(4.16) L.T=((T(Y)=Q..XT(Y)
is an estimator for ,(6), where Q,, is
Q. with v,=v(a, T) in (4.11) and hence
16l “ 417 |LT|=a
Fig. 4.1. if |T|>a (from (4.11)).

See Fig. 4.2. We shall introduce another estimator for Z,(9),
(4.18) L.T=Q.XT(Y), with v.=ua, ),

which is so called a “ridge estimator” for # (see Hoerl and Kennard
[3]). See Fig. 4.8.
The following lemma is easily seen from (3.10) and (4.12).

LEMMA 4.1.
(i) The error of model &, is
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g7 X
'1//[1""‘
N

ellipsed oc ellipse T

Fig. 4.2. Fig. 4.3.
(4.19) K”(alo>=%(xo)'(Pk—Q,)2(Xo) :

(ii) The errors of estimators {,T and z.T are

K*5(T, 6|a)=E {Ef,—z(Q,Xa—Q,TXT)‘(Q,Xo—Q,TXT)} ,
(4.20)
R5(T, |a)=E {~21;2—(X0—XT)‘Q:(X0—XT)} ,

respectively.

In the sequel, we shall treat only the ridge case.

LEMMA 4.2. For the maximum likelihood estimator 6= PB,Y in (8.11),
the error of £ is

(4.21) I?E(é,o[«):ltraceQ,z:lé( % )2.
2 2 i=1 2¢+)J,

Further, the risk of model a under the maximum likelihood estimation,
R(a, 010) (say), is |
(4.22) R(a, 6]6) =?}15(X0)‘(P,,—Q,)2(X0)+—é— trace Q
k 2 k 2
BiA, 2
ER R AP iy
o Q. Y- X0)(Q. Y—X0)]

| =

o

1
2
E

SJor B=(B1,- -, B)'=S5'0 in (4.13).
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PrOOF. By the virtue of
(4.23) Q.P.=(X*X+v )" X' X(X'X)"'X'=Q,

we have
k%6, 6l0)=E i(Xo—Pky)'Q:(Xo—Pky)}
trace @2 ,,_% trace Q:

trace {(X' X+, I)"' X' X}?

w[r—a N[r—-l

and so from (4.1)

It follows from (4.19) and (4.21) that
R(a, éw)=% {% #(X—Q.X)(X—Q.X)0+trace Q:} :

Now, from (4.10)

X—QX=X-X(X'X+v.) (X X+v.I—v.I)
=y, X(X*'X+v.])=v.Q'

and hence
(X—-Q.X)(X—Q.X)=viX'X+» )" X' X (X' X+v.I)".
This leads to (4.22) by using (4.13).
The following lemma is an immediate result of the last lemma.

LEMMA 4.3. R()=R(a, 6]6) with v=y, i3 a function of v as follows :
Sor a given and fixed 6,

~ —L . k ﬁflt k 22
BO=s Bty A @ +p)2} ’

BO+H)=%,  R+oo)=3 fir=|X0p
(4.24)

a _» g x 2
=5 2w

———-R(v)<0 if v< oY s %-R(u»o if V>0 Bhin s
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where

(4.25) 2 xr=max {,Bly cccy ﬁlz:} ’ mln—'mln {plv Y .Blzc} ’ (Say) .

On the other hand, ridge estimator £.6=Q.Y (recall (4.23)) has the
following properties (see Hoerl and Kennard [3]): for a given and fixed 6,

L()=L(»)=E@Q.Y—0)Q.Y—0)  (say)

— 22 131: +0.2é . 1t
=1 (A+v) & (Ao

LOH)=d3 1, Lteo)=5 =0

(4.26)

L=zl B g5k
= 4zu+r fé@ﬁw}’

_;_L(»)<0 if v< 0Bl aiL(u)>0 if v> 0B -
v v

Fig. 4.5 is due to Hoerl and Kennard [3] (Fig. 1).

R(v) L(v)
K
= 1
R(0+)=k/2 _- Lo)=723
//” P
Least square - K" Least square >
/,
\ P _z
\ . PRy \ z,
\\ Rldg’e// \\ Ridge /// Bias-square
— ’/
K* Variance
0 ” — v 0 v
oz/ﬂmnx U/ﬁmln Uz/ﬂzmax ¢"'z/ﬁzmln
Fig. 4.4. Fig. 4.5.

THEOREM 4.1. There always exists a positive number v>0 such that
R()<RO+)=kK/2 .
Further, if v<d*/Bhax, '
(4.27) RO)<RO+) and  LO)<LO+) .

Now, we shall estimate K“(»):K”(u,,):K”(a,él(i) by an unbiased
estimator,
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1 yup,—Qyy—L trace (P,.—Q).
25 2
Then, we see
(4.28) 1f.el(y)=.:_2 Y{P,—Q)Y+2traceQ.—k  (say)

is an unbiased estimator of 2R(v). The following lemma is proved simi-
larly as Lemma 4.3.

=

-
I

(4.29)
0 v & 22 k A
— =921 = A . i
ov Bi() {az tgl (A+v) ¢2=1 (1¢+v)"}
2 B»<0 if v<A @ e LBG)>0 if v>0 @D
vV v
where
ZZ(ZI,- ] zk)tzsthY ’
(4.30)

() mex=max {222, - -, 234} , (ZD)mn=min {2}4;,- - -, 2i4.} .

Thus, we can conclude that »¥ and y,, 0<v*, y<oo, exist which
satisfy

B,(v¥)=min {B(): 0<v<oo},
(4.31) .

R(y)=min {R(): 0<v<oo},
and that model «f obtained by v¥ and the equation
(4.32) (P.Y)QQ.(P.Y)=c

is an estimator a, obtained by v, and (4.11). After all, we have a
“ridge estimator”

Lab=QuY=(X'X+v¥])'X'Y
for 4.
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5. Statistical model fitting

In this section we shall define the concept of “Statistical model
fitting ” and its risk. Further, we shall show that the AIC estimator
and the ridge estimator are obtained as Bayes solutions of the above
risks under uniform prior distribution, respectively.

Denote an estimator for a € 1 by

(5.1) =0(Y)= 3 aXg(Y)
ae A

where for each a

H,={y; (y)=a}, the contour of 7,
(5.2)
Xz =the indicator function of set H,.

That is, = is a multiple decision function for models &,, a€ A in (2.2).
Define a loss function of estimator z by

(5.3) J(z(y), 0)=log {f (¥, 0)/9..x(¥, C.x(9))} »

using ¢, in (2.3). It is remarkable that J(z(y), 8) is not always non-
negative, but it is decomposed into the sum of the following two parts,
J, and J, (say), J, being common to all a¢ { (and so independent of
7), and J, nonnegative :

Ju(0)=log {f(y, 0)Id'(y, 6)}

(5.4)
Ji(=(y), 8)=1log {g"(¥, 6)/9.0 (¥, L.cr(0))}
where
(5.5) 9'(y, )= sup g.(¥, C.(9)) .
a€A

We call a pair of estimators for model and parameter, (z, T'), a “statis-
tical model fitting” and define a loss and a risk of model fitting (z, T')
by

(5.6) W), T(y)|6)=J(=(y), 6) + S log {f(z) &(0))/f (2, S T(¥))}
Xf(z, Cr(y)(o))dz .

and
(6.7 P, TIO)=EW((Y), T(Y)|0)= S W(z(y), T(y)10)f(y, 6)dy ,

respectively.
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5.1. AIC statistic

Under the same situations as in 8.1 (normal linear regression), we
shall consider a model fitting for dimension and values of parameter.
Then, an estimator for r, 1<r=<k, is

(5.8) r=r(Y)= z": r g (Y) .
It is easy to see by (3.9), (8.11) and (5.3) that
(5.9 J(z(v), 0)=$(y—P,mX0)‘(y—RmXﬂ)——z——l‘;(y—Xﬂ)‘(y—Xﬁ) .

Therefore, from (3.13) and (5.6) through (5.9) we have the following
lemma.

LEMMA 5.1. The loss and the risk of a model fitting (z, T') are given
by :

(5.10) WA, T10)=?1;(y—P, Xﬁ)‘(y—P,Xﬂ)—é(y—Xﬁ)‘(y—Xﬂ)
1 . B
+§(XT X0)P.(XT—-X0) ,
and

(B.11)  P(, Y10)= | 5 AW~ PapX0)(y— P X0)
+(XT(y)— X0)' P (XT(y)— X0)} f (y, 6)dy—mn/2 ,
respectively.

Now, let’s take the Lebesgue measure on R* as a prior distribution
of 8. Then the posterior distribution, ¥'(#|y) (say), becomes to be the

k-dimensional normal distribution N,(P.y, s*(X*X)"), that is,

1 k 1 ~ ~

12) 0= (——) | XX | exp {—-L (90— By X*X)(0—By)) ,
(6.12) TOlY)=(—m—) | XX exp |~ L (60— B (X X)(0— Pay)
if rank X=k. Hence, the posterior risk is calculated as follows:
(5.13) P(T,le)=SW(‘r, T|6)¥6|y)do  (say)
=5 V(P P+ | 10— Py X'P.X0— P
—(0—Py) X' X(6— Py)+(6— Ty X P.X(6—T)}
X¥(8|y)do
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=i?l'(P,c —P)y+ L trace P.— 1 trace P,
25° 2 2
+é(T—ﬁ,‘y)‘X‘P,X(T— 13,,y)+% trace P,
=-é— {C(r)+%(T—Pky)'X‘P,X( T— P,,y)} (recall (3.18)).

Note, again, that the AIC statistic is the same as the C, statistic in
the normal linear regression case. We shall call a model fitting (r*, é)

with r* in (3.19) and 6 in (3.14), the “AIC model fitting”. (5.13) leads
to the following theorem.

THEOREM 5.1. The AIC model fitting (r*, 6) is obtained as the (gen-
eralized) Bayes solution when the loss function is W(z, T|6) in (5.10) and
the prior distribution is the Lebesgue measure on R*.

In the i.i.d. large sample case, Inagaki and Ogata [6] obtain the
following theorem.

THEOREM 5.2 (Theorem 5.2 in [6]). The AIC model fitting (v}, 6F) with
r¥ defined in (3.38) and 6*=0,x ., (see (3.31)), is asymptotically equivalent
to a Bayes solution under a uwiform prior distribution.

5.2. Ridge estimators

We shall discuss a model fitting for norm and values of parameter
under the same situations as in Section 4. Let

(5.14) r=t(Y)= 3 aXg(Y)
ae A

be an estimator for a, 0<a<o. Then it follows from (8.9), (4.12) and
(5.3) that

(5.15)  J(z(v), 0)=é(y—Q,th?)‘(y—Q,(,,)Xﬁ)—é%(y—Xﬂ)‘(y—X@ .

When not £, T but £, T is utilized in Lemma 4.1, we have the following
lemma from (4.20), (5.6), (5.7) and (5.15).

LEMMA 5.2. The loss and the risk of a model fitting (z, T) are given
by

(6.16) W, Tlﬂ)=é('y—Q,X0)‘(y—Q,X0)—é(y—Xﬂ)’(y—Xﬂ)

+%(XT—X0)'Q3(XT— Xo) ,
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and

617 P, T10)=] —;7{(y—Q,mXﬂ)‘(y—Q,mXﬂ)

+(XT(y)— X0)'Qi (X T (y)— X0)} f (y, O)dy—n/2 ,
respectively.

Let’s take the Lebesgue measure on R* as a prior distribution,
again. As in (5.13), we see (recalling (4.23))

(5.18) ;,(T,T|y)=g Wiz, T|6)¥(@|y)do  (say)
_1 _ D)Xt —P.y)—
-5 S {(0— By X'@X(6— Py)—24'Q.X0

+24'Q'X0—y'Qy— (0 — Py)' X* X(6— Py)
+ 9" Py+(6—T)X'QX(©O— T} ¥ (6| y)do

_l_ _1_ — 2, 2
—2{ V(P QYy+2 trace @

+(T— Py X'QX(T- Py} .
Set

(5.19) v=v(y)=u(c(¥), Py) (say)
(see (4.10) and (4.11)), and

(5.20) Byv)= %y‘(P,,—Q,)’y—}- 2 trace @—Fk .
In the same way as Lemmas 4.3 and 4.4, it holds that

By(v)=

Bi0+)=k, B,(+oo)=7},e|Pky|2—
(5.21)

2
1 (A+v) =t (A4v)

—(%—B,(v)=2{

éz%l%_" 13}

»
i

ZBM<0, if <2, B)>0 if 53202k,
v v

where zl,.,= max 7z} and 2z,,= min 2z} (see (4.30)). Therefore there
i=1,v00,k i=1,000,k

exists v¥>0 such that



TWO ERRORS IN STATISTICAL MODEL FITTING 151

(5.22) By(v¥)=min {By(v): 0<v< o0}

and hence, we can obtain af by the virtue of v} and the equation (4.32).
Consequently, we have the following theorem from (5.18) and (5.22).

THEOREM 5.3. The model fitting (af,6), (recall 6=P.y), based on
ridge estimation, is the Bayes solution under loss function W(z, T|8) of
(5.16) and Lebesgue prior distribution.

6. Remarks

(a) It is apparent that ridge estimators obtained by using norms
[¢]=IZ]o and |{|x in (4.4) correspond to a general ridge estimator and
a so called shrinkage one, respectively.

(b) It may be necessary that properties of estimators with deci-
sion rule (for example, AIC, C,, B(») and so on) are investigated from
the view of estimation theory.

(¢) We might have to argue, first of all what is statistical model
fitting.
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