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1. Introduction

Let X be a random variable with distribution funection
(1.1) F(x)=<—:—>o, 0<z<a and 6>0.
Then X has the power distribution. If Y has as distribution function
(1.2) G(y)=1—<§>’, 0<B<y and 7>0

then Y has the Pareto distribution. It can shown that if X has the
power distribution with parameters a and # then X! has the Pareto
distribution parameters g=a™!' and y=6. These two distributions are
also related with the exponential distribution, on account of the fol-
lowing transformations. If Z has the exponential distribution

(1.3) r'zy=1—e*, 2=0, 2>0

then (x) Y=pge? has the Pareto and (xx) X=ae ? has the power distri-
bution. These two transformations are one to one.

Many characterizations of the Pareto and power distributions are
known. We observe that characterizations of the exponential distribu-
tion based on distributional properties, can be transferred to the power
and Pareto distributions due to the previously mentioned transforma-
tions of the exponential variable. The power distribution is character-
ized in [1], [2], [3] and the Pareto distribution in [4]. In these papers,
characterizations for the exponential distribution are given, using in-
dependence properties of the order statistics. Then using () and (*x)
the desired characterizations follow for the power and Pareto distri-
butions. The same also holds for the lack of memory property of the
exponential distribution. This property can be stated as follows: “If
Z has (1.3) as distribution, the conditional distribution of Z given that
Z>c is the same as the distribution of Z+c¢ for all ¢>0.” By (¥) we
conclude for the power distribution that X, given X=e¢, has the same
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distribution as ¢X/a all ¢, 0<c<a. Similarly, ¥ given that Y >¢ and
Ye/p are identically distributed for all ¢>8, if Y has the Pareto dis-
tribution. As the transformations are one to one and as the lack of
memory characterizes (1.3), we have that the previous properties char-
acterize (1.1) and (1.2).

A direct characterization for the power distribution is given in [5]
by M. Fisz. He considers independence properties of order statistics.
In [6], [7] and [8], independence is replaced by the weaker property of
constant conditional expectation. Krishnaji N. [9] characterizes the
Pareto distribution through the distribution of incomes and Srivastava
M. 8. [10] characterizes the power and Pareto distributions using the
mean and the extreme observations of the sample.

2. Summary
In this note we prove that
Xc)'

21) E(X'|X<¢)=FE (7 0=z=a all ¢ in (0,a), r>0

characterizes the power distribution. Similarly,
2.2) E(Y'|Y>¢)=E <%> 0<p<y all ¢=8, r>0

characterizes the Pareto distribution. Then we use these results to
give generalizations of results found in some of the previously men-
tioned papers.

3. The results
We prove the following theorems.

THEOREM 3.1. Let X, a non-negative random variable, with distri-
bution function F(x) and F(a)=1 for some a>0. If (2.1) holds for
some r>0, then F(x) i8 the power distribution (1.1) for some 6>0.

Proor. Using the definition of the expectation, equation (2.1) is
written:

3.1) So mfd%mr So (%)'dF(x) .

Using integration by parts we get:

7 __ cF(x) r—1 —e7
¢ rSo——F(c)x dr=c"0
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or

3.2) F(c)c’:—l—{—a— S: F(x)x'dx .

We set a=S“ (¢/aydF(¢). This means 0<d<1 as F(z) is increasing.
0

As the integral is a continuous function of its upper limit we conclude
that F'(¢) is continuous. This in turn means that the derivative of the
integral exists, hence F(c) is differentiable. So differentiating (3.2) we
get

F'(c)e"+re'F(c)= 115 ¢ 'F(c)

where F’(c) is the derivative of F'(c). After the calculations we are
led to
3.3) cF'(¢c)=6F(c)

where =7r(5/(1—45))>0. Integrating (3.3) we get F(c)=Ac’ and using
the condition F(a)=1 we have F(c)=(c/a)’, 6>0. This proves the
theorem.

For the Pareto distribution we have the following

THEOREM 3.2. Let Y a random variable with distribution function
G(y) and y=p for some positive B. If (2.2) holds for some r>0 then
G(y) is the Pareto distribution (1.2) with some y>0. We assume E (Y7)
< o0,

ProOF. We denote the conditional distribution of Y, given Y >¢,
by G.y). That is

G(y)—G(c)
Gc(y)=[ 1-G(o)
0 Yy=c.

We set also P(y)=1—G(y) and P.(y)=1—G.(y)=P(y)/P(c). By definition

y>c

(3.4) E(Y'|Y>c)= Si v dG.()

=\ var.

» P(y)
P(c)

—pr = P(y) ,r1
=c"+r Sc Pe) Yy dy .

" [T 20 gy

- - P(o)

c
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This is because lim P(y)y"=0 as E (y")<oo. Therefore equation (2.2),
y—»eo

using (3.4), becomes

cr_{__,r Sm P(y) yr—ldy=cr5

. Ple)

or

(35) |, Pawdy="9=D p(
where

5=S: (%)'dG(y)gl as  B>0.

From (3.5), as before, we conclude that P(c) is differentiable. So we
have the differential equation

(3.6) cP'(e)=—rP(c)

with y=76/(6—1)>0. From this equation we conclude that P(c)=Ac™,
with A a constant. This means that P(y) must be of the form P(y)
=d(Bly) with y=p and d is a constant, 0=<d=<1. Hence

l—d%)r y=p

0 y<g.

If d#1, then G(y) has a discontinuity at 8. The jump is 1—d. But
d cannot be arbitrary. Before we set 6=E (y/8)" or E (y/B)" =87r/(r—7).
So setting G(y) in this, we get after some calculations that d=1. This
proves the theorem.

(3.7 Gly)= [

If instead of equation (2.2) we consider the relation
3.8) E(Y"|Y>c¢)=bc, b constant independent of ¢, >0

then the solution is equation (3.7). That is we have a distribution with
a positive probability mass at g and the rest is the Pareto distribution.
The probability mass is evaluated from (3.7).

The characterizations now follow from the theorems and Section 1.
We can prove that E (X 7| X<c¢)=E (cX/a)"" characterizes the power
distribution. We can prove this either directly or using the fact that
1/X has the Pareto distribution and Theorem 3.2. The same modifica-
tions can be made in Theorem 8.2 for the Pareto distribution.

In the following we apply Theorems 3.1 and 3.2 to give some gen-
eralizations of results found in some of the papers mentioned in Sec-
tion 1,
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4. Applications

Let X;=X,<.--<X, the order statistics of a random sample, of
size n, from a distribution F(x). In [5] M. Fisz, for n=2, proves that
the independence of X;/X, and X,, for F(x) absolutely continuous with
F(0)=0, characterizes the power distribution. In [7] G. Rogers uses
the independence of X,/X;,, and X,,,, for some ¢ in 1=i<n—1, to
prove that an absolutely continuous F(x) with F(0)=0 is the power
distribution. But in his proof, he uses the weaker assumption that
X./X;,1 has a constant conditional expectation on X,,,. Then, T. S.
Ferguson [6], generalizes Rogers’s result by considering only continuous
F(x). In his paper, the relation E (X;|X,,,=x)=ax+0b is used to char-
acterize several distributions.

As applications we have the following corollaries :

COROLLARY 4.1, Let X;<X,,,, order statistics from a continuous
distribution F(x) with F(0)=0 and F(a)=1. If

4.1) EX/ /Xy Xiu=x)=c, ¢ does mot depend on x, and r>0

holds for all % in (0, a) and some i with 1<i<n—1, then F(x) is the
power distribution and conversely. The same also holds for

4.2) E X/ /X7 | Xip=2)=c, ¢ independent of x and r>0
provided that the expectation is finite. »

PrOOF. We have that the distribution of X, given X,,,=x is the
same as the distribution of the maximum of a sample of size ¢ from
the distribution F(y)/F(x), 0<y<x. This follows from the definition of
the order statistics. Hence Pr (X,<y|X,,,=2)={F(y)/F(x)}' and be-
cause of this equation (4.1) becomes

Yy ﬂ@.}‘: -
4.3) So Y d{ 20 cx” .
As 0< X, < X,,,, from (4.1) we have that 0<¢=<1. But then equation
(4.8) is the same as (3.1) with (F'(x))' instead of F(x). From this we
conclude that F'(x) is the power distribution with =76/(i(1—4))>0. In
a similar way or using the observation made at the end of Section 3,
we can prove the same for equation (4.2). When F(x) is the power
distribution, a direct calculation shows that both (4.1) and (4.2) hold.
Hence the corollary is proved.

Analogous corollary holds for the Pareto distribution.

COROLLARY 4.2. Let X;<X,,, order statistics from a continuous
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distribution G(x) with G(B)=0 for some 8>0. If
4.4) E X /X7 | Xi=x)=c¢, ¢ independent of x, r>0

holds for all x>B, then G(x) is the Pareto distribution, provided that the
expectation is finite. The same holds for the relation

(4.5) EX/ /X, | Xi=2)=¢c, ¢ independent of x, r>0.
Conversely, if G(x) is the Pareto distribution, (4.4) and (4.5) hold.

ProoF. The conditional distribution of X,,, given X,=z is the
same as the distribution of the minimum of n—1 observations from the
distribution G.(y). Also ¢=1. So we arrive at an equation similar to
(3.5) with (P(z))** instead of P(x). Hence the result.

Consider now [10]. In this paper M. Srivastava proves the follow-
ing: “For an absolutely continuous distribution F(x) with F(0)=0,
the independence of (X;+X,+---+X,)/X, and X, characterizes the
power distribution. Correspondingly the independence of X, and (X,+
X;+ -+ +X,)/X; characterizes the Pareto distribution.” Here we have
the following corollary.

COROLLARY 4.3. Let X,<X,<---<X, the order statistics from a
continuous distribution F(x) with F(0)=0, F(a)=1. Then
» X

(4.6) E (E .fi

Xn=m>=c , ¢ independent of x, r>0

if F(x) is (1.1) with some 6>0.

Proor. If (4.6) holds, as X,>X,>0, then n>¢>1. The distribu-
tion X,,---, X,_, given X,=x is the same as the distribution of the
order statistics of a random sample of size n—1 from F(y)/F(x) 0=y
<z, if F(x) is continuous. But the sum of the order statistics equals
the sum of the sample. Hence we have for equation (4.6)

E (; X;|X,,=x) —(c—1)a"
or
E(Y)=C"14
-1
where Y has F(y)/F(x) as distribution. Therefore (4.6) is equivalent to

T Fy) _c—1 .
4.7 Soydm—mx .
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As 0<(c—1)/(n—1)<1 equation (4.7) is the same like (3.1). Hence the
result.

For the Pareto distribution we state an analogous corollary

COROLLARY 4.4. The assumptions as in Corollary 4.3, with F(8)=0
for some B>0. Then

n Xir
(4.8) E (;1 2

X,=x>=c , ¢ independent of x, r>0

iff F(x) is (1.2) with some y>0. We assume that the expectation is
finite.

PrOOF. On the same lines as in Corollary 4.3.
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