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1. Introduction and summary

By coordinate-free multivariate analysis, we mean that form in
which the basic elements of analysis (items, variables) and derived
elements, such as estimates, are treatable as points in vector spaces
without explicit bases. Multivariate statistical procedures can then be
described geometrically and can often be usefully represented in 2-
dimensional diagrams. The advantages that may be claimed for the
coordinate-free approach are:

(i) It reveals the natural simplicity of operations that can appear
rather forbidding in algebraic terms, especially when the heavy invest-
ment that mathematical education makes in matrix algebra is taken
into account.

(ii) The pedagogical use of matrices often lacks a sense of direction
and may, with advantage, be deferred up to the point where actual
numbers have to be fed into a computer for analysis.

(iii) The geometrical approach can suggest new but obviously desir-
able lines of enquiry.

Following Dempster [2] we employ: (i) variable space, CI/, a p-
dimensional vector space of variables U, V,--- over the real field, (ii)
item space, X, the dual vector space of linear functions (items, z, y,---)
on CVV with the bilinear product [z, V].

For example, with p=2 and the directly measurable variables M,

=WEIGHT, M,=HEIGHT, we have C{/= {i‘, aM|ac Rz} . Three items
i=1

in % are 'z=JIRO, x=ICHIRO and *x=TARO. To state that [z, M]
=62 kilograms is to state the measurement made for JIRO’s WEIGHT ;
while the hybrid item (1/3)JIRO+(1/3)ICHIRO+(1/3)TARO has an ana-
lytical utility.

The variable M,+M,, for example, is not directly measurable but
has, for item z, the implied measurement [z, M;]+[x, M;]. In general,
it must be supposed that there are p directly measurable variables M;,
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4 M. STONE

.-+, M, spanning ¢ and that items are in 1-1 correspondence with
the ordered set of measurements [z, M],---, [z, M,]. The concept of
error of measurement is therefore not applicable to items as we con-
sider them in this paper; the “error” is built-in.

Section 2 introduces some useful coordinate-free notation and defi-
nitions associated with probability distributions and random samples in
X. Section 3 is concerned principally with the coordinate-free treat-
ment of multivariate multiple regression, including the Gauss-Markov
theory. Section 4 considers covariance adjustment in the estimation
of the mean of a probability distribution on . Section 5 relates the
present approach to that of other authors. The Appendix establishes
some technical results (Al, A2,--.) that are needed.

2. Notation and definitions

The following table introduces some nearly standard bilinear oper-
ators in simplified notation:

Input Operator Defining equation
rxexX x?: CY2—»R U, V)=[=z, U][z, V]
T,yexX ry: >R zy(U, V)=[=z, Ully, V]

2e R, ((kz, ky);

kel e m) | DAY VSR | (B 2k, V)= alte, Ullky, V]

v a measure on X Szzdv: 2R (S xzdu>(U, V) =S [®, Ullx, V]dy

(integrals existing)

Occasionally Sx”du will be employed as a linear transformation CiV— X

defined by (S :vzdu>(U)=S z[x, Uldv (integrals existing); the usage will

be clear from the context. In the CV*—> R form, it is easy to show
that all inner products (i.p.’s) and semi i.p.’s on €I/ may be represent-

ed in the form S:ﬁdu. The latter is an i.p. or semi i.p. according as

the support of v ‘spans’ or does not necessarily ‘span’ ¥ or, equiva-
lently, according as the corresponding linear transformation &V — X is
invertible or not necessarily invertible. For a sample s={'z,---, "z} of
items in &, the sample mean is m=3*x/n. When {*z—m, k=1,---,n},
span X, S=g(n—1)"'3(*x—m)® is an i.p. we will call the sample
variance. Examples of identities that illustrate the simple ‘univariate’
form of multivariate analysis of variance in the present notation in-
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clude
2 ret=nm*+ 3] (fx—m)t
for a single sample and.
2 XY =mm'+ 3 n(m—m)+3 3 (Yz—'m)’
for several samples (with the obvious symbolisation).

An i.p. on C7, I:S 2’dy has a dual i.p. on X whose associated

linear transformation X —CU is the inverse I of I: CV—X. We
have I(U, V)=[IU, V]=I"'(IU,1IV). The sample concentration, C, is
defined by C=S"'. A semi i.p. I, is larger than another, L, if I(V, V)
=L(V,V) for all V, with inequality for some V. A semi i.p. is mini-
mum in a class if all in the class are larger than or equal to it. Given
linear T: CV—CY and a semi i.p. I on €1/, the shadow semi i.p. I7 is
defined by I7(V, V)=I(TV,TV). As a transformation, I”=T'IT where
T’ denotes the dual linear transformation of T defined by [z, TV]=
[T'x, V].

Given a random item 2 with probability distribution P, its mean

¢ and variance 7 are defined by #:S zd P and V=S (x—p)’dP, when the

integrals exist. We will consider only distributions P whose support
is not confined to any proper manifold (translated subspace) of X’; in
which case V is an i.p. and we write 4=F~!. Suppose that P is such
that, for a subspace Sc ¥, conditional probability distributions are de-
finable with respect to the condition x € M € X/S where X/S is the
vector space of cosets of S in ¥. For simplicity, we suppose the defi-
nition is unambiguous, in which case we write p(H)=E (x|x € M) and
P(M)=E ((x—(M))}| x € M) (integrals existing) for the conditional mean
and variance respectively. If S is proper, V(M) will be a semi i.p.
We say that

(a) P has linear regression on X/S if

R(S)= aae {1 H) | M € X/ S}

is a manifold complementary to S and
(b) P is homoscedastic on X¥/S if /(M) is independent of .M.

The following lemma reinforces the understanding of this definition
of linear regression and, at the same time, illustrates coordinate-free
techniques of proof.

LEMMA 2.1. Linear regression on XS 1is equivalent to M-affinity
of W H) for He XS, that s, y<§: ziﬂ*>zi"g] 2 M) for S a=1 and
M e X[S, 1=1,---, k, for arbitrary k.
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PrOOF. Given the linear regression, let & denote the subspace of
X of which R(S) is a translate. Then we may make the resolution
M)=p(S)+t( M) where U M)=HMNT. Since 3 AHUM)eT (4 is a
vector space) and 3} AH( M) € 3 2, M (by definition of the latter) we
must have (3 4,.M")=3] A4 M) whence p is M-affine. The converse
is established by showing that {u(HM)—u(S)| M e X¥/S} span a vector
space complementary to S.

The following result is proved in A3:

THEOREM 2.1. If P has linear regression on X|S and ¥V is an 1.p.
then p( M) 18 the d-orthogonal projection of p on M, that s, A(p— p(M),
2)=0 for x€S.

3. Single-sample estimation

Suppose (i) z,---, "z, £ constitute a random sample from P (ii) s=
{'z,- - -, "z} have been completely determined by measurement of [‘x, M,],
t=1,-+-,% and j=1,.--, p but (iii) knowledge of z is incomplete in that
only [z, M,], j=1,--+, r<p, have been measured.

An immediate consequence of (iii) is that knowledge about z can
be expressed in the form x ¢ M for some HMe X/S with S the bi-
orthogonal complement of the subspace UJ of €IV spanned by M,,:--,
M,, that is, [t, u]=0 for te€S, ueU. The problem to be considered
here is that of obtaining an estimator &=&(¥, s) of x based on infor-
mation about P, the sample s and the knowledge that x € M.

Restriction. We consider only &’s for which (.M, s) € M ; in which
case, estimation of z is equivalent to prediction of [z, M, ], --, [z, M,].

DEFINITION 3.1. &(.H, s) is M-affine if
k
:%(; LM, s) =3 2,&(M, s)
identically in k, M',---, M*e X[S if 3 2,=1.

Remark. For the case of known P, #(M)=gep(HM) is M-affine
when P has linear regression. So, in a rough sense, a requirement
that & be JH-affine expresses a belief that P has linear regression.

By analogy with Lemma 2.1, we see that #(.H, s) is M-affine iff
(M, 8)=MNL(S, s) where L(S, s) is a manifold complementary to S.

DEFINITION 3.2. #(H, s) is S-affine if #(M, s)=4x(M, s')+(1—2)-
(M, 8") for *e=2%c'+(1—2)*x" and *z"'—*x'€ S, k=1,---, n.

DEFINITION 3.3. #(.H, s) is equivariant if, for all 1-1 affine trans-
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formations A, ¥ — ¥, we have
F(AM, As)=A%(HM, s) .

DEFINITION 3.4. #(.H, 8) is conditionally unbiased if E (&(_%H, 8)| ™. H)
=p(M) for M e X|S where E(- | M) denotes expectation conditional
on *M=.r+S fixed, k=1,.--,n.

The reader will probably find it useful to examine at this stage the
parallels that exist between our formulation and a matrix formulation
such as that of Rao ([7], p. 459 et seq). With slight changes of nota-
tion, Rao’s “ Gauss-Markov set-up”, incorporating the restriction to an
X whose first column has elements all unity, becomes

(3.1) yk:b+Bxk+uk (k:]_,. .o, n)

with u,,---, u, independent and E (u,)=0, E (u.u.)=V. The correspond-
ence is given by:

[z, M.] [z, M, ]  Ix
ﬁt~( )=x, z(in S)~( )=y, "m~( k) ,
[, M) [z, M,] b

U H) (w-afﬁne)~( B, s)~(

x x )

b+Bx) ’ bx) /)’

M-affinity of (M, s)~j(x) an affine transformation of x (the usual
linearity of multiple regression),

S-affinity of #(M, s)~g(x) an affine transformation of (yi,---, y’), (gen-
eralisation to affinity of the usual linearity-in-observations of Gauss-
Markov theory),

7(S) (the homoscedastic variance)~V.

Rao’s formulation treats x;,---, x, as constants whereas we have intro-

duced a probability distribution P over the whole of &’; however the

results of this section are conditional on ® % so that the distinction is
immaterial.
We now introduce an estimator dependent on m and C only.

DEFINITION 3.5. The least squares estimator, &, say, is the C-orthog-
onal projection of m onto M.

Notice that this estimator has a certain inevitability about it.
There is no other estimator that is a function of m and C only and is
as geometrically natural. It will therefore not be surprising to find
that %, has an important role in statistics; it is, in fact, the usual
least squares estimator of the matrix approach so that our terminology
is justified.
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For a general &, *&=,.%(* M, 8) is the kth fitted item. The devia-
tion *r=*x—*% is the kth residual. The semi i.p. R=>]** is the resid-
ual sum of squares.

THEOREM 3.1. (i) &, is the M-affine estimator minimizing the
residual sum of squares;

(i) %, is equivariant;

(il) Z( M, )=m+3 p*x where p=(n—1)"' CH(**H—H, H— M) and
C.u denotes the concentration of the sample M in the vector space
XIS,

(iv) %, is S-affine;

(v) %, is conditionally unbiased if P has linear regression on X/[S;

(vi) when P is homoscedastic on X|S

(vii) when P is homoscedastic on X/S, &, has minimum conditional
variance, given by (3.2), among S-affine estimators that are con-
ditionally unbiased on S for P having linear regression on X[S;

(viii) when P is homoscedastic on X[S, &, has minimum conditional
mean square error, given by the right-hand side of (3.2), among
S-affine estimators that have bounded conditional mean square er-
ror for P having linear regression on X[S.

Remarks. The result (i) gives an alternative definition that is also
a coordinate-free multivariate generalisation of the process of fitting a
straight line by least squares. The result (ii) reveals the “robustness”
or “indifference” of %, to all aspects of the estimation problem except
its affine invariants. The result (iii) shows that &,( K, s) is a scalar
combination of {*z} with coefficients which are functions of “. ¥ and
M. This is an interesting fact not immediately apparent from other
approaches. Equation (3.2) is the coordinate-free multivariate general-
isation of the well-known formula for the variance of the prediction
from a least-squares fitted straight line

where s'=31(2,—%)}/(n—1). Result (vi) is a version of the multivariate
Gauss-Markov theorem while (vii) is an alternative to it in generalisa-
tion of Barnard [1]. The relationship with estimation based on (3.1) is
that minimum variance estimation of the elements of b and B by un-
biased linear functions of the coordinates of the {y.} is equivalent to
minimum variance estimation of p(H), for all H € X/S, by an H-affine,
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S-affine and conditionally unbiased estimator #(.¥,s). The interpreta-
tion of the estimator as equivalent to C-projection of m is, we claim,
not easily uncovered in the matrix approach.

PROOF OF THEOREM. (i) With &(H, s)=HNL(S,s), let K be
the subspace complementary to S and parallel to £(S,s). Let II de-
note projection onto S with kernel X :

J L(S, 9)

M % 'z

o

&,
¢3
3

S rO

With =43 *%/n, we have m € L(S, s) and m—m € S so that *s—*z=
H(*x—m)—(m—m) and, by A2, R=(n—1)S"+n(m—m). Whence, by
Al, R is minimized when 7m=m and X is C-orthogonal to &, that is,
when _(S, s) passes through m and is C-orthogonal to S.

(i) By the identity ((S™))*=C for 1-1 T, #;—m and x—%; being
C-orthogonal implies that T#,—Tm and Tx—T%, (that is, A%;—Am
and Ax—A%,) are (ST)~! orthogonal. But S7'=3(A*x—Am)*/(n—1),
the variance of the sample As, establishing the result.

(ili) *r is defined as the C-orthogonal projection of *Z#; on the line
through m and #,. Now 2A(%;—m) is the C-orthogonal projection of
*»—m on the one-dimensional subspace, I say, parallel to &,—m.
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M Ao —m)

b ‘r=2%c+(1—2)m

M z &o

So using A4 with I=8, we obtain 3 [*z—m—2(Z;—m)]A(E;—m)=0
which implies 3 A [*zx—m—2(%;—m)]=0 or since 3 4,=0, Z,=m+
2 u*x where p,=2,/314;. From the figure, we see that *x—m—2A(3¢
—m) is C-orthogonal to Z,—m. Whence 2, =C(*x—m, &;—m)/C(&;—m,
Ec.—m). So

2] 1::2 C("x—m, ;ﬁc——m)’/C(ﬁ:c—m, éc-my
=(n—1)/C(&;—m, &;—m)
by A5.2. Hence p,=(n—1)"'C(*z—m, &, —m)=(n—1)"'C(*&;—m, &c—m).

We can now use A6 with I7(x—m)=%,—m and the fact that a sample
concentration is invariant under isomorphism to obtain

te=n—1)""CHC*M— M, H—H) .

(iv) This follows from (iii).
(v) This follows from (iii) and A5.1.
(vi) When P is homoscedastic on ¥'/S, we obtain from (iii)

P(&o(HM, )| " HM)=3 (e+n"")P(S)
=[14+n(n—1)""CH(H— M, H— HW(S)/n
using Ab.2.

(vii) By the algebraic theory to be found in Maclane and Birkhoff ([61,
p. 426), we see that S-affinity of % is equivalent to

(3.3) (M, 8)=20+ 3 T (*x—2x,)
where z,, ,,---, z, are arbitrary fixed points in M, ' H,---, "M, re-
spectively, while Ty,.--, T, are linear, S— S, with x,,---, 2, and T},

««+, T, possibly functions of @ %. Conditional unbiasedness of % is then
equivalent to

34) M) =20+ 23 Telp(* M) — 3]
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for all linear regressions p. Now

3.5)  F(&(M, )|V M=E[{X Tul*z— p(* M)} | " M] =S 2 (Tix)dy

if 7(5)=S w'dv. Writing gu=pm+n-",

(3.6) bo( My 8)=3) 0,z

and '

3.7) Pl H, 9)| )= 2 (@.27d .

But

(3.8) S (T — 3 (u2) = 3 (T — qu D))t + o T) + (T

where T=(3 ¢, T:)— (X ). In (3.4), take x.=pu(*¥) (and hence z,=
(M) for some linear regression p,. Then (3.4), the relation M=
31 ¢ M (a consequence of A5.1) and (iii) imply

(3.9) 2 (T —q) [#(* M) — po(*H)1 =0

identically in linear regressions u. The choice
K= )+ L H— T, H— T |s
n n—1

k=1,-.--,n, where se S is arbitrary, is a linear regression and gives
p(EM)— p(*M)=q,s. Whence, substituting in (3.9), 3 qu(Ty;—q:l)s=0
or T=0. Substitution in (3.8) and comparison of (3.5) and (3.7) then
establishes the result.

(viii) With (8.3), the conditional mean square E [{Z(.H, s)—x}| M, HM]

=P (H)+ P (E(H, s)|<">m)+[x.,+g Tk{,‘(km)—xk}—,,(m)]z. The trans-

formation
(3.10) #(-) = 2 TuluC H) — 2} — 1 H)

is an affine transformation from the affine space of linear regressions
¢ to the affine space .M, whence the right-hand side of (3.10) is neces-
sarily of the form z*+ T[u(-)—p*(-)] for some fixed x2* € M and T linear
from the vector space {pu(-)—p*(-)|fixed g*} to S. Unless T=0, [x,+
¥+ T{p(-)—p*(-)}1A(V, V) will be unbounded for at least one V, while
the condition of minimum mean square error requires x*= —x, whence
o+ 20 T {p(* M) — 2.} = (M), that is, #(HM, s) must be conditionally un-
biased. The result then follows from (vii).
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Remark. The form of %.(M,s) given by (iii) can be reexpressed
by giving C, its transformation role. We have

S (—=1)C(* M — M, M — M)
=3 (n—1)"[C.*H— M), H— H]*x=B(H—H)

where B=2"w(% M — M) H— M) may be called the regression

transformation from X/S to X. (We adopt the convention (3] *x*2)U
=42 *x[*2, U].) Then

(8.11) Eo( M, 8)=m+B(H—M) .
The fact that %, is the coordinate-free form of the usual least squares

estimator is now explicit.

4. Covariance adjustment

Suppose {'z,---,**x} is a random sample from P with unknown
mean p and unknown variance V. As in Section 3 we suppose that
s={'z,---,"x} have been completely measured but that, for {"*'z,.--,

"teg}, we know only that *xre* M e X/S, k=n+1,.---,n+c. Suppose
P has linear regression and is homoscedastic on ¥/S and that it is

required to estimate pg. The estimator ,&,,=m=§=}l"x/n has conditional
mean and variance p(.H,) and F (S)/n, respectively, where J_L.=§‘; ¥ Mn.
The correlated estimator pczk:‘;:l"é:c/c, where C is the concentration
of the sample s and *%, is the C-orthogonal projection of m onto * ¥,
has conditional mean u(L), where .= 3 *Hje. It is natural to

k=n+1
consider the estimator

= A+ =D, =m—1—)B(H,— H.)

by (8.11). By Theorem 3.1-(v), /;, has conditional expectation Au(.H,)+
(1—2)p(HM,) and, using Theorem 3.1-(ili) and A5, we find

Pl )= 1+ A= CH T e, Ta= T (S .

_n
(n—1)
The unconditional mean square error of 7, as estimator of g is then

E [A{s( M) — 2} + (1 — ) {se( H) — p} P

{14+ (12 BCH T~ o, = TIPS .
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The first expectation equals [#/n+(1—2)/clF™ where T: X—X
denotes projection parallel to S onto &, the complementary subspace
parallel to R(S). [If P has linear regression and is also homoscedastic
on ¥/9 then F”=pP(I).] With interest concentrated on a particular
variable U say, it is easily verified that the mean square error of [z, U]
is minimised by the choice

—_ (9fct+e)
(6/n—+3/c+e)

where 5=p(T'U, T'U)W(S)U, U) and
e=(’n—1)_1 E [Cﬂ(ﬂc—jﬁm tﬂzc—kﬂn)] .

6 may be more easily interpretable when written as F(U;, U,)/F(U;, U;)
where U, and U, are the components of U in the resolution CiV=CV, @
Y, where (i) €V, is the “error variable” subspace of €I/, that is, the
subspace of variables that are “regression free” with respect to R(S),
namely, [p(HM), U] is independent of M e X[S for U, eV, while (ii)
Y/, is the subspace of variables on which **'z,..., "**x were measured,
that is, the biorthogonal complement of S. This form of 6 leads with
little analysis to the identity 6=R}/(1—R}) where R} is the multiple
correlation coefficient between [z, U] and [x, M],---, [®, M,] for the dis-
tribution P. Without knowledge of P, it is necessary to estimate ¢
and ¢ before [z,, U] can be calculated. Estimation could be based on
m and C.

Note that the dependence of the choice of 2 in g, on the variable
of interest U means that j, is not, in general, a linear function on CV/.
So we are not, strictly speaking, estimating g per se but providing
estimation of each [y, U].

A special case of some importance is when the distribution, P.,
of M in X/S induced by P, is d.x-spherical about E (M), where 4=
[E(HM—E(M)]. (That is, Pu[A]l=Pu[E(M)+T(A—E(M))] where
T is any 4.-orthogonal transformation of X/S and A—E (M) denotes
{(M—E(M)| Me A}.) By an argument based on conformal shells, it
can be seen that ¢ has the same value for all such spherical distribu-
tions and, in particular, the same value as for a normal distribution.
Another argument shows that, for P normal,

EC(Hy— M., Hp— M) =(n—1)(n+c)d/[nc(n—d—2)]

where d=dim (X’/S); whence e=(n+c)d/[nc(n—d—2)]. In the case c=
oo, we get

_ d(1—RY)
d1—Ry)+(n—d—2)R}
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5. Relationship to other work

Dempster. The key relationship is the identity of the least squares
estimator, &;, and Dempster’s “augmented best linear predictor” ([2],
p. 148). Although Theorem 3.1 gives us implicit assurance of this
identity, it is readily established by direct argument. We have to
translate from Dempster’s definition in I/ to our definition in %¥. From
Dempster’s equation (8.2.12), the “predicted value” for item x on var-
iable V is, in our notation, [m, V]+[x—m, V] in which V=TV where
T is S-orthogonal projection onto CV,. But [x—m, V]=[T"(x—m), V]
where T is C-projection onto the C-orthogonal complement of S. More-
over T'(x—m)=%,—m so that the predicted value using the augmented
best linear predictor is [m, V]+[&,—m, V]=[&,, V], our least squares
estimate of the value of item x on variable V.

Kruskal and Eaton. Kruskal ([4], [5]) discusses a general ‘univari-
ate’ model in which our single multivariate sample may be accommo-
dated, albeit somewhat artificially. It is convenient to restate Kruskal’s
theorem in the terminology developed in this paper. We set up an N-
dimensional vector space 4/, which we may call data space, and, implicit-
ly, its dual vector space 9, which we may call combination space, with
the bilinear product [Y, W], Ye ¥, We9.! We have a probability
distribution on 4/ such that E Y=g and the objective is estimation of
u, supposing u € 2 a subspace (linear manifold) of 4J. Suppose E (Y — p)*

=V=S y'dm is an i.p. on Y and A=V~'. The Gauss-Markov estimator of

&, fr, is the A-projection of Y on 2. (It is easily verified that ; is the
minimum variance, linear, unbiased estimator of x.) For a given i.p.
J on J, the least J-squares estimator, p*, is the J-orthogonal projec-
tion of Y on 2. The covariance operator Y : ¢J—4 (with respect to
J) is defined by

h:S J(y, 2ydm .

It is easily shown that ¥ is 1-1. Kruskal’s Theorem 1, [5], “p*=p if
and only if Y2=07”, is proved in this formulation by firstly using A5.1
to establish that

MY —p, 22)=H(Y—p, 2) for p,ze Q2.

(We pay a penalty in proof-length for implicitly distinguishing between
data and combination space, a distinction that Kruskal does not make).

To accommodate our single multivariate sample in this version, we
fix S and {*#}. Take N=np and identify the sample s with Y e ¢ by
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Y=[a— (M), -, "z— (" M)]

where g, is an arbitrary linear regression. & is thus isomorphic to S*.
We have

p=[p( M) —p' H), - - -, p(H)— p("H)]
and {g|all linear regressions p(.H) on X/S} is a subspace 2.
We have l’p=g J(¥, p)ydm where dm gives the components y,---,

¥, of y independent distribution P,,---, P,, say, respectively, with zero
mean (corresponding to the conditional distributions of *x—p(* ¥) in
*M, k=1,---,n). Hence

2u=[ | wn, s I~ o 2P

where J, is the restriction of J to the kth component of 4J. For a
basis {M,} of X/S with *H =3 *3,M;, we have

=13 22 (M) — po HI))]

where ).‘,‘=S J(s, -)sdP,. If ¥, is independent of k then Y2=0 and p
=p*. A sufficient condition that X, be independent of % is that Ss’dP,c

and J, be independent of k, when the components of ¢/ are identified
with &S. This is equivalent to homoscedasticity on X/S; and, if all
such constant J, are considered, the least J-squares estimator corre-
sponds to the HM-affine estimator minimizing 33 (*x—*%)?, that is to (&,
«++,™%,). This insight thus gives us an alternative proof of Theorem
3.1-(vii).

The argument just described may be regarded as providing an
alternative to Eaton’s [3] embedding of the ‘standard multivariate
linear model’ in the Kruskal setup, at least when the single restric-
tion is made that makes that model equivalent to our conditioned single
multivariate sample.

Appendix

Al. For the class of projections {II : XX — X} with fixed range and
an 1.p. I on €V, the shadow semi i.p. I is minmimized when IT is I7'-
orthogonal. For IT' has a fixed kernel X, say, and I(I'V, I'V) is, for
fixed V, minimized when I’V is I-orthogonal to K. But I(I'V,II'V)
=I"(V, V) so that I" is minimized when II’ is I-orthogonal to X which
implies the result.
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A2, If I=Sm2dp and T: U—CY is linear, IT:S(T'w)zdp. For
I, V)=S [z, TU][2, TV]du:S [Tz, Ul[T'z, V]du=<S (T’x)’du)(l], V).

A3. Let IIs denote projection onto & parallel to R(S). Then, by
A2, PIS=E (IIs(x—p))=EsnEzeu(@—p( M)} with obvious notation.
If p( M) is the 4-orthogonal projection of 2 onto H, we have

V"s=E Ex ¢ H(z— pH))* .

By Al, rTi<plls or Esy Bz e m(a—pl M) <Exn Ez e m(x—p(M))>. But
(M) is the value of z* e M minimising Ezc u(x—a*)* so that the
identity (. M)=p( M) follows.

AL If =T ®U where TNU=0 and I=S o'dy is am i.p. on V),
a necessary and sufficient condition that I and U be I ‘-orthogonal is
St(x)u(a;)dsz where t(x)eT, uw(x)eU and w=t@)+u(). For if II,
and II, are projections defined by I7,x=t(r) and Ix=u(x), we have
(S Hlx-ﬂzxdu>(V, V)ES (%, V][, T{VIde=I(LV, I;V)=0 if and only

if 177 and IT} are I-orthogonal, equivalent to I-'-orthogonality of 17, and
IT,; whence the result.

A5, If 'y,--+,™y span X so that F=33* is an i.p. and G=F"!
then :

A5.1. 3 G(*y, x)y==x
A5.2. 31 G(y, »)G(*y, 2) =Gz, 2)
A5.3. 3 G(*y, *y)=np.

For A5.1, [X G(*y, z)*y, V1= [*y, Gx][*y, V]=F(Gz, V)=[x, V]; while
A5.2 is an immediate consequence. For Ab5.3, let G denote the nxn
symmetric matrix with (¢, j)th element G('y, ’y). A5.1 shows that G
has rank p while A5.2 implies its idempotency, whence A5.3 follows.

A6. If K 1is a subspace of X amd II denotes C-orthogonal projec-
tion onto K then, for x € K, Cx, x)=C(IIs) (x, x) where IIs denotes the
sample {II'x,---, [I"x} in K and C(IIs) is its sample comcentration (de-
fined in K as vector space).

The proof is fairly straightforward.
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