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Summary

The numbers C(m, n, s) and |C(m,n, —s)|, $>0, appearing in the
n-fold convolution of truncated binomial and negative binomial distri-
butions, respectively, are shown to be asymptotically normal. More-
over a concavity property for these numbers is concluded.

1. Introduction

A combinatorial distribution, as suggested by Harper [7], is defined
to be any “generalized Pascal’s triangle” on the lattice points of the
positive quadrant, defined by a difference equation of the form:

1.1) A(m+1, n)=g(m, n)A(m, n)+h(m, n)A(m, n—1)
with boundary conditions :
A(0,0)=1 and A(0, n)=0 if n#0

and with g(m, n), k(m, n) positive for n=0,1,--., m, m=0,1,....

The asymptotic behavior of certain combinatorial distributions has
been studied by several authors. Among them Feller [3] has shown
that the distributions given by the number of permutations of m ele-
ments with » inversions and the number of permutations of m elements
with n cycles, are asymptotically normal. Gonéarov [4] has shown
asymptotic normality for the above and other combinatorial distribu-
tions. Harper [7] has shown that the Stirling numbers of the second
kind are asymptotically normal.

In the present paper we consider two other special cases of (1.1);
the numbers C(m, n, s), appearing in the n-fold convolution of a trun-
cated binomial distribution and satisfying the difference equation (see
[1] and [2]):

1.2) C(m+1,n,s)=(sn—m)C(m, n, s)+sC(m, n—1,s), s>0
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with boundary conditions:
C0,0,s)=1 and C(0,n,s)=0 if n+0, s>0,

and the numbers |C(m, n, —s)|, appearing in the n-fold convolution of
a truncated negative binomial distribution and satisfying the difference
equation (see [1] and [2]):

(1.3) |C(m+1, n, —s)|=(sn+m)|C(m, n, —s)|
+s|C(m, n—1, —8)|, s>0

with boundary conditions :
|C(0, 0, —s)|=1 and |C(0,n, —s)|=0 if n#0, s>0.

These two combinatorial distributions are shown to be asymptotically
normal. The results for the numbers |C(m,n, —s)| are given in Sec-
tion 4 without proof since this is similar to that for C(m, », s).

2. Preparatory results

Let
@1) Ful)=33 C(m, m, 8}

denote the generating function of C(m, n, s) with respect to the index
n. Then we have the following

LEMMA 2.1. The generating function f,(t) of C(m,n,s) has m dis-
tinct real mom-positive roots for all m=1,2,-..,s, $>0.

PROOF. From (1.2) and (2.1) we obtain for the generating func-
tion f,, the following difference-differential equation

(2-2) fm+l(t)=8t§'t'fm(t)+(8t_m)f w(t) -

By the definition (2.1) and since C(1, 1, s)=s we have
fit)=st
and from (2.2)
fit)=8t"+s(s—1)t

that is the statement holds for m=1, 2.
Now suppose m>2. By the induction hypothesis f,, has m distinct
real non-positive roots. If we define the funection



ASYMPTOTIC NORMALITY 501

ho(t)= fa(t)t ™%
then &, has exactly the same finite roots that f,, does and moreover
h, has a zero at —oo; the identity (2.2) becomes

hmﬂ(t):st“-lm%hm(t) .

By Rolle’s theorem between any two zeroes of h,, the derivative (d/dt)h.,,
will have a zero. Therefore f,,; has m distinct real negative roots;
obviously ¢t=0 is another one and since f,,, is of degree m+1, by in-
duction, we have found all the roots and the proof is completed.

As a consequence of Lemma 2.1 we obtain by using Newton’s in-
equality (c.f. [6]) the following

COROLLARY 2.1. The number C(m,n,s) for s>0, is a strong log-
arithmic concave function of n, that is

[C(m, n, 8)>C(m, n+1, s)C(m, n—1,s) .

Let us now define the numbers C,,, m=1,2,--- by
C,,,,=%C(m, n,s) .

Since (see [2])

lim s~™C(m, n, s)=S8(m, n)

38—t

where S(m, n) denotes the Stirling numbers of the second kind, we
obtain the following limiting property of the numbers C,,:

lim s—™C,,=B,,

s—too
where

B,=3S(m, n)
denotes the Bell numbers.

The numbers C,, may be considered as generated by the function
exp [(1+2)*—1], that is

(2.3) S Cpe - =exp [(1+2)—1] .
m=0 m!

This can be easily verified by expanding the right-hand side of (2.3)
into powers of z and using the relation (see [2])
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33 C(m, m, 8) =L (1 42y —1].
m=n m! n!

An asymptotic formula for the numbers C,, is given in the following

LEMMA 2.2. Let R be a real solution of the equation: sR(1+R)
=m, m=1,2,.--,8, s=1,2,--+.* Then

(2.4) Cp=s"1+R)y"*""**(1+sR) " exp {m[(1+R)(sR)'—1]—1}
% {1 _ R2s*(s—1)R’+(7s*—4s—3)sR+10s*—12s+2]
24m(1+R)(1+sR)
R2
+ol )} -

SKETCH OF PROOF. Since the method of proof is analogous to that
given by Moser and Wyman [9] and Szekeres and Binet [10] for the
Bell numbers, details are omitted. From (2.8) and Cauchy’s theorem,
we obtain

Cr= m! fz""‘“’ exp [(1+2z)y—1]dz

s =——r
™ ong

where ¢ is the circle 2z=Re”. Hence

3

(2.5) Co=A S exp [F(6)]d0
where *

2.6) A=(2n)"R-"m! exp [(1+R)y'—1]
and

F(0)=(1+Re"yY—imé—(1+R) .

Expanding F'(4) in a Maclaurin series about §=0 and choosing R to be
a real solution of the equation

@.7 sR(1+-R)y™'=m
we get

__l $=202 1w [Qk+2 ()
2.8)  F(O)=—7(1+sR)R)(1+Ry 0+ 3 [6 W+ B o

where 6 denotes the operator

d
6=R——.
dR

* Such a solution always exists since the function @(R)=sR(1+R)'—m has a root
Re(0,a) where a>max {(m/s)/2, (m[s)i/2¢-D—1}, because of ¢p(0)=—m<0, ¢(a)>0 and the
continuity of ¢.
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Introducing the following notation :

o= [_;. sR(1+sR)(1 +R)-*-2]‘/zo
B=A[-%-sR(1 +sR)( +R)=-2]'”2

(2.9) ak=(1+R)“"‘”6’°”(1+R)‘(i¢)"+2/(k+2)![%sR(1+sR)

:| x+2/2

2= (1 +R)-(l-—2)/2
f(2)= g‘.l a2

and making the substitution (2.8) in (2.5) we finally arrive at the
asymptotic formula

(2.10) Cm~B§ [Sm 6_’szkd¢] (14 R)~*¢—»

—o0

where b, is the coefficient of 2* in the expansion of ¢/ in a convergent
Maclaurin series, that is

ef"’=§_.‘o bi2*, by=1.

Consider now only the first two terms in the expansion (2.10). By
calculation we obtain

b0=1 ’
b 1 SR} (6s'—4s+1)R*+(7s—4)R+1 ,,
by=a,+—al=
1=t o0 6sR(L+ R)(1 +sR)’ ¢
_ [#R*+(3s—1)R+1} p
9sR(1+R)(1+sR) *

Hence from (2.10) and using (2.7) we find:

C ~n‘/2B[1— 284R4+(983+282—38)R3+(1682—68+2)R2+(68+2)R-|—2:|

24m(1+R) (1 +sR)’

which by (2.6), (2.9) and using Stirling’s expansion of m! implies the
required formula (2.4).

LEMMA 2.3.

(2.14) .%6:_= (%)TH—%Q(M R, 8)+0(%>]



504 CH. A. CHARALAMBIDES

where Q(k, R, s) is a polynomial in k of degree 2.

SKETCH OF PROOF. Expand C,,,, and C,, as in Lemma 2.2 and
consider the ratio C,,,,/C,.. as a product of three terms each of which
can be expressed as a sum of reciprocal powers of m with coefficients
which are functions of k, R and s (c.f. Lemma 1.4 in [5]).

3. The asymptotic normality of the numbers C(m, n, s)

THEOREM 3.1. The numbers C(m, n,s) for positive s are asymp-
totically mormal in the semse that

T

Crp]
Cat 3 Cm, m, 99— @0 | et as m—oo

where

— Cm+2,:+Cm+1.s_<Cm+l,n )2_1 1/2. [Cm-;-l,: m—s
| St ) e[ Gt

Proor. Let —u,:, k=1,2,---, m be the roots of the generating
function (2.1) of the numbers C(m, n,s) and define the sequence of

independent random variables X/, k=1, 2,---, m by
I if y=0
1+xmk sy
Pr[X/.=vy]=
if y=1,
1+xmk ' y

then the random variable

Sh=3 X/
k=0
has probability function:
Pr [S,,=n]=C,iC(m, n, s) , n=0,1,---,m

and

B (Sp)= 3 nm. 1.8) _ Covr | m—s

Cmt sCm: 8
< nC(m,m,8) [ Cpiyy , m—s]?
Var (3;)=3; £ | S |

Cm+z;-ci’-fm+1,. _[ i’,a: ]2_1 .
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From (2.11) we have:

Var (S,)=-—""_[Q(, R, 5)—2Q(1, R, s)+R]+o(1) .

(sR)*
Hence
Var(S,’,,)—*°° as m—oo .,
Now let
Sn=[Var (SWI™VSa—E (Sl =3 X
where

Xu=[Var (Sp)] [ X0 —E (X)) .
Since for a given ¢>0 there exists M such that
| Xkl =[Var (S,)] 2 for all m>M

we obtain:

1im>'ﬁSH odF, =0  for all m>M
r|>e

m—oo k=1

with F,, the distribution function of X,,.

Therefore all the conditions of the “bounded variance normal con-
vergence criterion” (see [8], p. 295) are fulfilled. Hence the statement
of the theorem holds.

4. The asymptotic normality of the numbers |C(m, n, —s)|

The results for the numbers |{C(m, n, —s)|, >0, may be summa-
rized in the following

PROPOSITION 4.1. The generating fumction gn(t)=3) |C(m, n, —s)|t*
n=1
of the numbers |C(m, n, —s)| has m distinct real mom-positive roots for
al m=1,2,---,8>0.

PROPOSITION 4.2. The number |C(m, n, —s)| for s>0 is a strong
logarithmic concave fumction n.

THEOREM 4.1. The numbers |C(m, n, —s)| for positive s are asymp-
totically mormal in the sence that:

[z,]
|Co =t X |C(m, m, —3)|—’(27r)'mg et as m— oo
n=0 oo
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where

— |Cm+2,—s|_‘Cm+l,—sl _<|Cm+l,—:l >2_1]l/2. [ |Cm+1,—s| __'m+s]
o [ 8*|Cpn, | 8|Cr, | i 8]Cn, sl s

and
I Cm,—: | =("'1)mCm,—s .
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