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Abstract

Given k populations which belong to the exponential class, and
having specified two positive constants (6%, P*), an experimenter wishes
to select t populations which (a) exclude all those populations with a
parameter value not greater than the tth largest parameter value minus
0%, and (b) include all those populations with a parameter value not
smaller than the (t+1)th largest parameter value plus é*. This paper
shows that the probability of successfully making such a selection, call-
ed a d*-correct selection, is at least P* if the basic sequential procedure,
P#, of Bechhofer, et al. [3] is used. This result includes the correspond-
ing old result of their book (p. 129) as a particular case.

1. Introduction

Selecting the best ¢ from among k populations is one of the most
important ranking problems and has wide practical application. Bech-
hofer, Kiefer and Sobel ([3], p. 255) have formulated the problem in
the following way: An experimenter is given k (=2) populations =,
---,m, whose density functions are members of the same univariate
exponential (Koopman-Darmois) family :

Sf(x)=exp {P(x)r,+ R(x)+ V(z)} (i=1,--+, k)

where P(x), R(x), and V(r) are known functions. The populations are
assumed to differ at most in the unknown parameter values z; (i=1,
«++, k). Let the ranked z-values be denoted by

TS TS ST
and the differences between any pair of them be denoted by:
Oy =ta—7n (0245 4, J=1,---, k).
It is assumed that the true pairing of =, with ,; (i, 7=1,---, k)
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is unknown to the experimenter, who is interested in selecting an un-
ordered set of ¢t (=1) ‘best’ populations, which are associated with the
t largest parameter values ry_,41y,++, 7;. Before the experimentation,
the experimenter has to specify a pair of constants, as below:

(1) {5*, P*}, with 0<3*<co and 1/(’:><P*<1,

with the intention to achieve the following probability requirement :
(2) Pr {Correct selection|dy_;,1z.=0*} =P*.

Bechhofer, et al. [3] have proposed an interesting sequential sampling
procedure, P¥, and have proved that their procedure guarantees the
probability requirement (2) (p. 129). We shall describe the procedure
in the next section. Two outstanding features of the procedure are:
(a) The same procedure is applicable to a large number of distributions,
including the normal, the exponential, Poisson, Bernoulli, and the neg-
ative binomial distributions, which belong to the exponential family ;
(b) The average sample number is, in general, considerably smaller than
the sample size for a single-sample procedure.

However, the formulation of the problem has a fundamentally re-
strictive character in that its goal as expressed in (2) requires the
condition: d,_;41.=0*. In practice, the experimenter would be un-
likely to know that this can be satisfied. If 6,_,,1,_.<6* then he does
not know what alternate probability the sequential procedure can guar-
antee him. Further, in specifying the constants {6*, P*} the experi-
menter usually has some economic consideration in mind so that d* is
the smallest difference in parameter values that he wishes to detect,
and he is indifferent to incorrect selections made in the zone zy_, 3 —0%*
<7-yy+0*. Indeed he must be more interested in the probability of
making such a selection than the conditional probability of (2).

Bechhofer, et al. [3] are well aware of these conditions and have
proposed a related ‘unsolved problem’ in their book (p. 337), which we
will restate with minor modifications. For any configuration of the
parameter values, denoted as a k-vector: 7=(zy,,---, 77), there are
unique integers r and s satisfying 0<r<k—t, 0<s<t, and such that

(3) T = Te-ren— 0¥ <ty a0 T <Tpent0*STp ey -

Here it is understood that z;=—oc0 and zy,;=co. Thus there are r
populations with z-values<r_,,;;—d&*, and s populations with z-values>
Tw-n+06%. In this situation, the experimenter might reasonably still
want the ¢ selected populations (a) to exclude all those with a param-
eter value not greater than the tth largest parameter value minus d%,
namely, the r populations corresponding to the parameter values 7,
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-+, 7y, and (b) to include all those with a parameter value not smaller
than the ({4+1)th largest parameter value plus 6*, namely, the s popu-
lations corresponding to the parameter values zy_,,4;, -, 7uy. To clarify
some notational problem, we should note that when =0 the experiment-
er would not specifically intend to exclude any population because then
every population mean is within é* from r_,,,;. Likewise, when s=0
the experimenter would not specifically intend to include any particular
population because then no population mean is large enough to exceed
t—i+0*. Let us call any such selection a *§*-correct selection’. (Bech-
hofer, et al. have not named it for the {6*, P*}-approach, although
they have called it a ‘correct decision’ for a decision theoretic ap-
proach, p. 47.) Bechhofer, et al. conjecture that their sequential pro-
cedure, P, still guarantees that the probability of making a d*-correct
selection is at least P*. This paper proves their conjecture.

2. The sequential procedure P

We shall refer to pp. 125 and 256 of Bechhofer, et al. [3] for the
description of the sequential procedure PJ. At each stage of sampl-
ing, one observation is taken from each of the k populations. Let X,
denote the chance variable corresponding to the jth observation taken
from the populations =; (i=1,---,k; 7=1,2,---). They are assumed
to be mutually independent. At the mth stage of experimentation (m=
1,2,...) the values, ¥,., of the sufficient statistics:

Yiﬁé P(X,) (i=1,---, k)

will be used for decision making. Denoting by yum<-::=<¥um and
Yum<-++=Yyum the ranked y,, and the ranked Y., (1=1,.--,k; m=1,
2,---), respectively, we may introduce two k-vectors:

gm=(y[l]my tt Yy 'y[k]m) ’ i}m=(Y[l]my ] K:k]m) .

Let C denote the set of k!/{(k—t)!t!} ways of choosing ¢ integers from
the set {1,2,---,k}. Any element of C can be represented by y={r,,
«++, 7.} where 7, (4=1,.--,t) are different positive integers not larger
than k. The particular element {k—¢+1,---, k} will be denoted by 7..
We define, for any y € C, the product:

¢
TYn= E Yorom -

The rules for the procedure Pj are as follows. After the mth
stage of observation, the experimenter calculates the quantity
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4 2,)=_SXP {0*7eUm}
(4) Q*(¥n) 33 exp (¥7ii)

If Q*(¥.)<P*, he continues to the (m+1)th stage of the experimenta-
tion. If Q*(¥.)=P*, he terminates the experimentation and selects the
t populations associated with the ¢ largest observed values ¥p_;i1m,* >
Yum- Bechhofer, et al. ([3], p. 129) have proved that PF guarantees
the probability of a correct selection to be not smaller than P* when-
ever 0y_.,1,x-:=0%, namely,

(5) Pr {Correct selection|d;_;;1;-.=0*}=E {Q*(Y,)} = P*,

where Y, is the terminal decision vector for the procedure.

3. o*correct selection

Let us consider the general configuration #=(zy;,- -+, 7u;) in which
Oe_rs1x-: 18 NOt necessarily =d*, as explained in Section 1. Our goal is
to select ¢ populations which exclude all those populations with param-
eter values <t _,,;;—6* and include all those populations with param-
eter values =7,_,+0*. Let S, be the set (which is in fact a sym-
metric group) of k! permutations on the integers 1,2,---, k. If a=(ay,
.-+, @) is any element of S, we define a¥n=Yams***» Yapim)» Which is
a k-vector; also, we define the inner product

?'afl'm=ié TriYaim -
Let two subsets of S, be defined as follows:
S={a: a;>k—t for some i<r or a,<k—t for some j=k—s+1},
T={a: a,<k—t for all i<r and a,>k—t for all j=k—s+1}.

Clearly, S and T are disjoint and they exhaust S;,. Assume that pro-
cedure Pj¥ is used for the selection. Following the arguments of Sec-
tions 4.2, 5.4, and 6.1.1 of Bechhofer, et al. [3] we have the following
expression :

(6) Pr {o*-correct selection} =E {(¥,)} ,

where Y, is the terminal decision vector of the procedure and the quan-
tity Q(#.), at the mth stage of sampling, is defined to be:

1) QF)= 25 exp {¢-ayn}
Y= exp o)

a€Sy
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We are now in a position to prove the following theorem.

THEOREM. Let two constants {0*, P*} be specified as in (1), and let
t=(tuy, - -+, ) be any configuration of the parameter values. For the
selection of t populations which exclude all those populations with a z-
value <ty —0* and include all those populations with a r-value =t _,,
+0* by the sequential procedure P¥, we have:

(8) Pr {6*-correct selection} =P* .

PROOF. Let the integers » and s be defined as in (3). The theo-
rem is obviously true if r=s=0, because then the selection of any ¢
populations is d*-correct (see the notational clarification at the end of
the introductory section) yielding Pr {9*-correct selection}=1. Thus
without loss of generality, we may assume that r=1. Because of (5)
and (6), we only need to prove, without considering any stopping rule,
that the inequality

QUn) 2Q*(¥n)

holds for any possible value 7, of ¥, at the mth stage of sampling
(m=1,2,...), where Q*%,) and Q(¥,) are given in (4) and (7), respec-
tively. After subtracting 1 from the reciprocal of each side and re-
arranging the terms, we have the following equivalent inequality :

(9)  exD (374} (3 exp {-afal) S(S exp (3¥75)) (3] exp (¢-aFi))

where D=C—{7.}. To establish (9) we shall show that for every term,
exp {0*7.Yn+7 aly.}, on the left-hand side, we can uniquely define an
equal or larger term, exp {0*y'¥Y.+7 -@%.}, on the right-hand side. In
other words, we shall show that:

(10) ¥t Yt 7 afn <Y+ Y

where (, 7')=g(a) is the image of a€ S, under an injective mapping
g: S—>TxD, to be defined below.

Consider any a€S. Let p be the total number of components which
have a value >k—t, among the first » components of a. If p=0, we
define a,=0, b,=k—s, and go to step (A) to continue our arguments
therefrom. If p>1, then there are p integers a,-- -, a, such that

a>k—t  (i=1,---,p; 1Za,<---<a,<7).

Among the last ¢t components of @, there must exist a set of p smallest
possible integers b,,---, b, such that

abiék—t ('I:=1,"‘, D k_t+1§bl<"'<bp§k)-
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Step (A). Let g be the total number of components which have a value
<k—t, among the last min (s, k—b,} components of a. If ¢=0, then
we go to step (B) and continue our arguments therefrom. If ¢=1, then
there are ¢ integers b,.,- -+, b,, such that

a, <k—t (t=p+1, -+, p+q; max {k—s, b} <b,,; <+ <b, k).

There must exist a set of ¢ smallest possible integers a,,;,- -+, @5, Such
that

aai>k—t ('i=p+1,- S & x'H aﬂ<a'p+l< e <ap+q§k_t) .

Step (B). We may now define an o' € T corresponding to a, in the- fol-
lowing manner:

ac’zi:'abt ’ a{,‘=a,,‘ y 1::1,' * Y p+q ’
aj=ay, for all other j<k.

Three facts may be noticed. First, p+g=1, otherwise « would not
have been in S. Secondly, there are as many (in fact, p-+q) compo-
nents in a which are different from those in « among the first k—¢
components as there are among the last ¢ components. Thirdly, zp;—
71a,2 0% because of (3), and y[,ai]mgy[,,b‘]m because a,, >a, (1=1,--+, p+q).

We may further define a ¢’ € D, corresponding to «, by

(11) T,= {T{y' ) T;} = {k—t+19' * %y kv Ay_tr19°° %y ak} - {al,c—t+1v' %y al,c} .

Thus, a mapping g: S—TxD has been defined by g(a)=(, 7).
At this point, it may be profitable to give an example. Suppose k=10,
t=5, r=2, and s=3. If a=(9,5,6,10,8,2,3,1,7,4), then «/=(2,5,1,
4,8,9,3,6,7,10) and y'=1{1,2,4,7, 8}.

To show that g is injective, consider any («/,7’) which is in the
image set, g(S), of g. We shall find a unique « €S such that g(a)=
(o, 7). Hinted by (11), we have

{ak—t+ly' ) ak} = {T()’ %y T:’ ali—t+1" "ty a::] - {k_t+1v° ) k} .

Let {a},: ©=1,---, h; k—t+1<b,<---<b,<k} be the set of all integers
in the set {a}_,.1," - -, i} which are not found in the set {a .11, -+, ai}.
Then the elements of the set

{ak—-t+ly’“yak}—({a::—t+lr' * a,’,}—{ai [ '9a$ })
1 h

must appear in the first k—¢ components of « with their positions
identified. Suppose these are af,---, a;,, 1< - <, =k—t). We
may now define a in a unique manner:
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aat=a,b‘7 ab‘_——a{at’ i=1)"'1h;
a,=aj, for all other j<k.

Obviously g(a)=(d, y'), and the injectiveness of g is proved.
Finally, we may prove (10), which is equivalent to

5*(7'9 17». - T"gm) = T (a’ﬁm - C@m) ’
which is further equivalent to

»+q * p+q
E (y[aat]m - 1/[«,,‘]7:1)(s = gl (y[na‘]m - ?l[a,,i]m) (Teo,1— Tragd) -

Now, this last inequality is true because

0*<7p,—Tw,; and 0 éy[aai]m_y(abi]m (t=1,---,p+q).
This completes the proof.

4. Discussion

The result of the theorem in the last section is interesting because
(i) the experimenter need not modify his sampling procedure, but just
uses P¥, and (ii) when 6;_,,1,_.=0%, result (8) automatically reduces to
result (5).

A similar situation exists for the ranking problem of selecting the
best ¢t from among k mormal populations, using a single-sample proce-
dure (e.g., Bechhofer, [1]) or a two-sample procedure (Bechhofer, et al.
[2]; Maurice, [5]; Ofosu, [6]). A result analogous to (8) has been ob-
tained by Chiu [4] using entirely different mathematical techniques.
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