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Summary

In this paper the tesselation of territories is discussed. When a
mass of animals with territoriality is introduced at random simultane-
ously into a finite two-dimensional (2D) region, territories are gradually
formed and finally settle to a steady state. A model calculation for
this process is carried out, where a Voronoi polygon is assumed as a
territory. Comparisons are made between the model calculation and
Barlow’s observation on an artificial population of mouthbreeder fish.
Differences between 1D and 2D case are also discussed.

1. Introduction

Territorial behaviour is displayed by a wide variety of animals.
A term “territory” is defined as an area occupied more or less exclu-
sively by an animal or a group of animals by means of repulsion through
overt defense or advertisement against an intruder of the same species
(see Wilson [1]). The habitat of such a population is partitioned into
territories, and the pattern of partition is affected by the nature of
the environment, such as the disposition of trees or rocks. The geo-
metrical pattern of territories in an ideal situation of uniform environ-
ment is an interesting problem of mathematical biology.

Grant [2] has mentioned that the tundra should provide such an
ideal situation. Through the analysis of Holmes’ data [3] on the ter-
ritories of pectoral sandpipers (Calidris melanotos) which breed on the
arctic tundra, he has found that at high densities territories are polyg-
onal. Recently, Barlow [4] has observed remarkable polygonal terri-
tories formed by male mouthbreeder fish, Tilapia mossambica, kept in
a large outdoor pool with an initially uniform sand bottom. A terri-
torial male of T.mossambica excavates breeding pits by spitting sand
away from the pit centre toward his neighbours. As the density of
fish increases, reciprocal spitting results in sand parapets, which are
conspicuous territorial boundaries, as is schematically shown in Fig. 1.
The number of sides of the polygonal territory has a fluctuation around 6.
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Fig. 1 Schematic diagram of polygonal territories formed by male mouthbreeder fish
(replicated from the photograph in Barlow’s paper [4]).

In this paper, we intend to provide a simple behavioural model
which accounts the pattern of polygonal territories.

2. A behavioural model

A simple model of territorial behaviour has been previously pro-
posed by Maynard Smith [5], and we utilize his idea.

An owner of a territory defends the area with an aggressive be-
haviour against an intruder of the same species. Unless the owner is
ill, he is usually undefeatable by the conspecific intruder at the centre
of his territory. However, the aggressive tendency and the strength
of the owner decrease monotonically with the distance from the centre
of the territory. Therefore, in 2-dimensional (2D) case, if all the indi-
viduals are identical in strength, the pressure between two neighbours
balances on the perpendicular bisector between the two centres, and
this line becomes the boundary between the territories (see Lorenz [6]).
In this way the habitat of the population is partitioned into polygons,
which are well known as Voronoi polygons.

Since the territories are two-dimensional in most cases, we restrict
ourselves to a planar model for the moment. Suppose that a mass of
individuals are introduced simultaneously into a limited area. Here,
the simultaneity is essential for the territories to be established through
mutual adjustment. The model for successive introduction will be pre-
sented in a forthcoming paper. We assume that in the couse of the
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establishment of territories, each territory has a centre at any mo-
ment, in the sense that its owner exerts equal pressure on all sides
of the centre. To each centre a Voronoi polygon is associated, which
consists of all the points in the area that are nearer to that centre
than to any other. The initial pattern of the arrangement of the
centres is supposed to be completely at random. Generally the crowd-
ed regions and sparse regions are found here and there in this instant
of time. The position of the centre of such a territory is transient
and is not fixed in space.

Each individual should have a tendency to occupy his own territory
in such a way that he is distant from his neighbours as far as possible.
Then the centres are adjusted all together from the initial positions to
preferable positions. This is followed by a new adjustment of the bound-
aries, and the process is continued iteratively until a stationary set of
boundaries is achieved. Finally, the centres of the territories become
fixed. This may mean nests are going to be built up there.

Maynard Smith has claimed that such a limiting configuration is
hexagonal tessellation, the validity of which we want to see in the fol-
lowing. Let us specify our model. We call the territorial animals par-
ticles and regard them to be dimensionless. At the initial time step
(t=0), N particles are distributed in a square box of side length L.
The coordinates of the ith particle at the time t=n are denoted by
x (1=1,2,---, N). The number density p=N/L* is supposed to be
large enough, so that the stable territories are of polygonal shape, but
not so large as something like the dense packing of hard dises. As an
initial configuration {x{”} we take completely uniform random points
in the box. At time n (n=0,1,2,---), to each particle x{® we assign
a Voronoi region /71, namely, the set of all points x satisfyng

(1) lx—xP|s|x—xP],  (G#19)

for any other particles x{™ than x$ (Rogers [7]). Vertices of the poly-
gon are denoted by y™(k), for k=1,---, p{”, where p{® is the number
of its sides. When a configuration of particles is given, the Voronoi
polygons I7{ divide the space uniquely and we call it “ Voronoi division ”
of space. Throughout our calculations a periodic boundary condition is
used. We now define II{as the “territory” of the ith particle at time
n. The repulsive forces among them cause to change the positions of
particles to more stable places. We can regard that a particle moves
within the territory of the respective moment. Then we choose as the
new coordinate at the next time n+1

pg")
(2) xMP=(1/p") 2 yio (k) -
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When a set of new coordinates of the particles is obtained, we carry out
a Voronoi division of the space again, obtaining a new set of coordi-
nates of vertices {y{"*°(k), k=1,- .-, p{"*}. The process is iteratively re-
peated until a stable configuration is obtained. Practically, the quantity

4,,,=(/N) ANV‘_, [x{"*P—x{|* may be a measure of the motion of the whole
i=1

system, and the system can be considered to be actually in equilibrium
when the quantity reaches a sufficiently small value. Then a stationary
set of boundaries is obtained. In all the runs we performed, the value
of 4, decreased monotonically after it reached 10*/o. Hence, the pro-
cess was stopped at time m=m, when 4,<107%p was first attained.
A number of series of that process was carried out in the case of N=
200 and p=1.0.

In the course of the simulation, we compute in each step geometri-
cal quantities which are associated with Voronoi division, such as num-
ber of sides, area, side lengths, interior angles, ete., for each polygon.
They are stored on magnetic tapes together with the data of the co-
ordinates of particles and those of vertices ready for statistical analysis.

3. The results and discussions

In this section we present the results of our simulation, and com-
pare them with some experiments and observations on territorial animals.
In Fig. 2, two patterns of the Voronoi division of our model are illus-
trated. The small circle in each polygon represents the position of the
particle. Fig. 2 A shows a pattern at an initial time step in which the
points are distributed completely at random. The polygons show vari-
ous types of shape and their areas extend over a wide range. Circles
in polygons are often located close to edges, which implies a very un-
stable configuration for the animals. Fig. 2B, on the other hand, is
one of the final step patterns, which shows considerably uniformly sized
polygons, and circles are situated almost at the centre of gravity of
each polygon, exhibiting a stable configuration of territories. Now,
Figs. 3, 4 and 5 are histograms of number of edges, of area and of
interior angles of a polygon, respectively.

In each figure, histograms at the initial time and at the final time
are compared. The tendency to the equalization is recognized for area
and number of edges from the figures, but, contrary to Maynard Smith
who assumed the territories eventually become equally sized regular
hexagonals, our results seems to show that the area and the number
of edges of polygonal territory asymptotically approach to some definite
distributions with finite standard deviations. The same is true for the
interior angles which are finally distributed around 120° with a stand-
ard deviation of about 12° (Fig. 5B). These results were corroborated
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Fig. 4 Histograms of area of polygons.
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Fig. 5 Histograms of interior angle.

by another series of simulations for N=500, the process of which shows
nearly the same behaviour and nearly the same distributions of geo-
metrical quantities as in the case of N=200. Therefore, the system
size dependence seems to be small.

Now we shall compare our results with the observations. Fig. 1
is a schematic drawing of territorial boundaries of males of Tilapia
mossambica replicated from the photograph in Barlow’s paper [4]. From
the figure, the number of edges and the interior angles were counted.
In Figs. 6 and 7, their distributions are illustrated. The corresponding
data are summarized in Tables I and II together with the results of
the model calculations. »* test was done for the goodness of fit of the
observation against our territorial model on the distributions of the
above quantities. At the test of the interior angles we chose as the
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Fig. 6 Histograms of number of
edges of territorial boundaries
of T. mossambica obtained from Fig. 7 Histograms of interior angles obtained from
Fig. 1. Fig. 1.
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Table I Counts of number of edges of polygons

Males of T. mossambica Model at time t=m;
obtained from Fig. 1 (10 series)*

)

0 0
44
515
934
422
74
11

© 00 N U W
S O N W WO

* The values of ms vary of course for each of the 10 series
of run such as 62, 96, 69, 51, 66, 62, 69, 62, 74 and 60.
But the variances of geometrical quantities among these
times are very small.

Table II Counts of interior angles (40=10°)

6° Males of T. mossambica Model calculation at

obtained from Fig. 1 time t=ms (10 series)
50- 60 0 0
- 70 0 3
- 80 1 30
- 90 1 149
-100 9 567
-110 12 1688
-120 37 3194
-130 39 3805
-140 23 2167
-150 4 381
-160 1 16
-170 1 0
-180 0 0

class interval of histogram, 40=8° and 10° for respective tests, and for
each interval two different locations were adopted, i.e., altogether four
differents ways. Each test accepted (at 5% level) the null hypothesis
that two distributions are identical. With respect to number of edges
the test also accepted (at 5% level) the null hypothesis of identical
distributions. However, a y’ test rejected, at 19 level, the null hy-
pothesis that the observed angle distribution for Calidris melanotos is
identical to that of our model. Presumably it is because the artificial
population of Tilapia mossambica is different from the natural popula-
tion of Calidris melanotos in the way of forming territories. With
regard to the latter, we shall present a reasonable model in the forth-
coming paper.

Next we show that, contrary to the computational results for 2D
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case, in 1D space the equilibrium state is uniform, that is, Voronoi
regions (Voronoi segments) are all identical and centres are spaced reg-
ularly. As in Section 2, we suppose a2 is the coordinate of the ith
particle at time » and y™(k), for k=1, 2, are those of edges of Voronoi
segment. We consider particles arranged in the order of their number
from left to right. Therefore, we can set ¥{(2)=y7(1)=¥%,, and the
set of vertices are rewritten as {y™}. The set {z{"*"} at the next step
is obtained similarly as in the 2D case by

(3) = 2 U+ UR)

Then the set {y"*V} is obtained from {x{"*®} through Voronoi division.
In this way our iterative process for 1D case is specified. We now set
uM=x™—2 as the length of neighbouring pair between i—1 and 1,
and v =y»,—y™ as the length of Voronoi segment of particle . There
are relations between {u{™} and {v{™} such as

1 1
(4) W= @Rtu),  ul= 0+

By means of the set {#{®} for an initial time, #{**V and +** can be
expressed as

2n 1 2n+1

1
D_ 0 n_ o
(5) uf™* )—%‘ Lgo 2nCU Pt Y= ot E 2n+1Czu§—)n+l+1 .

The probability density functions for (™ and v are denoted by f.(u)
and g,(v), respectively. As before, we choose a completely random point
distribution for the initial set of coordinates {x{®}. In the case of an
infinite straight line with a fixed number density 1, the series {x{"}
becomes a Poisson point process and p.d.f. of w becomes fy(u)=2e"*
(u=0). Now we set 2=1 for simplicity. From eq. (5), which are linear
combinations of independent variables of identical distribution, f,(%) and
g.(v) can be successively obtained. Expectations E(U™), E(V™) and
variances Var (U™), Var (V™) are directly estimated from (5), as follows;

E(U®)=E(V®)=1,
(6) Var (U™)=2"%"%(4n—4)!/[(2n—2)!]*
Var (V®)=2"4"9(4n—2)!/[(2n—1)!]*.
In the limit of n— o0, Var (V™) becomes
(7) Var (V™) ~(z(2n—1))""~

by means of Stirling’s formula, and tends to zero. Therefore, the
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Voronoi segments tend to equality in our process.

A spacing pattern of starlings on an electric wire will be a good
example of this situaion. Immediately after their arrival, the starlings
distribute themselves at irregular intervals. In the mean time, the
individuals in a crowed region begin to peck each other and then sepa-
rate. Finally a regular distribution intervals is attained (Lorenz [8]).

Thus we can see a remarkable difference between 1D and 2D ecases
in the way of establishment of territories.

The idea of the territorial model can be also applied to other sys-
tems. Consider, for example, a system of molecules interacting with
a short range repulsive potential. If the system is put into a limited
region filled with a frictional medium, each molecule moves according
to repulsive forces among molecules and finally settles to a steady posi-
tion by frictional forces of the medium. The resulting pattern of mole-
cules will be such that the total potential energy of the system is as
small as possible. Therefore, each molecule will be arranged so as the
distances between them are as great as possible. This situation may
be the same as in the case of territorial animals.

Note added in proof

In Barlow’s paper the number of sides of polygonal territories shows
a distribution with a peak at 5 in the whole of his experimental pool.
But in the limited region where we have considered, this distribution
shows a peak at 6. Barlow informed us this discrepancy with a com-
ment that the region had not been selected as a random sample. In
our opinion, the density of individuals is so high that the space is divid-
ed by territories without any gap in the region we have considered,
but this is not the case in the whole of the pool. And what we would
like to consider was a model for the former case, and therefore we used
the region of the photograph in his paper. Thanks are due to Prof.
G. W. Barlow for his comment in the correspondence with us.
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