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Introduction

Since the posthumous publication of the work of Bayes [6] on the
use of the so-called Bayes’ theorem to produce an estimate of the prob-
ability of a future happening of an event based on the past observa-
tions there has been almost unending discussion on the use of the
concept of a prior distribution in statistical inference. Certainly not
much discussion is necessary when a prior distribution of the param-
eters of an objectively defined statistical model has a clearly defined
objective meaning. It is only the validity of the use of a subjectively
defined prior distribution in connection with the Bayes’ theorem that
has been questioned. A Bayesian assumes the existence of a prior dis-
tribution of the unknown parameters within a model even under the
situation where it is clearly understood that the unknown parameters
are fixed constants and not considered as realizations of random vari-
ables. Although the naturalness of Bayesian solutions of some of the
problems of statistical inference can not be questioned, the difficulty of
the reconciliation between Bayesians and non-Bayesians remains mainly
because of the non-existence of a convincingly objective description of
how to choose a prior distribution.

The purpose of this paper is to give an entirely new interpretation
of the role played by the prior distribution in a Bayesian model and
discuss its implications with the statistical inference. We assume a
probability distribution, called a modifier, over the space of parameters
within a probabilistic model. The modifier is introduced only for the
purpose of constructing a good estimate of the probability distribution
of future observations and is considered to be modifying the ordinary
likelihood function for this purpose. The utility of a modifier is measur-
ed by a criterion of fit of the predictive distribution, an estimate of
the probability distribution of future observations, which is obtained
by formally assuming the parameters within the model to be random
variables distributed according to the posterior distribution obtained by
the Bayes’ theorem with the modifier as the prior distribution. The
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criterion of fit is the expected entropy, or the minus Kullback infor-
mation measure, of the true distribution with respect to the predictive
distribution. The criterion clearly shows how the goodness of fit of a
predictive distribution depends on the choice of the modifier. It is
shown that by using a parametric family of modifiers the method of
maximum likelihood can be extended to provide a useful estimate of
an optimum modifier.

As a guide to the proper choice of a parametric family of modifiers
the situation where the prior distribution is explicitly given is considered.
It is shown that the modifier which is identical to the given prior dis-
tribution maximizes the mean entropy averaged over the prior distri-
bution. The given prior distribution may either be objective or sub-
jective. At least formally our modifier is an entity which is defined
independently of the assumption of existence or non-existence of a prior
distribution. The fact that it identifies itself automatically with the
prior distribution, when the latter is explicitly given, gives a possible
explanation of the nature of the historical confusion between objective
and subjective Bayesians.

The implications of the results obtained in the present paper with
Robbins’ compound decision and empirical Bayes procedures and with
the Stein estimator are discussed and the necessity of developing useful
parametric families of modifiers is suggested.

Although the problem discussed in this paper serves only as a proto-
type it clearly demonstrates the necessity and feasibility of an objective
use of Bayesian models with modifiers playing the role of data adaptive
prior distributions. The basic idea of this data adaptive prior distribu-
tion and its evaluation through the expected entropy of the correspond-
ing predictive distribution was first developed in [3]. Somewhat similar
idea has been presented by Aitchison [1], but this is not concerned with
the adjustment of prior distributions by data.

1. Predictive distribution and entropy

A very general problem of statistical inference is concerned with
the prediction of the probability distribution of some future observa-
tions. In this paper we assume that the object of statistical inference
is to provide an estimate of the distribution of a future observation of
a vector random variable y from the observation of x where both x
and y are distributed according to one and the same distribution. It
is assumed that the distribution of y has a density g(y) with respect
to a measure dy. It is also assumed that g(y) is a member of a param-
etric family {f(y|8); 6 € 6}, i.e., there exists a 8, in @ such that g(y)
=f(y|6,). Further it is assumed that the true parameter 8, is unknown
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and the problem is to find a density h(y|x) of y as a function of x
which will be a good estimate of g(y). Here h(y|x) is not necessarily
a member of the family {f(y|8); 6 € 6}.

As the criterion of goodness of fit of a probability density function
hy) as an approximation to g(y) we use the entropy of g(y) with re-
spect to h(y) which is defined by

B(g; h)= —S log IM}y(y)dy .
h(y) '

Hereafter it will tacitly be assumed that all the integrals appearing in
the discussion have finite values. The neg-entropy —B(g; k) is identical
to the Kullback information measure I(g; k) [9]. The greater the en-
tropy B(g;h), the degree of approximation of h(y) to g(y) is considered
to be higher. This is a natural extension of Boltzmann’s interpretation
of the thermodynamical concept of entropy as the logarithm of the
probability of obtaining a statistical distribution and a mathematical
justification of the present interpretation can be found in Sanov [14].
B(g; h) is non-positive. The criterion of fit of an estimate A(y|x) to
the distribution g(y) is given by the expected entropy E.B(g; h( |x)),
where E, denotes expectation with respect to the distribution of x.

Bayesians assume the existence of a probability distribution of 8
which is here specified by a density function p(@). When x is observed
the prior density p(@) is transformed into a density »(@|x) by the rule
of Bayes

(0] x)= f(x10)p(8) .
| £ex10)O)d0

By using the posterior density p(@|x) an estimate of g(y)=r(y|8,) is
defined by

Wy |0)=| F@|0)p(6]x)d6 .

Following Roberts [11] we will call i(y|x) the predictive distribution of
y implied by the posterior distribution. If in the definition of A(y|x)
p(@|x) is replaced by »(8) we get the predictive distribution of y im-
plied by the distribution p(@). The distribution specified by f(x|8) is
sometimes called the data distribution.

Here we take the attitude that except for its mathematical char-
acteristics as a probability distribution the prior »(@) need not have any
meaning as an objective or subjective probability distribution and assume
that its role is to provide a posterior distribution p(@|x) which will give
a good predictive distribution h(y|x). The goodness of a predictive dis-
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tribution is evaluated by the expected entropy E.B(g; k( |x)). To dis-
criminate the present use of p(6) from the use as an ordinary objective
or subjective prior distribution we call p(f) a modifier, f(x|8)p(6) the

modified likelihood and Sf(a:]ﬂ)p(O)dﬂ the aggregate likelihood. Since

there is no possibility of conceptual confusion p(@|x) which is defined
as the ratio of a modified likelihood to the aggregate will be called the
posterior density.

2. Entropy maximization

In this section we treat a simple but typical example of the use
of a Bayesian model. We assume that y=(y,, %, '+, ¥») and x=(x,,
%, -+, Zy) denote independent observations from an N-dimensional Gaus-
sian distribution N(8,, I), where 8,=(m,, m,,- -, my) and Iy denotes an
N X N identity matrix. The family of the data distribution is {N(@, I,,);
6 ¢ R}, where R" denotes a real N-dimensional vector space, and the
problem is to find a useful predictive distribution of y by using the ob-
servation x. The value of the true parameter 6, is fixed but unknown.

Although we know that we are concerned here with a situation
where the parameter is fixed at 6, we still somewhat arbitrarily assume
a distribution p(8), a modifier, which is an N-dimensional Gaussian dis-
tribution N(0, ¢*Iy) and try to find out whether the formal application
of Bayes’ theorem can produce a useful posterior distribution. It can
easily be seen that in the present case the posterior distribution is an
N-dimensional Gaussian distribution N(cx, cIy) with ¢=¢*(1+6*). The
predictive distribution of y implied by this posterior distribution is given
by N(cx, 1+c¢)Iy) and we have

y —_ 2
log Wy |x)= —% § {log 2z+log (1 +c)+%} ,

-

and

N
2
t=1

E, log hy|x)= —% {log 27 +log (1 +c)+—1—+M} ,

14¢

where E, denotes expectation with respect to the distribution f(y|8,).
Since we have

E,log f(y|00)=—%2‘. {log 27+1}

i=1
the expected entropy is given by

E.B(f( |60); k( |x))
=E,E\(log h(y|x)—log f(y|6,)
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_ cz+(1—c)2Wl
l1+c ’

where m*=(1/N) 3} m}. Here we consider a family {p(@|s?): 0=<¢’< oo}
of modifiers, where p(@|s*) is defined by N(0,¢’Iy). The expected en-
- tropy of g(y)=f(y|6,) with respect to the predictive distribution i(y|x)
is maximized at c=c,,,=m?/(1+m?) or at *=c%,=m?. This result shows
that for the present family of modifiers the one with the value of o
equal to m? produces the best result. If the Bayesian procedure is
applied with priors N(0, ¢*Iy) by many independent individuals to the
present problem with a fixed value 8, of 8, the group of those who
use the prior distribution with o* close to m? will be more successful
in estimating f(y|6,). Thus even a Bayesian will be interested in ex-
ploring the possibility of profitably adjusting the prior distribution, us-
ing the information provided by the data x.

A conservative Bayesian may not like the idea of adjusting the
prior distribution by data. In this case he must use a fixed ¢’ or c.
It is assumed here that the use of p(f|¢*) is sanctioned. It can then
be seen that for any value of ¢ different from 1 the corresponding pre-
dictive distribution produces a poor estimate, i.e., E.B(f( |8,); h( | X))
tends to be significantly negative, when m? is very large. The modifier
with ¢=1 provides a minimax solution to this case. The solution is
given by the limiting case ¢*=oo, which corresponds to the non-inform-
ative prior distribution. The value of the expected entropy E.B(f( |6,);
h( |x)) for ¢=1 is

N 1
4y +e)+ —1+
2 {log (1+0) 1+¢

N
2

which should be compared with the value for the optimal choice c=m?®

N 1
2 g 1+4+m?

If ‘m? is large compared with 1, the value of the variance of x;, the
difference between the two choices is small, but otherwise not. From
the present point of view of the use of a modifier, the uncritical re-
commendation of the non-informative prior distribution in a Bayesian
approach is unjustified. ‘

The expected entropy of the predictive distribution f(y|x) defined
by putting & of f(y|8) equal to x, which is the maximum likelihood
estimate of 8,, is

E.B(f( 18)); £( |x)= —% :
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Comparing this with the former results it is clear that even the Bay-
esian procedure based on the non-informative prior distribution is pro-
ducing a better predictive distribution than f (y|x) which is the predic-
tive distribution implied by the maximum likelihood estimate of 6,.
The routine approximation of a posterior distribution by a distribution
concentrated at its mode produces a predictive distribution f(y|cx), for
which the expected entropy is evaluated as

E.B(f( 160); f( ch))=~—12Y—{02+(1—0)”W} .

In our terminology the mode of the posterior distribution defines the
maximum modified likelihood estimate of #,. The optimal choice of ¢

is again given by c=c,,,=m*(1+m? and we have
. ___ N
E.B(f( 160); f( |Copx))= g Cort -

The minimax solution to this case is given by f(y|x), the predictive
distribution implied by the maximum likelihood estimate of 8,.

3. Extended use of maximum likelihood estimates

Here we explore the feasibility of using the data x to choose a
modifier which approximates the optimum choice within a parametric
family. It will be shown that this will at least asymptotically be re-
alized by using the parameters which maximize the aggregate likelihood.

Generally, for a parametric modifier p(€|8) with a vector of param-
eters 8, the predictive distribution of x implied by the modifier is given
by

k(x| 3)= S f(x|60)p(6|3)d6 .

When x is observed k(x|d) defines the aggregate likelihood of the Bay-
esian model defined by the data distribution f(x|6#) and the modifier
p(@]3). It should be remembered that in the present definition of the
aggregate likelihood the modifier p(€|d) need not represent any objec-
tive probability distribution.
For the case treated in the preceding section we have
N

log Ic(xlaz):—T(log 2r+log (1+¢r2)+1faz> ,

where 2*=(1/N) 3 2!. The value of | ¢ which maximizes the aggregate
likelihood is given by
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-1 if #¥>1,
&’:
0 otherwise .

In a situation where N grows indefinitely and m? tends to a constant
m?, «* will converge to m2+1 with probability one, where m? is the
average of the squared mean values. This shows the potential of the
maximum aggregate likelihood estimate ¢* as an estimate of ¢2,=m?. It
must be remembered that the present modifier p(#|s?) was chosen quite
arbitrarily and o* was not supposed to have any objectively defined
“true value”. It was only through the process of maximizing the ex-
pected entropy that the optimal value ¢),=m’ was introduced. It is
interesting and also quite natural that the method of maximum likeli-
hood applied to the aggregate likelihood automatically leads to a mean-
ingful estimate of ¢2,,. The gist of the present procedure lies in the
reduction of the number of free parameters within the model, attained
by switching from the original likelihood to the aggregate likelihood.

The above procedure of maximum aggregate likelihood corresponds
to the method of type II maximum likelihood of Good [7]. Good con-
siders the procedure a type of Bayes/non-Bayes compromise and does
not consider objective justification of its validity.

4. Obijective and subjective priors

Although it has been shown that the method of maximum aggre-
gate likelihood can produce a useful estimate of the optimum modifier
p(@|a%,) the outstanding problem is the choice of the functional form
of the modifier. When we consider the situation where the true param-
eter 6, is a fixed constant and the condition of estimability is ignored
the problem of optimal functional form of the modifier has only a tri-
vial answer, the distribution concentrated at §,. When 8, is distributed
according to an objectively defined prior p(@, the average excepted
entropy of a predictive distribution h(y|x) is defined by

B(f; k| p)=E.E.B(f( |6,); h( |x)) ,

where E, denotes expectation with respect to the prior p(6,). It is easy
to see, and in fact is shown by Aitchison [1], that the predictive dis-
tribution implied by the posterior p(6,|x), obtained from the prior p(8,),
minimizes B(f; k|p). This fact is a direct consequece of the following
relation :

B(f i hip=—|{ {10 {{g—}%} F(y16:)1(x]8)p(B:)dydxds,
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=—{ | 1og (7wl F@I6)dyp(BI0,
+{ [ 108 thiw 1001 {{ 7100001 00d8) dy [piesix

where p(8,|x)=f(x|6:,)0(8,)/p(x), p(x)=S S (x|0,)p(6,)d8, and it is assum-
ed that h(y|x) is independent of #,. The last term attains its maxi-
mum with h(ylx)zs f(y|0,)p(6,|x)d8,. This result shows that <f we

are interested in the average goodness of fit of our predictive distribution
we should use the prior p(0) as our modifier.

Here we must also note that if in the above discussion p(#,) had
been replaced by a subjective prior distribution, or a weight distribution
introduced for the purpose of assessment of predictive distributions,
we would have arrived at one and the same conclusion. '

The above observations clarify part of the confusion between the
objective and subjective Bayesians. The fact that both objective and sub-
jective prior distributions can play the role of an optimum modifier could
have been quite effective in obscuring the distinction between the objec-
tive and subjective prior distributions. Rather than the distinction be-
tween the objective and subjective prior distributions the distinction
between the cases with known and unknown prior distributions is more
essential. OQur discussion of modifier is more concerned with the case
where the prior distribution is not explicitly given than with the sim-
ple and uninteresting case where the prior distribution is known.

Though uninteresting in itself the analysis of the cases where the
prior distributions are assumed to be known gives us some idea as to
how the functional form of the modifier should be chosen. The lesson
from the present analysis of the cases with known prior distributions
is that we should choose a functional form of the modifier which either
would not seriously contradicts our knowledge of the objective prior
distribution, or would not be too much awkward as the weight distri-
bution for the assessment of the predictive distribution.

5. Discussions

Here we will discuss some of the implications of the results obtain-
ed in the preceding sections.

a. Complete freedom in the choice of statistical models

It has already been shown that a subjectively contrived modifier can
produce an objectively meaningful predictive distribution. This results
clearly demonstrates the necessity and use of subjective element in
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statistical inference. In practical situations even the exact form of the
data distribution f(x|@) will rarely be known precisely. Every statis-
tical model used in a inference situation must be considered as a subjec-
tively chosen approximation to the true structure. The explicit recogni-
tion of the role of a modifier as a device for the production of a useful
predictive distribution completely frees us from the historically limited
views of the prior distribution. Even if we are not Bayesians we can
now freely use a Bayesian model. It is whether the assumed Bayesian
model can produce an objectively useful result or not that matters.

b. Relation to Robbins’ and Stein’s works

In the discussion of the compound decision problem Robbins [12]
carefully discriminates the situation of a compound decision problem
from the situation where a prior distribution exists. The latter is
treated by the empirical Bayes procedure [13]. The distinction has also
been stressed by Neyman [10]. The discussion in the present paper
suggests that the distinction would be immaterial. The analyses in the
preceding sections give us an idea of what would happen when a pro-
perly formulated empirical Bayes procedure is applied to a situation
where a prior distribution does mot exist.

Stein [15] discussed the problem of inadmissibility of the maximum
likelihood estimates of the means of an independently and identically dis-
tributed Gaussian random variables with respect to the sum of squared
error and suggested the use of shrinked estimates. Taking into account
the relation B(f( |8y); f( |ex))=—(1/2){Z (m,—cx,)’}, it is obvious that
the problem is directly connected with our discussion of the predictive
distribution f(y|cx) implied by the mode of the posterior distribution.
Since the expected entropy of f(y|cx) with the optimal choice of c¢=
Com=m(1+m?) is given by —(N/2)c.,, only those cases where m’ is
comparable to or less than 1, the value of the variance of observations,
will deserve to a careful analysis. By replacing m? by the maximum
aggregate likelihood estimate o* given in Section 3 we get a naturally
non-negative shrinkage factor defined by ¢=1—(1/«% for 2*>1, 0 other-
wise. It can be seen from the result of James and Stein ([8], p. 365)
that the estimate cx defined by this factor is better than the original
maximum likelihood estimate x at least for N=4, i.e., E, > (m;—cx;)
<N for N=4.

If in the discussion of Section 2 the posterior distribution N(cx, cIy)
is replaced by N(ex, Iy) we get a predictive distribution h(y|cx) for which
we have

N Y’
log h’(yl Cx)-: —%— lzzl log 27r+10g 2+ (yt zcxv,)
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The expected entropy of this predictive distribution is given by

E.B(( 18); h( |ex))=—-T{log 2— L (N—E. 31 (m.—ea')} .

From the above stated result of James and Stein we have
E.B(f( 109; h( |ex))z—- log?2 .

As was shown in Section 2, the right-hand side is equal to the expected
entropy of the predictive distribution implied by the posterior distribu-
tion obtained from an non-informative uniform prior distribution. Thus
for N=4 the present h(y|cx) is clearly better than the predictive dis-
tribution given by the uniform prior distribution.

A discussion of the Stein’s estimator from the standpoint of entropy
maximization without using Bayesian approach is presented in [4].

c. Comments on the practical use of the model treated in Sections 2 and 3

In interpreting the results of Sections 2 and 3 in relation to prac-
tical applications, we can consider the situation where 8, is the vector
of parameters within a general statistical model and x is the maximum
likelihood estimate of @,. This situation can be realized at least approx-
imately by properly transforming the original model so that the Fisher
information matrix becomes an identity matrix. In this case the num-
ber N of the components of & is fixed and does not justify the appli-
cation of the asymptotic discussion of the empirical Bayes procedure.
There is another parameter M here, the size of the original sample
which produced the maximum likelihood estimate x. The value m? re-
presents the signal to noise ratio and tends to be higher as M is in-
creased.

It will often be the case that some of the m,’s are with magnitudes
significantly higher than 1 and some of the rest are with magnitudes
significantly lower than 1. It would seem inadequate to treat these
situations with the modifier used in Section 2. The necessary modifica-
tion of the modifier to treat this type of situation is rather straight-
forward and is of great practical importance. A modifier to treat this
type of situations is now being empirically tested and is producing en-
couraging results. This will be discussed elsewhere [5]. The analysis
of the relation between this type of approach and the minimum AIC
estimation procedure [2] would be a subject of further study.
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6. Conclusion

It has been demonstrated by a concrete example that an objective
use of a Bayesian model with a modifier replacing the role of the prior
distribution can be quite useful. The most important observation is
the explicit recognition of the use of a modifier which can be applied
irrespectively of the existence or non-existence of the prior distribution.
The choice of the functional form of a modifier could depend on the
available prior information and the convenience of its use but the param-
eters are adjusted by the data through an objectively defined procedure.
By this approach a wide reconciliation between the Bayesian and non-
Bayesian approaches is made possible. The development of useful pa-
rametric families of modifiers and the analysis of the statistical char-
acteristics of the extended maximum likelihood estimates would be the
most important and fruitful subjects of future study.

As a final comment it must be mentioned here that the maximum
aggregate likelihood estimate of ¢* can be viewed as the mode of the
posterior distribution of ¢* for the improper uniform prior distribution.
This observation and the results of the preceding sections thus confirm
the objective utility of a fully Bayesian approach. The only problem
with the Bayesian approach was how to prove its objective utility. The
point of view of maximization of the expected entropy of the predic-
tive distribution prepared a general principle for the evaluation and
development of this type of models.
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