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1. Introduction

In this paper some aspects of a univariate linear model, namely, opti-
mality of BLUS residuals, and testability of a linear hypothesis are
considered.

Theil [6], [7] introduced the concept of BLUS residuals and Gross-
man and Styan [1] proved some optimal properties of these BLUS
residuals. In this paper, a simple and direct proof of the results of
Grossman and Styan is given without the restriction imposed by Theil
and Grossman and Styan (see Section 2). This simple method is enough
to tackle some other aspects of BLUS residuals considered in many
other papers and, moreover, gives proper insight into the problem.

For testing a linear hypothesis in a linear model, Roy and Roy [4],
[56] introduced different concepts on testability. A geometric explana-
tion of the different situations is presented here and it is also empha-
sized that the notions of testability introduced by Roy and Roy is
somewhat misleading. Unfortunately, this notion is widely believed
and practiced. Again, a recent result of Millikan [2] on estimability
is shown without involving unnecessary matrix calculus.

2. On BLUS residuals

Some results on BLUS residuals, which are slightly more general
than those obtained by Grossman and Styan [1] and Theil [6], [7], are
stated with very simple proofs.

Consider a linear model

Y=XB+u,

where X is a known 7nXq matrix of rank ¢, 8 is unknown, and u:
nX1 is a random vector with mean 0 and covariance matrix ¢°I,.
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A vector of uncorrelated regression residuals is defined by r,=A4'Y,
where A: nxm, and

2.1) Ey,=0 and Cov (r)=d’l, .

Let L: nXe (e=n—q) be a matrix such that L'L=1, and C(L), the
vector space spanned by the column vectors of L, is orthogonal to C(X).
Note that

E(4'Y)=0 < C(A)cC(L) .

Hence (2.1) is equivalent to A=LH with H'H=1,. When m=e, the
above condition is equivalent to AA’=LL’'. This was obtained by Koerts
(see Grossman and Styan [1]) in a lengthy way.

Now, suppose we want to “approximate” J'u by A'Y where

(2.2) J'JI=1I,, A'A=1I,, E(A'Y)=0.
The “best” approximation is done by minimizing
(2.3) tr[Cov(A’Y—J'u)] .

It is clear that if C(J)=C(L) then J'Y is the best approximation since
J'Y=J'u in this case.
Note that J can be expressed as

(2.4) J=Ji+dy,
where C(J)cC(L), C(Jy) | C(L), and
(2.5) J=LM,

where M is an eXe matrix. Suppose that the rank of M is s. Then
M can be expressed as

(2.6) M=PDQ ,

where P and @ are eXe orthogonal matrices,

D,| 0
e p[240]

and D,: sxs is a diagonal matrix with positive diagonals less than or
equal to 1. We can also write A=LT, where T: eXe is an orthogonal
matrix. Now

(2.8) Y,=Cov(A'Y—J'u)
=Cov [(A—J)u] , since A’X=0
=d(A-J)Y(A-J)
=d*(2I,— A'J,—J/A) ,
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using (2.2) and (2.4).
From (2.8) we get

(2.9) 3,=dQ2L-T'M—M'T),

(2.10) tr 3 ,=d"(2e—2 tr (T'M))=2es*—24* tr (DG) ,
where

(2.11) G=P'TQ.

Thus the problem is to maximize tr(DG), where G is ‘an orthogonal
matrix. From the structure of D given in (2.7) it is clear that

(2.12) tr (DG)<tr (D)

and the equality occurs, iff

Lo
(2.13) G:[ . Gl]

where G, is an orthogonal matrix. Hence an optimum A is given by

L1017,
OG.]Q'

~ Grossman and Styan [1] (1972) and Theil [6], [7] considered the above
problem with the following additional assumption on J: For any matrix
K: nxq of rank ¢ such that K'J=0, the rank of K’'X is q. It can be
seen that the above assumption is equivalent to

(2.14) A*=LP|:

L'J is nonsingular
& rank (J))=e
< rank (M)=e
s> s=e.

Thus, in this case the optimum A is given by LPQ’ which can be ex-
pressed as Jy(J/J)) * (using the symmetric square root).

Let A* correspond to an optimum A in the general case. Next,
we shall give a shorter (and direct) proof of an optimality result, more
general than that obtained by Grossman and Styan. Their result is
(2.19), and in particular,

(2. 15) Chmux(z’A) g Ch’mx(zd.‘)

where A satisfies (2.2) and ¥, is defined by (2.4), and Ch,,, denotes
the maximum characteristic root.
Consider an ex1 vector I with l'l=1. Note that
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U2, l=d||Al-J1|*,

where || || denotes the standard Euclidean norm. For fixed I, b€ C(L),
b'b=1,

lo—J2]f*

attains its minimum value 2—2||Jyl|| when b=J,l/||J/l||, Jl being defined
as in (2.4). This can be seen easily. Thus

(2.16) (A2 1=2—-2||Jl||=2—2(U M'MI)2=2—2(IQDQU)"> .
Taking supremum for both the sides, we get

(2.17)  (1/6)Chopen(3 1) 22— 2Chio( D) =2Chpar(I— D) =(1/0*)ChoarS ao
since,

(2.18) S p=d(A*—J)(A*—J)=d"[2],—2QDQ"] .

Note that, if s<e, Ch,.(J,.)=2¢°. This is the result of Grossman and
Styan who obtained it in a restricted setup discussed earlier.

Using Courant-Fisher minimax theorem (see Rao [3]), the following
can be obtained from (2.16) in a straightforward manner:

(2.19) Chi(ZA)gCht(EAt) N 'I:=1, ree, @

where Ch, denotes the ith largest characteristic root. It may be re-
marked that for any two pXp p.s.d. matrices I, and I3, ‘

(2.20) I—T; is p.s.d. = Ch(I)2Ch(I}), i=1,---,p

although the converse is not necessarily true. It was pointed out by
Grossman and Styan that Theil’s conjecture “Y,—2%,. is p.s.d.” is false;
however, Theil’s conjecture is almost true, in the sense described in
the above result (2.19).

3. Testability of a linear hypothesis under a linear model

The standard linear model states that the mean p of a random
vector Y: nXx1 is given by u=A'6, where A’ is a known nXm matrix
of rank r and ¢, mX1 is unknown. A linear hypothesis is stated as
H: G'0=0, where G’ is a known sXxm matrix of rank s (assume, for
simplicity). In standard terminology, the hypothesis H is said to be
testable, iff there exists a matrix B’: sxn such that G'6=B'y, where
p=A'6. In two papers [4], [6] Roy and Roy considered linear hypotheses
which may not be testable in the above sense and introduced the con-
cepts of complete testability, partial testability and non-testability of
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a linear hypothesis.

It is the purpose of this note to indicate that these concepts are
somewhat misleading and to clarify the situation through geometric
interpretations.

Basically, a linear model states p € 2, where 2 is a vector subspace
of R*, and a linear hypothesis (under this model) states p€ w, where o
is a vector subspace of 2. The problem arises when p is parametrized
through ¢ and the relation between p and 6 is not one-to-one under
the model (i.e., when r<m). Although in many experiments # may
have some meaningful interpretations, but mathematically # serves as
a coordinate vector of p with respect to some given spanning vectors
(i.e., the columns of A’). However our only interest is on g and any
meaningful hypothesis should be expressed in terms of x. Here & serves
as an auxiliary parameter and any hypothesis on # has to be considered
only in terms of its equivalent representation in terms of p.

Let T be the linear transformation of R™ to R* with the matrix
representation A’. Then the model y=A'6, 6 ¢ R™, can be stated as
1€ T(R~)=W. The linear hypothesis H: G'0=0 can also be written as
0€V, where V is the vector subspace of R™ orthogonal to C(G), the
space spanned by the columns of G. Although e V=ype T(V), but
1€ T(V) does not imply 6 € V. Thus the hypotheses § ¢ V and g€ T(V)
may not be identical. This fact is the basis of the papers of Roy and
Roy [4], [5].

Note that the hypothesis H: G'¢=0 is testable in the above sense,
ift
(3.1) N,CVe&s V=V+N,,

where N, is the null space of T. The cases where V=V+ N, is violated
can be classified into two categories according as V4+N,=R™ or V4N,
is a proper subset of R™. Using a different approach, Roy and Roy
suggested the same three categories and called the hypothesis H cam-
pletely testable, partially testable or non-testable according as (in our
formulation) V=V+N,, VcV+N,CR™, or VCV+N,=R".

The main point of this discussion is that the fact that x e T(V) and
6 € V are not identical should not bother us. Note that it is not possible
to distinguish between # and 6* based on our model if #%*—@ e N, and
so such # and 6* should be considered as “equivalent” since both of
them are mapped to the same value of p. Using this idea we should
treat two hypotheses H,: 6€V, and H,: 6 €V, as “equivalent” if

(3.2) T(V)=T(V) .

The hypotheses 6 € V and g€ T(V) are indistinguishable and should be
treated as “equivalent.” Note that p e T(V) is identical to 6 € V+ N,
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which is testable in the standard sense. The degrees of freedom of
the hypothesis H should be defined as

(3.3) h=dim T(R™)—dim T(V)=m—dim (V4 N,)<s .

It can be seen that h=s iff N,cV. Moreover, h=0, iff V+N,=R"
and & can be >0 even when the condition N,CV is violated. When
h=0, the hypothesis H puts no restriction on the model and such a
hypothesis is logically acceptable under the model.

So our viewpoint is that every linear hypothesis is testable when
it is translated in terms of p in the way described above. To illustrate
this consider the following simple example: The model states p=6,+6;.
Then consider three hypothesis H,: 6,=0, H,: 6,=6,=0, and H,: 6,+
0,=0. Here H, is equivalent to the model and H, is equivalent to H,
which is testable in the standard sense.

Note that the condition of linear estimability of G'¢@ is given by
(3.1). Millikan [2] suggested a computational ecriterion to check the
condition of linear estimability using the following facts:

(i) VcN, & dim (P, Ny)=dim N, —dim ¥,
where ~ denotes the orthogonal compliment and P, denotes the orthog-
onal projection on V.
(ii) For any matrix B, tr(BB~)=rk(B),
where B~ denotes the (Penrose) generalized inverse of B.
To see (i) more easily than Millikan’s proof, note that

dim (P, Ny)=dim N, —dim (N, V) ,

since V is the null space of P,. Now note that dim (NyV)—dim (V),
iff VcN;.

It seems that a more simplified computational eriterion is to check
whether

Py (V)={0} .
This can be checked using only one generalized inverse.
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